
Formal Methods for Automotive Platform
Analysis and Optimization∗

Arne Hamann, Razvan Racu, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig, Germany

{hamann|racu|ernst}@ida.ing.tu-bs.de

Abstract—
There have been major advances in formal methods and

related tools in embedded system design in recent years that
support analysis and optimization of heterogeneous automotive
architectures. We give an introduction of the tool SymTA/S and
demonstrate its application to an automotive example where we
analyze system sensitivity and explore the design space. Such
results cannot be obtained by simulation or prototyping.

I. INTRODUCTION

With increasing automotive system complexity, formal
methods become more important as a complement to simula-
tion and prototyping. Formal methods have already been used
in early architecture design, e.g. to optimize bus architectures
as such models can be applied before executable models
are available. Recent advances in real-time system analysis
have extended the scope of formal models to heterogeneous
networks with different protocols and gateways, and with
electronic control units (ECUs) running different scheduling
algorithms. These formal models can be used to optimize those
systems and analyze the sensitivity to later changes in the
design process or to run time events such as retransmission due
to an error. In this paper, we give a brief introduction to the
underlying model and algorithms of the tool, SymTA/S, and
give a small example for its application to system integration.

The remainder of this paper is structured as follows. First,
we will give a short overview of existing formal techniques
for system level performance analysis (section II). Afterwards,
we give an introduction into the formal core of SymTA/S,
including the application model, the utilized standard event
models and the compositional analysis methodology based on
event model propagation (section III).

We then discuss the most important concepts which are
taken into account by the high-accuracy analyses techniques
of SymTA/S for the ERCOSEK operating system and the
CAN bus protocol (section IV). Both technologies are well
established in the automotive industry and deployed in various
car types and product lines.

Finally, we introduce a small automotive example system
consisting of two independent subsystems (section V) and
demonstrate the application of the SymTA/S exploration and
sensitivity analysis frameworks to system integration (sec-
tion VI to IX).

∗This work was supported by the German DFG under ER 168/18-1

II. FORMAL TECHNIQUES IN SYSTEM PERFORMANCE
ANALYSIS

In this section, we briefly review existing analysis ap-
proaches from real-time research for formal system perfor-
mance analysis of heterogeneous distributed systems and Mp-
SoC.

The holistic analysis approach developed by Tindell [16]
systematically extended the classical local analysis techniques,
considering the scheduling influences along functional paths
in the system. He proposed a performance verification model
for distributed real-time systems with preemptive task sets
communicating via message passing and shared data areas.
Eles et al. [7] extended this approach for systems consisting
of fixed-priority scheduled CPUs connected via a TDMA
scheduled bus. Later on, Palencia et al. [5], [6] extended
the analysis for tasks with precedence relations and activation
offsets.

Gresser [2] and Thiele [14] established a different view on
scheduling analysis. The individual components or subsystems
are seen as entities which interact, or communicate, via event
streams. Mathematically speaking, the stream representations
are used to capture the dependencies between the equations (or
equations sets) that describe the individual components timing.
The difference to the holistic approach (that also captures the
timing using system-level equations) is that the compositional
models are well-structured with respect to the architecture.
This is considered a key benefit, since the structuring signifi-
cantly helps designers to understand the complex dependencies
in the system, and it enables a surprisingly simple solution. In
the “compositional” approach, an output event stream of one
component turns into an input event stream of a connected
component. Schedulability analysis, then, can be seen as a
flow-analysis problem for event streams that, in principle, can
be solved iteratively using event stream propagation.

III. THE SYMTA/S APPROACH

SymTA/S [3] is a formal system-level performance and
timing analysis tool for heterogeneous SoCs and distributed
systems. A key novelty of the SymTA/S approach is that it uses
intuitive standard event models (section III-B) from real-time
systems research rather than introducing new, complex stream
representations. Periodic events or event streams with jitter
and bursts [15] are examples of standard models that can be
found in literature. The SymTA/S technology allows to extract

2

this information from a given schedule and automatically
interface or adapt the event stream to the specific needs within
these standard models, so that designers and analysts can
safely apply existing subsystem techniques of choice without
compromising global analysis.

