
A reconfigurable HW/SW platform for computation intensive high-resolution
real-time digital film applications∗

Amilcar do Carmo Lucas, Sven Heithecker, Peter Rüffer, Rolf Ernst
{lucas | heithecker | rueffer | ernst}@ida.ing.tu-bs.de

Technical University of Braunschweig, Germany

Holger Rückert, Gerhard Wischermann, Karin Gebel, Reinhard Fach, Wolfgang Huther
{holger.rueckert | gerhard.wischermann | karin.gebel | reinhard.fach | wolfgang.huther}@thomson.net

Grass Valley Germany GmbH, Thomson group

Stefan Eichner, Gunter Scheller
stefan.eichner@tu-ilmenau.de, scheller@e-technik.tu-ilmenau.de

Technical University Ilmenau, Germany

Abstract

This paper presents a multi-board, multi-FPGA hard-
ware/software architecture, for computation intensive, high
resolution (2048x2048 pixels), real-time (24 frames per sec-
ond) digital film processing. It is based on Xilinx Virtex-
II Pro FPGAs, large SDRAM memories for multiple frame
storage and a PCI express communication network. The ar-
chitecture reaches record performance running a complex
noise reduction algorithm including a 2.5 dimensions DWT
and a full 16x16 motion estimation at 24 fps requiring a
total of 203 Gops/s net computing performance and a to-
tal of 28 Gbit/s DDR-SDRAM frame memory bandwidth.
To increase design productivity and yet achieve high clock
rates (125MHz), the architecture combines macro compo-
nent configuration and macro level floorplanning with weak
programmability using distributed microcoding. As an ex-
ample, the core of the bidirectional motion estimation using
2772 CLBs reaching 155 Gop/s (1538 op/pixel) requiring
7 Gbit/s external memory bandwidth was developed in two
men-months.

Keywords: motion-estimation, weak-programming,
stream-based architechture, digital film, reconfigurable,
FPGA

1. Introduction

Digital film post processing (also called electronic film
post processing) at resolutions of 2Kx2K (2048x2048 pix-

∗funded in part by the German Federal Ministry of Education and Re-
search (BMBF).

els per frame at 30 bit/pixel and 24 pictures/s resulting in an
image size of 15 MBytes and a data rate of 360 MBytes per
second) [4], [1] and up are used in the motion picture and
advertisement industries. There is a growing market seg-
ment that requires real-time or close to real-time processing
to get immediate feedback in interactive film processing.
Some of those algorithms are highly computation demand-
ing, far beyond current DSP or processor performance. Typ-
ical state-of-the art products in this low-volume, high-price
market use FPGA based hardware systems with fixed con-
figurations.

Upcoming products face several challenges at once, in-
creasing computing demands and algorithm complexity,
larger FPGA architectures with floorplanning requirements,
large memory space holding several consecutive frames and
increasing demands to product customization.

This paper presents an answer to these challenges in the
form of the FlexFilm [2] hardware platform in section 2 and
it’s software counterpart FlexWAFE [10] (Flexible Weakly-
programable Advanced Film Engine) in section 3.

An example of a 2.5 dimensions noise reduction appli-
cation using bidirectional motion estimation/compensation
and wavelet transformation is presented in section 4. Sec-
tion 5 concludes this paper.

1.1. Related Work

The Imagine stream processor [7] uses a three level hi-
erarchical memory structure: small registers between pro-
cessing units, one 128KB stream register file and external
SDRAM. It has eight arithmetic clusters each with six 32-
bit FPUs (floating point units) that execute VLIW instruc-

Image Processing FPGA incl. CPU
Xilinx Virtex II Pro 50

External RAM (DDR-SDRAM)
because FPGA onboard memories are too
small

Interface
Host

PProcessing rocessing UUnitnit

Switch

Interface
PCI-Express

Storage

FlexWAFE
FPGAs

Bridge
FPGA

R
A
M

R
A
M

I/O

I/O

PProcessing rocessing UUnitnit

R
A
M

R
A
M

I/O

FlexWAFE
FPGAs

I/O

Bridge
FPGA

Figure 1. The global system architecture

tions. Although it is a stream oriented processor, it does
not achieve the theoretical maximum performance due to
stream controller and kernel overhead.

The methodology presented by Park et al. [15] is focused
on application level stream optimizations and ignore archi-
tecture optimizations and memory prefetching.