The application model of SymTA/S is described in sec-
tion III-A. The core of SymTA/S is a technique to couple
local scheduling analysis algorithms using event streams [10],
[13]. Event streams describe the possible I/O timing of tasks.
Input and output event streams are described by standard
event models which are introduced in detail in section III-
B. The analysis composition using event streams is described
in section III-C.

A. Application Model

A task is activated due to an activating event. Activating
events can be generated in a multitude of ways, including
expiration of a timer, external or internal interrupt, and task
chaining. Task communication in SymTA/S is modeled either
using FIFOs or registers.

In the case of FIFO communication, each task is assumed to
have one input FIFO. A task reads its activating data from its
input FIFO and writes data into the input FIFO of a dependent
task. A task may read its input data at any time during one
execution. The data is therefore assumed to be available at
the input during the whole execution of the task. SymTA/S
assumes that input data is removed from the input FIFO at
the end of one execution.

Register communication in SymTA/S requires that the
sender task writes the data into register before the receiver task
initiates the read routine. Therefore, this type of communica-
tion is only suited for time-triggered protocols. Note that in the
case of register communication causal dependencies between
communicating tasks cannot be exploited.

A task needs to be mapped on a computation or communica-
tion resource to execute. When multiple tasks share the same
resource, then two or more tasks may request the resource
at the same time. In order to arbitrate request conflicts, a
resource is associated with a scheduler which selects a task
to which it grants the resource out of the set of active tasks
according to some scheduling policy. Other active tasks have
to wait. Scheduling analysis calculates worst-case (sometimes
also best-case) task response times, i.e. the time between
task activation and task completion, for all tasks sharing a
resource under the control of a scheduler. Scheduling analysis
guarantees that all observable response times will fall into the
calculated [best-case, worst-case] interval. Scheduling analysis
is therefore conservative. A task is assumed to write its output
data at the end of one execution. This assumption is standard
in scheduling analysis.

Fig. 1 - SYSTEM MODELED WITH SYMTA/S

Figure 1 shows an example of a system modeled with
SymTA/S. The system consists of 2 resources each with 2
tasks mapped on it. R1 and R2 are both assumed to be priority
scheduled. Src1 and Src2 are the sources of the external
activating events at the system inputs. The possible timing of
activating events is captured by so-called event models, which
are introduced in section III-B.

B. SymTA/S Standard Event Models

Standard event models represent the possible timing of
activating events of tasks in SymTA/S. They are described
using several parameters. For example, a strictly periodic event
model has one parameter P and states that each event exactly
arrives periodically every P time units. This simple model
can be extended with the notion of jitter, leading to a periodic
with jitter event model. Such an event model is described by
two parameters (P,J). It generally occurs periodically, but
it can jitter around its exact position within a jitter interval
J . Consider an example where (P, J) = (4, 1). This event
model is visualized in figure 2. Each gray box indicates a
jitter interval of length J = 1. The jitter intervals repeat with
the event model period P = 4. The figure additionally shows
a sequence of events which satisfies the event model, since
exactly one event falls within each jitter interval box, and no
events occur outside the boxes.

es_em

t

P = 4 J = 1

t0 t0+ 4 t0+ 8 t0+ 12 t0+ 16

∆t = 4 ∆t = 4

Fig. 2 - EXAMPLE OF AN EVENT STREAM THAT SATISFIES THE EVENT

MODEL (P = 4, J = 1)

Periodic with jitter event models are well suited to describe
generally periodic event streams, which often occur in control,
communication and multimedia systems [11]. If the jitter is
zero, then the event model is strictly periodic. If the jitter is
larger than the period, then two or more events can occur at the
same time, leading to bursts. To describe a bursty event model,
the periodic with jitter event model can be extended with a d−

parameter that captures the minimum distance between events
within a burst.