1.2. Technology status

Current FPGAs achieve over 300 MHz, have up to
1 MByte distributed RAM and up to 512 18-bit MAC
units (source Xilinx Virtex-IV [6]). Together with the
huge amount of distributed logic in the chip (up to 100K
CLBs [6]) it is possible to build circuits that compete with
ASICs regarding performance, but have the advantage of
their configurability and therefore reuse.

2. FlexFilm System Architecture

In an industry-university collaboration, a multi-board,
extendible FPGA based system depicted in figure 1 has been
designed. The core processing engines are mounted on PC
extension boards and interconnected via PCI-Express [3]

8 Gb/s 8 Gb/s 8 Gb/s

8 Gb/s 8 Gb/s 8 Gb/s

2 Gbit

2 Gbit

14
Gb/s

14
Gb/s

2 Gbit

2 Gbit

14
Gb/s

14
Gb/s

2 Gbit

2 Gbit

14
Gb/s

14
Gb/s

FlexWAFE
FPGAs

8
Gb/s

8
Gb/s PCIe 4x to host PC

2 Gbit

2 Gbit

14
Gb/s

14
Gb/s

Router
FPGA

8 Gb/s

PCIe 4x
for I/O or extension

8 Gb/s

VirtexII PRO V50-6

23616 slices
4.1 Mbit RAM
2 PowerPC
PCI-Express

Figure 2. PCI-Express 4x PC extension board

(PCIe) 4x links, shown in Figure 2, each containing four
Xilinx XC2PV50-6 FPGAs. Each is equipped with four gi-
gabit of external DDR-SDRAM, organized as four indepen-
dent, 32 bit wide modules of one gigabit each. The RAM
is clocked with the FPGA core clock of 125 MHz which re-
sults in a sustained performance of 7 Gbit/s per bank. Three
of the FPGAs provide the massive processing power re-
quired to implement the image processing algorithms. One
FPGA acts as a PCIe router enabling 8 Gbit/s net bidirec-
tional communication with the host PC and 8 Gbit/s net
to other boards. The board-internal communication uses 8
Gbit/s FPGA-to-FPGA links.

3. FlexWAFE Reconfigurable Architecture

The FPGAs are configured using macro components that
consist of local memory address generators (LMC) that sup-
port sophisticated memory pattern transformations and data
stream processing units (DPUs). Their sizes fit the typical
FPGA blocks and can be easily laid out as macro blocks
reaching a clock rate of 125 MHz. They are parameterized
in data word lengths, address lengths and supported address
and data functions. The macros are programmed via address
registers and function registers and have small local se-
quencers to create a rich variety of access patterns including
e.g. diagonal zig-zagging or rotation. The adapted LMCs
are assigned to local FPGA RAMs that serve as buffer and
parameter memories. The macros are programmed at run
time via a small and, therefore, easy to route control bus. A
central algorithm controller sends the control instructions to
the macros controlling global algorithm sequence and syn-
chronization. Programming can be slow compared to pro-
cessing as the macros run local sequences independently.
In effect, the macros operate as weakly programmable co-
processors known from MpSoCs such as VIPER [11]. This
way, weak programming separates time critical local con-
trol in the components from non time-critical global control.
This approach accounts for the large difference in global
and local wire timing and routing cost. The result is similar
to a local cache that enables the local controllers to run very
fast because all critical paths are local. Figure 3 shows an
overview.

The interface to each SDRAM memory is controlled by
a central memory controller (CMC) that applies access pri-
oritization and traffic shaping [14] to merge several data
streams and cache accesses from the on-chip PowerPC pro-
cessors without violating the stream processing real-time
constraints that would quickly lead to buffer overflows or
underflows.

3.1. Programming

FPGA programming consists of script based VHDL
macro parameterization based on library elements followed

FPGA

external DDR-SDRAM

DPUDPU

DPUDPU

LMCLMC

Algorithm Controller (AC)

CMC

LMC

LMC

Figure 3. FlexWAFE Reconfigurable architec-
ture

by controller synthesis and FPGA floorplanning. This com-
bination greatly simplifies programming as the resulting
modules can easily be placed in the floorplan avoiding time
consuming and ineffective global routing with manual op-
timization. For system programming, there is a global flow
programming tool under development that semiautomati-
cally assigns communication link bandwidth and memory
space to the operators of a global data flow graph. So far,
these design steps are manual. The design flow is depicted
on Figure 4.

4. A sophisticated noise reducer

To test this system architecture, a complex noise reduc-
tion algorithm based on 2.5 dimensions discrete wavelet
transformation (DWT) between consecutive motion com-
pensated images was implemented at 24 fps. The algo-
rithm starts by creating a motion compensated image us-
ing pixels from the previous and from the next image, then
it performs an Haar filter between this image and the cur-
rent image, the two resulting images are then transformed
into the 5/3 wavelet space, filtered with user selectable pa-
rameters, transformed back to the normal space and filtered
with the inverse Haar filter. The DWT operates only in the
2D space-domain but due to the motion compensated pixel
information the algorithm uses also information from the
time-domain, therefore it is said to be a 2.5D filter. A full
3D filter would also use DWT in the time domain therefore
requiring multiple consecutive images (typically 5). The al-
gorithm is presented in detail in [12].

The algorithm was divided into the three FlexWAFE
FPGAs on the flexfilm board. The first one implements
ME/MC, the second one implements Haar filtering and 2D
DWT and the third 2D DWT.

Model Graph
Editor

Configuration
Verification

synthesis
ISE

FPGA

descriptions, symbols
user settable parameter

stream transformation
instructions
verification instructions

SystemC models

Timing Behavior
Buffers

Simulation

CPU, memory &
com. controller

insertion

Mapping
available resources

platform
description

FlexWAFE
Modules

memory &
com. controller

modules

Code-Generation
VHDL

iterations

Libraries

Resource
Calculation

allocated resources

Figure 4. Designflow

4.1. Motion estimation

Motion estimation is used in many image processing al-
gorithms and many hardware implementations have been
proposed. The majority is based on block matching. Of
these, some use content dependent partial search. Others
search exhaustively, in a data independent manner. Ex-
haustive search produces the best block matching results at
the expense of an increased number of computations. A
full-search, block matching ME operating in the luminance
channel and using the sum of absolute differences (SAD)
search metric was developed because it has predictable,
content independent memory access patterns and can pro-
cess one new pixel per clock cycle. The block size is 16x16
pixels and the search vectors interval is -8/+7. It’s imple-
mentation is based on [9]. Each of the 256 processing el-
ements (PE) performs a 10 bit difference, a comparasion,
and a 19 bit accumulation. These operations and their lo-
cal control was accommodated in 5 FPGA CLBs as shown
in Figure 5. As seen in the rightmost table of that figure
the resource utilization within these 5 CLBs is very high
and even 75% of the LUTs use all of its four inputs. This
block was used as a Relationally Placed Macro (RPM) and
evenly distributed on a rectangular area of the chip. Un-
fortunately each 5 CLBs only have 10 tri-state buffers and
that is not enough to multiplex the 19 bit SAD result, so
the PEs are accommodated in groups of 16 and use 5 extra
CLBs per group to multiplex the remaining 9 bits. Given

the cell-based nature of the processing elements the tim-
ing is preserved by this placement. To implement the 256
PEs with corresponding SAD bus, 1360 CLBs and 26 extra
CLBs are required for finding the minimum SAD includ-
ing global control. On the edge of the images the motion
vectors can only have limited values, that fact is used to
reduce the initial row latency of [9] from 256 to 0. Bidi-
rectional motion-estimation is achieved using two of these
blocks. The ME core processing elements require that the
images be presented at it’s inputs in a column-major way,
but the images are transfered between FPGAs and stored
in SDRAM in a row-major order. Therefore each of the
PE’s three inputs gets data from memory via a group of two
LMCs, the first hides the SDRAM latency by performing
prefetching as explained in [10], the second one transforms
the accesses from row-major to column-major using a small
local blockRAM.

When fed with the luminance component of 2048x2048
pixels, 10 bit-per-pixel images at 24 frames per second the
core computational power (ignoring control and data trans-
fers) is 155 Gop/s (tested in post-layout simulation). The re-
sulting performance is higher than known implementations
using NVIDIA GPUs [17], way above the 18 Gop/s of the
IMAGINE dedicated image processing ASIC [7] running
at 400MHz, and far beyond the 0.8 Gop/s of a leading TI
fixed-point TMS320C64x DSP running at 1GHz [5].