Additionally, sporadic events are also common [11]. Spo-
radic event streams are modeled with the same set of pa-
rameters as periodic event streams. Note that jitter and d−

parameters are also meaningful in sporadic event models, since
they allow to accurately capture sporadic transient load peaks.

A more detailed discussion about the event models used in
SymTA/S can be found in [12].

C. Analysis composition

In the SymTA/S compositional performance analysis
methodology [11], [12], local scheduling analysis and event
model propagation are alternated, during system-level analysis.
This requires the modeling of possible timing of output events

3

for propagation to the next scheduling component. In the
following, first the output event model calculation is explained.
Then the compositional analysis approach is presented.

1. Output event model calculation

The SymTA/S standard event models allow to specify
simple rules to obtain output event models that can be de-
scribed with the same set of parameters as the activating
event models. The output event model period obviously equals
the activation period. The difference between maximum and
minimum response times (the response time jitter) is added
to the activating event model jitter, yielding the output event
model jitter (equation 1).

Jout = Jact + (tresp,max − tresp,min) (1)

Note that if the calculated output event model has a larger
jitter than period, this information alone would indicate that an
early output event could occur before a late previous output
event, which obviously cannot be correct. In reality, output
events cannot follow closer than the minimum response time
of the producer task. This is indicated by the value of the
minimum distance parameter d−.

2. Analysis composition using standard event models

In the following, the compositional analysis approach is
explained using the system example in figure 1. Initially,
only event models at the external system inputs are known.
Since an activating event model is available for each task
on R1, a local scheduling analysis of this resource can be
performed and output event models are calculated for T1
and T3 (section III-C.1). In the second phase, all output
event models are propagated. The output event models become
the activating event models for T2 and T4. Now, a local
scheduling analysis of R2 can be performed since all activating
event models are known.

However, it is sometimes impossible to perform system level
scheduling analysis as explained above. This is shown in the
system example in figure 3.

Fig. 3 - EXAMPLE OF A SYSTEM WITH CYCLIC SCHEDULING

DEPENDENCY

Figure 3 shows a system consisting of 2 resources, R1

and R2, each with 2 tasks mapped on it. Initially, only the
activating event models of T1 and T3 are known. At this point
the system cannot be analyzed, because on every resource an
activating event model for one task is missing. I.e. response
times on R1 need to be calculated to be able to analyze R2.
On the other hand, R1 cannot be analyzed before analyzing
R2. This problem is called cyclic scheduling dependency.

One solution to this problem is to initially propagate all
external event models along all system paths until an initial

activating event model is available for each task [9]. This
approach is safe since on one hand scheduling cannot change
an event model period. On the other hand, scheduling can
only increase an event model jitter [15]. Since a smaller jitter
interval is contained in a larger jitter interval, the minimum
initial jitter assumption is safe.

After propagating external event models, global system
analysis can be performed. A global analysis step consists of
two phases [12]. In the first phase local scheduling analysis
is performed for each resource and output event models are
calculated (section III-C.1). In the second phase, all output
event models are propagated. It is then checked if the first
phase has to be repeated because some activating event models
are no longer up-to-date, meaning that a newly propagated
output event model is different from the output event models
that was propagated in the previous global analysis step.
Analysis completes if either all event models are up-to-date
after the propagation phase, or if an abort condition, e. g. the
violation of a timing constraint has been reached.

IV. AUTOMOTIVE EMBEDDED TECHNOLOGY

In the following sections we give a brief overview about
the most important concepts taken into account by the high-
accuracy analyses techniques of SymTA/S for the ERCOSEK

operating system (section IV-A) and the CAN bus protocol
(section IV-B). Both technologies are well established in the
automotive industry and deployed in various car types and
product lines.