4.2. Motion Compensation

Motion compensation uses the block motion vectors
found by the ME to build an image that is visually simi-
lar to the current image, but only contains pixels extracted
in a blockwise manner from the previous/next image. The
criteria to choose the image block from the previous or next
image is the SAD associated to that block, the image block
with the smallest SAD (and therefore more similar to the
current image block) of the two is chosen. On a scene cut,
one of the images will produce big SADs (because the con-
tents of it are most probably completely different from the
current image) and all blocks will be chosen from the other
image, the one that belongs to the same scene. This has the
advantage of making the noise reduction algorithm immune
to scene cuts.

4.3. Discrete Wavelet Transform

The discrete wavelet transform (DWT) transforms a sig-
nal into a space where the base functions are wavelets [16],
similarly to the way Fourier transformation maps signals to
a sine-cosine based space. The 5/3 wavelet was chosen for
its integer coefficients and invertibility (the property to con-
vert back to the original signal space without data loss). The
2D wavelet transformation is achieved by filtering the row
major incoming stream with two FIR filters (one with 5 the

sync

2D DWT-12D DWT

V FIR

V FIR

V FIR

V FIR

Noise
Reduction

HL
NR

LH
NR

HH
NR

V FIR-1

V FIR-1

V FIR-1

V FIR-1

2D DWT-12D DWT

V FIR

V FIR

V FIR

V FIR

2D DWT-12D DWT

V FIR

V FIR

V FIR

V FIR

NR

HL
NR

LH
NR

HH
NR

H FIR

H FIR

FIFO

FIFO

FIFO

FIFO

H FIR

H FIR

+

+

H FIR-1

H FIR-1

+

V FIR-1

V FIR-1

V FIR-1

V FIR-1

+

+

H FIR-1

H FIR-1

+

+

+

H FIR-1

H FIR-1

+

syncNR

HL
NR

LH
NR

HH
NR

V FIR-1

V FIR-1

V FIR-1

V FIR-1

FIFO

FIFO

FIFO

FIFO

H FIR

H FIR

Figure 6. DWT based 2D noise reduction

other with 3 coefficients) and then filtering the resulting two
signals columnwise using the same filter coefficients. The
four resulting streams can be transformed back to the orig-
inal stream by filtering and adding operations. The noise
reduction algorithm requires three levels of decomposition,
therefore three of these blocks were cascaded and the noise
reduction DPUs added. To compensate the latency of the
higher decomposition levels, LMCs were used to build FI-
FOs with the external SDRAM. The resulting system is de-
picted in figure 6 and was presented in detail in [10] .

The filter implementation uses polyphase decomposition
(horizontal) and coefficient folding (vertical). To maximize
throughput the transformation operates line-by-line instead
of level-by-level [18]. This allows for all DPUs to operate
in parallel (no DPU is ever idle), minimizes memory re-
quirements and performs all calculations as soon as possi-
ble. Because the 2D images are a finite signal some control
was added to achieve the symmetrical periodic extension
(SPE) [8] required to achieve invertibility. This creates a
dynamic datapath because the operations performed on the
stream depend on the data position within the stream. All
multiply operations where implemented with shift-add op-
erations because of the simplicity of the coefficients used.
One 2D DWT FPGA executes 162 add operations on the
direct DWT, 198 add operations on the inverse DWT and
513 extra add operations to support the SPE, all between 10
and 36 bits wide.

4.4. External Memory

Like explained in the introduction, digital film applica-
tions require huge amounts of memory however, the used
Virtex-II Pro FPGA contains only 4.1 Mbit of dedicated
memory ressources (232 RAM blocks of 18 Kbit each). For
this reason, each FPGA of the FlexFilm Board is equipped

Resource Usage Percentage
RAMB 44 out of 232 18%
Slices 20,583 out of 23,616 87%
TBUF 5,408 out of 11,808 45%

● bidirectional ME with block size 16x16
● bidirectional MC
● searches -8/+7 vector interval
● 24 fps @ 2048x2048, 10bpp (125 MHz)
● 1024 net add/sub operations/pixel
● 514 net comparations operations/pixel
● 155 net Goperations/s

distributed
control

search mux /
10 bit difference

absolute /
19bit accumulate

tri-state
(SAD bus)

Resource

carry-chain 80%

register 80%

tri-state 100%

LUT 100% *

C
M

C
 0

C
M

C
 0

Forward ME DPUForward ME DPU
 (256 PEs) (256 PEs)

C
M

C
 1

C
M

C
 1

Backward ME DPUBackward ME DPU
(256 PEs) (256 PEs)