A. ERCOSEK

The ECROSEK operating system builds upon the core
ideas of static-priority preemptive (SPP) scheduling. However,
this underlying scheduling policy is extended by a variety of
additional concepts.

ERCOSEK distinguishes hardware tasks (interrupts), pre-
emptive software tasks and cooperative software tasks. Soft-
ware tasks are comprised of processes that are executed
sequentially. In contrast to preemptive software tasks, cooper-
ative software tasks preempt each other only at process bound-
aries. This reduces the context switch overhead but results in
additional blocking for the higher priority cooperative tasks.

Certain scheduling-related OS routines can request a con-
siderable amount of execution time at various priority levels.
For instance, the activate task and terminate task routines are
called by the OS before and after task execution, respectively.
Both OS routines are executed with the so-called kernel
priority, which is higher than the priority of all software tasks.

Figure 4 shows the complex OS priority set-up of
ERCOSEK in SymTA/S with different priority regions for
the mentioned task types.

Furthermore, task activation can be initiated in a variety
of ways. So called “Time Tables” allow the specification of
periodic tasks with phase offsets (startup delays) between
them. “Alarms” use more dynamic time-out mechanisms and
can be issued and disabled at any point in time. Finally, tasks
can be activated from software tasks and interrupts (hardware
tasks) dynamically and bursty.

4

Fig. 4 - COMPLEX ERCOSEK PRIORITY SET-UP

Figure 5 shows the worst-case scenario of the cooperative
task T2 scheduled on an ERCOSEK arbitrated resource. All
tasks in the Gantt-chart are periodically activated by a time
table without startup delays.

First of all we observe the cascading calls of the activate task
functions and the terminate task functions preempting all other
execution requests. Furthermore, we observe the cooperative
behavior of T2 blocked by the process P0 of the lower priority
cooperative task T4.

B. CAN (Control Area Network)

The CAN bus protocol is also based on static priorities
but the message transmission is non-preemptive, as typical for
serial line protocols.

Compared to the ERCOSEK behavior, the actual CAN
protocol is relatively simply. However, due to cost reasons,
CAN interfaces are typically realized with a very limited num-
ber of sender buffers, so-called message objects. A message,
once written into such a buffer, can not be “overtaken” by
another higher-priority message that is generated later. This
behavior can turn the static-priority scheme into a complex
queuing scheme when it comes to scheduling analysis.

Furthermore, CAN messages inherit the time-table-like be-
havior of the tasks that generate the messages. In combination
with dynamic phase shifts between request and acknowledge
frames in an end-to-end path this leads to complex best- and
worst-case scheduling scenarios.

Finally, transmission errors can enforce retransmissions that
add to the overall load and message latency.

V. AUTOMOTIVE EXAMPLE SYSTEM

Figure 6 shows a SymTA/S model of two electronic sub-
systems. The two subsystems are functionally independent and
are designed separately by two different electronics suppliers.

Fig. 6 - AUTOMOTIVE SYSTEM EXAMPLE: INDEPENDENT SUBSYSTEMS

The automotive OEM would like to integrate both subsys-
tems in a vehicle.

Note that ECU1 is arbitrated by the ERCOSEK operating
system, whereas all other ECUs are arbitrated according to
the static priority preemptive policy (SPP). The buses used
to exchange messages between the ECUs in both subsystems
are running the CAN protocol.

The core execution times, i.e. without scheduling influences,
of the software-functions running on the ECUs are given
in table (a). The communication delays of the messages
exchanged over the CAN buses, assuming no concurrent
communication requests, are given in table (b). The tables (a)
and (b) additionally contain the priorities of each software-
function as well as the IDs of the CAN messages (correspond
to priorities). Except for the ERCOSEK scheduled software-
functions lower values correspond to higher priorities.

The gray, rounded boxes model the activation of the
software-functions (in this case, timers). The activation periods
are given in table (c).