LMC LMC

Data I/O Data I/O

* 75% of which use all 4 inputs

Utilization

Motion estimation
processing element

LMC LMC

AC AC

Data I/O Data I/O

LMC LMC

MC MC LMC LMC

LMC LMC

LMC LMC

LMC LMC

LMC LMC

C
M

C
 2

C
M

C
 2

Figure 5. Mapping and resource usage in a Xilinx XC2V50P device

Image
n

Image
n-1

Image
n-2

Image
n-3

incomming
data

forward
search area
(next image)

reference
(current image)

backward
search area

(prev. image)

advance of
read/write addresses
to form ring buffer

Figure 7. Frame buffer access sequence

with four gigabit of external DDR SDRAM memory, orga-
nized as four independent, 32 bit wide modules of one gi-
gabit each (Figure 2). The RAM is clocked with the FPGA
core clock of 125 MHz which results in a peak performance
per bank of 8 Gbits per second. To access the DDR SDRAM
at a high bandwidth a scheduling memory controller (CMC)
was developed. Figure 8 shows a simplified block diagram.
The controller core, the two staged memory access sched-
uler, is capable of increasing the bandwidth utilization by
applying bank interleaving (minimizes the bank stall cycles)
and read/write request bundling (minimizes bus turnaround
cycles). The memory accesses the SDRAM using auto
precharge mode. To avoid excessive memory stalls due to
SDRAM bank precharge and activation latencies, memory
accesses are evenly distributed across all banks to maximize
the bank interleaving effect. A more detailed description
can be found in [13] and [14].

Figure 7 shows the required frame buffer access struc-
ture of the motion estimation. As can be seen, three im-

ages are accessed simultaneously, one image as reference
(n − 2), and two images as backward and forward search
area (n − 3 and n − 1). The two search areas are read
twice with different addresses. Besides that, the current
incoming image (n) needs to be buffered. Each of the
two ME engines contains it’s own frame buffer to store
four full-size images of up to 4Kx4K accessed via it’s re-
spective CMC0 or CMC1 (Figure 5). Each of the CMCs
writes one stream to memory and reads three streams. For
ease of implementation each pixel is stored using 16 bits.
This translates to 1.5 Gbit/second write and 4.1 Gbit/second
read bandwidth to off-chip SDRAM amounting to a total of
6.1 Gbit/second that is below the maximum practical band-
width of 7 Gbit/second

The MC block operates in the RGB color space unlike
the ME block that uses the luminance only. It stores one
RGB pixel in a 32 bit word (10 bits per color component)
and uses it’s own memory controller (CMC2 on Figure 5). It
uses a similar ring-buffer scheme as CMC0 and 1 and is also
capable of storing four images of up to 4Kx4K resolution
but it groups the two external memory banks and accesses
them via a 64 bit bus and is therefore capable of twice the
troughput of the ME’s CMCs. Due to the nature of SDRAM
accesses it is only possible to access blocks of 16 pixels
at addresses that are multiples of 16 (memory alignment).
This means that in the worst-case two blocks of 16 pixels
need to be fetched in order to access a non-aligned group
of 16 pixels to build the motion compensated image. The
MC block also needs to access the current image in order to
do intra-block pixel-by-pixel validation of the results. This
leads to a worst case bandwidth of 3.0 Gbit/second write
and 9.2 Gbit/second read that is below the practical limit of
14 Gbit/second.

w
addr.

r
addr.

r

r
addr.

Access
Controller

Data
I/O

D
D

R
-S

D
R

A
M

2-Stage
Buffered
Memory
Access

Scheduler

addr.

r/w data bus

data flow

r read port

request flow

w write port

addr. address translation

data buffer

Legend:

address

data

Request
Buffer

Request
Scheduler

Bank
Buffer

Bank
Scheduler

example setup with
one write port and
three read ports

Figure 8. high bandwidth SDRAM controller

4.5. Implementation

Each buildding block has been programmed in VHDL
using an extensive number of generics (VHDL language
constructs that allow parameterizing at compile-time) to in-
crease the flexibility and reuse. The sequence of run-time
programable parameters for the LMCs image transfers (the
contents of the AC memory) were described in XML and
transformed to VHDL via XSLT. In the future it is planed
to use even more scripts and XML based high-level system
descriptions. Each block was behaviorally simulated indi-
vidually using Modelsim 7.1b and synthesized using Xilinx
ISE 7.1i SP4. All blocks except the motion compensation
have also been simulated after place-&-route and the de-
sired functionality and speed were achieved. The data I/O
blocks and the CMCs have also been tested in hardware.