Note that both subsystems need to satisfy certain timing
constraints in order to function correctly:
• deadline of 15 time units for the path S2 → S5
• deadline of 15 time units for the path S9 → S11
• deadline of 15 time units for the path S3 → S8
Figure 6 shows both subsystems before integration. Both the

upper and the lower subsystem are implemented on 2 ECUs
(vertical square boxes on the left and right) that exchange
messages over a dedicated CAN bus (vertical square boxes in
the middle).

Timing and performance analysis of both subsystems with
SymTA/S [3] reveals the following worst-case delays for the
constrained paths:
• 12.01 time units for the path S2 → S5
• 5.12 time units for the path S9 → S11
• 9.92 time units for the path S3 → S8
If we compare these worst-case delays with the deadlines

imposed by system specification, we observe that both suppli-
ers implemented their subsystems so that all timing constraints
are satisfied.

5

Fig. 5 - ERCOSEK WORST-CASE SCHEDULING EXAMPLE

VI. SENSITIVITY ANALYSIS

The robustness of an architecture to parameter changes is a
major concern in the design of embedded real-time systems.
Robustness is important in early design stages to identify
if and in how far a system can accommodate later changes
or updates. Furthermore, system robustness is an important
metric in the later design phases during subsystem or third-
party component integration. In general, the system robustness
is defined by the available headroom or slack corresponding
to different properties of the system components. These can
be task execution demands, channel communication times,
the parameters of the activation models, the speed of the
computation resources or the throughput of the communication
buses.

Sensitivity analysis allows the system designer to perma-
nently keep track of the system robustness, and thus to
quickly asses the impact of changes of individual hardware
or software components on system performance. Section VI-
A gives a short overview on the sensitivity analysis framework
implemented in SymTA/S. In Section VI-B we determine
the robustness of the independent subsystems presented in
Figure 6 with respect to variations of different parameters.

A. Sensitivity Analysis Framework

The sensitivity analysis framework implemented in
SymTA/S combines a binary search technique and the com-
positional analysis model presented in Section III-C.2. The
binary search technique is known as a simple and fast search
algorithm used to determine a specific values within an ordered
set of data. Since the variations of specific system parameters
like execution demands, activation periods, resource speeds
have a monotonic impact on the set of system timing prop-
erties, the binary search can quickly determine the values
of these parameters that leading to conforming system con-
figurations. A detailed description of the sensitivity analysis
framework is presented in [8].

Parameters for sensitivity analysis are any system properties
that may vary during the design process. Very common are

variations of execution times, the parameters of the activation
models, like period, jitter and offset, communication volumes,
bus and processor speeds. The variations of these parameters
affect different system performance metrics, like task response
times, end-to-end deadlines, output jitters, buffer sizes or
deadline miss-ratio in case of soft real-time systems.

B. The Robustness of the Independent Subsystems

In this section we determine the robustness of the indepen-
dent subsystems presented in Figure 6. Firstly, we investigate
the available slacks of the execution times of the tasks mapped
on the ECUs and of the communication channels mapped on
the CAN resources. The results are presented in Figure 7(a).
We observe that tasks T2, T5, T7 and channel C2 have
a very large flexibility compared with the other tasks and
channels. This is explained by the fact that these tasks belong
to functional paths without or with loose timing constraints.

Figure 7(b) shows the flexibility of the operational speeds
of computation and communication resources. The minimum
speed of these resources is determined on one hand by the
utilization factor, and, on the other hand, by the timing
constraints defined for the tasks executed on these resources.

The last investigated set of parameters are the task execution
rates defined at system inputs. Figure 7(c) shows the maximum
decrease permitted for task activation periods without violating
the set of constraints or the system schedulability.

The resulting slacks of investigated system parameters rep-
resent an additional argument for the feasible integration of the
two independent subsystems. The available resource headroom
allows all messages to be transmitted on a single bus without
disturbing too much the performance of the other system
components.

VII. INTEGRATING BOTH SUBSYSTEMS

We now integrate both independent subsystems. Figure 8
shows the system after integration. Instead of utilizing a
dedicated CAN bus for each of the subsystem, all messages
are now transmitted over a single CAN bus. Of course, this

6

ECU1 (ERCOSEK)
Task core exec. time Priority
T0 [0.2,0.3] 10 (preem)
T1 [0.2,0.3] 5 (preem)
T2 [0.1,0.2] 2 (coop)
T3 [1.2,2.3] 1 (coop)

ECU2 (SPP)
Task core exec. time Priority
T4 [0.7,0.8] 2
T5 [0.1,0.2] 3
T7 [0.1,0.6] 1

ECU3 (SPP)
Task core exec. time Priority
T8 [0.3,0.4] 2
T9 [1,2] 1
T11 [3,5] 3

ECU4 (SPP)
Task core exec. time Priority
T6 [1.1,1.5] 2
T10 [0.3,0.6] 1

(a) Computational Tasks

CAN1 (ControlAreaNetwork)
Channel core comm. time Priority

C0 [1.08,1.32] 1
C1 [0.76,0.92] 3
CAN2 (ControlAreaNetwork)

Channel core comm. time Priority
C2 [0.6,0.72] 4
C3 [0.68,0.82] 2

(b) Communication Tasks

Input Event Model
S0 periodic, P1 = 1
S1 periodic, P1 = 2
S2 periodic, P2 = 5
S3 periodic, P3 = 15
S4 periodic, P3 = 20
S6 periodic, P3 = 5
S7 periodic, P3 = 7
S9 periodic, P9 = 2
S10 periodic, P10 = 10

(c) Input Event Models

TABLE I - SYSTEM PARAMETERS

leads to additional load and potentially longer blocking of low-
priority messages.

Again we verify performance and timing of the system with
SymTA/S [3], and obtain the following worst-case delays for
the constrained paths:

• 20.18 time units for the path S2 → S5
• 7.92 time units for the path S9 → S11
• 33.09 time units for the path S3 → S8

We observe that the constrained paths S2 → S5 and S3 →
S8 exceed their deadlines by 34.5% and 120.6%, respectively.

VIII. SYSTEM OPTIMIZATION

In section VII we have seen that the integration of two
independently working subsystems is usually not possible in
a straight-forward manner. In practice, system parameters like
CAN message IDs, task priorities, and time slots need to be
adapted to successfully integrate several subsystems.

0%

100%

200%

300%

400%

500%

600%

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 C0 C1 C2 C3
(a) WCET flexibility

0%

10%

20%

30%

40%

50%

60%

ECU_1 ECU_2 ECU_3 ECU_4 CAN_1 CAN_2
(b) Resource speed flexibility

0%

20%

40%

60%

80%

100%

S0 S1 S2 S3 S4 S6 S7 S9 S10
(c) Activation period flexibility

Fig. 7 - FLEXIBILITY OF THE INITIAL SYSTEM CONFIGURATION

In the following we first (section VIII-A) introduce the
design space exploration framework of SymTA/S [4], as-
sisting the designer in exploring the configuration space of
complex distributed systems and pointing out pareto-optimal
system configurations with respect to an arbitrary numbers
of optimization criteria, including timing properties, power
consumption, buffer sizes, etc. In the second part (section VIII-
B), we then use this framework to explore the integrated
automotive example system.