Currently the ME and MC are being integrated in a sin-
gle chip (Figure 5), and due to the large resource utilization
(87% of the FPGA slices are used) floorplaning is neces-
sary to achieve the required speed. So far the Xilinx Floor-
planner has been used, but in the future it is planned to use
Xilinx PlanAhead and/or Synplicity Premier with Design
Planner. Both softwares are currently being evaluated.

5. Conclusion

A record performance reconfigurable HW/SW platform
for digital film applications was presented. The combina-
tion of programmable and parameterized macros that can
easily be handled in floorplaning and decentralized weak
programming with non-critical timing was key to a high de-
signer productivity. The FPGA resource utilization is very
satisfactory including memory and routing resources. The
FlexWAFE architecture is part of a larger project towards

an extendible PCIexpress based real time film processing
system.

References

[1] http://www.discreet.com/.
[2] http://www.flexfilm.org/.
[3] http://www.pcisig.com/home/.
[4] http://www.quantel.com/.
[5] http://www.ti.com/.
[6] http://www.xilinx.com/.
[7] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das.

Evaluating the Imagine Stream Architecture. SIGARCH
Comput. Archit. News, 32(2):14, 2004.

[8] C. M. Brislawn. Calssification of nonexpansive symmetric
extension transforms for multirate filter banks. In Applied
and Computational Harmonic Analisys, volume 3, pages
337–357, 1996.

[9] Cesar Sanz and Matias J. Garrido and Juan M. Meneses.
VLSI Architecture for Motion Estimation using the Block-
Matching Algorithm. In EDTC ’96, page 310.

[10] A. do Carmo Lucas and R. Ernst. An Image Processor for
Digital Film. In IEEE Application-Specific Systems, Ar-
chitectures, and Processors (ASAP 2005), pages 219–224.
IEEE computer Society, 2005.

[11] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A multipro-
cessor SoC for advanced set-top box and digital tv systems.
In IEEE Design and Test of Computers, Sip, pages 21–31,
Oct. 2001.

[12] S. Eichner, G. Scheller, and U. Wessely. Wavelet-temporal
basierende Rauschreduktion von Filmsequenzen. In 21.
Jahrestagung der FKTG, Koblenz, Germany, May 2004.

[13] S. Heithecker, A. do Carmo Lucas, and R. Ernst. A Mixed
QoS SDRAM Controller for FPGA-Based High-End Image
Processing. In Proceedings of the 2003 IEEE Workshop for
Signal Processing Systems, 2003.

[14] S. Heithecker and R. Ernst. Traffic Shaping for an FPGA
based SDRAM Controller with Complex QoS Require-
ments. In Design Automation Conference (DAC), page 34.5.
ACM, 2005.

[15] J. Park and P. C. Diniz. Syntesis of Pipelined Memory Ac-
cess Controllers for Streamed Data Applications on FPGA-
based Computing Engines. In ISSS. ACM, 2001.

[16] S. Rout. Orthogonal vs. Biorthogonal Wavelets for Image
Compression. Master’s thesis, Virginia Polytechnic Institute
and State University, 2003.

[17] R. Strzodka and C. Garbe. Real-time motion estimation and
visualization on graphics cards. In Proceedings IEEE Visu-
alization 2004, pages 545–552, 2004.

[18] N. Zervas, G. Anagnostopoulos, V. Spiliotopoulos, Y. An-
dreopoulos, and C. Goutis. Evaluation of Design Alterna-
tives for the 2D-Discrete Wavelet Transform. In IEEE Trans-
actions on Circuits and Systems for Video Technology, vol-
ume 11, pages 1246–1262, 2001.

http://www.discreet.com/
http://www.flexfilm.org/
http://www.pcisig.com/home/
http://www.quantel.com/
http://www.ti.com/
http://www.xilinx.com/

	. Introduction
	. Related Work
	. Technology status

	. FlexFilm System Architecture
	. FlexWAFE Reconfigurable Architecture
	. Programming

	. A sophisticated noise reducer
	. Motion estimation
	. Motion Compensation
	. Discrete Wavelet Transform
	. External Memory
	. Implementation

	. Conclusion