A. Design Space Exploration Framework

Figure 9 shows the design space exploration framework [4]
of SymTA/S [3]. The Optimization Controller is the central
element. It is connected to the scheduling analysis of SymTA/S
and to an evolutionary multi-objective optimizer. SymTA/S
checks the validity of a given system parameter set, that is
represented by an individual, in the context of the overall

7

Fig. 8 - AUTOMOTIVE SYSTEM EXAMPLE: AFTER SYSTEM INTEGRATION

heterogeneous system. The evolutionary multi-objective op-
timizer is responsible for the problem-independent part of
the optimization problem, i.e. elimination of individuals and
selection of interesting individuals for variation. Currently, we
use SPEA2 (Strength Pareto Evolutionary Algorithm 2) [17]
for this part, which is coupled via PISA (Platform and Pro-
gramming Language Independent Interface for Search Algo-
rithms) [1].

Fig. 9 - EXPLORATION FRAMEWORK

Different parameters of a system, such as priorities or time
slots, are encoded on separate chromosomes. The user selects
a subset of all parameters for optimization. The chromosomes
of these parameters form an individual and are included
in the evolutionary optimization while all others are fixed
and immutable. The variation operators of the evolutionary
algorithm are applied chromosome-wise for these individuals.
More details on the optimization system can be found in [4].

B. Exploring the integrated system

In this section we use the design space exploration frame-
work of SymTA/S (section VIII-A) to explore the integrated
automotive system (section VII).

The search space of our exploration consists of the priority
assignments on all ECUs as well as the assignment of CAN
message IDs on the bus. Since the straight-forward integration

of the two subsystems lead to the violation of hard timing
constraints, our primary optimization objective is to find a
working system configuration. Additionally we are interested
in pareto-optimal trade-offs between the three constrained end-
to-end paths.

In the real world, no single design team has full control
over the entire system. Instead, numerous design teams from
different companies contribute along an automotive supply
chain. Each team is in control of only part of the system.
Therefore, system-level exploration across team-boundaries
is a complicated task. The OEM as the bus integrator, for
instance, usually controls CAN message IDs, but has very
limited insight into the configuration of the ECUs.

Unfortunately, dynamic behavior between several subsys-
tems usually cannot be observed until late in the design process
when first ECU prototypes become available. By that time, it
is very costly to re-assign system parameters like priorities of
software-functions or CAN message IDs.

In order to account for the difficulty and the high cost of
system parameter modifications at system integration time, we
add the minimization of parameter changes to the optimization
objectives considered during design space exploration. More
precisely, we are interested in finding working system config-
urations with as few parameter changes as possible.

Table VIII-B shows the pareto-optimal system configura-
tions obtained by an exploration considering 1000 system
configurations (40 generations with 25 individuals each). Note
that this exploration took approximately 70 seconds on a
standard PC running at a clock-rate of 2.4 GHz.

S2→ S5 S9→ S11 S3→ S8 # param. changes
1 12.24 10.12 11.52 9
2 12.24 13.72 10.72 7
3 12.86 10.12 11.52 7
4 12.99 10.12 8.87 8
5 12.99 13.72 8.07 6
6 13.84 8.42 12.97 8
7 13.84 10.12 6.57 10
8 13.84 12.12 14.57 5
9 13.84 13.82 5.77 7

10 14.06 9.37 12.97 7
11 14.46 9.37 12.97 5
12 14.46 11.07 6.57 7
13 14.46 12.97 14.57 4

TABLE II - PARETO-OPTIMAL SOLUTIONS

We observe that we found 13 pareto-optimal working sys-
tem configurations, each of them representing an optimal
trade-off between the constrained timing properties and the
number of parameter changes with respect to the initial con-
figuration.

In order to decide which system configuration to adopt, the
system integrator needs to interpret the pareto-set. Depend-
ing on special requirements to the system she can consider
additional information such as system sensitivity to property
variations (see section IX) to make a decision.

Figures 10(a), 10(b) and 10(c) show the 2-dimensional
pareto-fronts representing the optimal trade-offs between each
of the constrained timing properties and the number of param-
eter changes necessary to achieve the latter.

If we consider, for instance, the path S2 → S5, we can
see from the pareto-front in figure 10(a), that the minimum

8

number of necessary parameter changes to obtain a working
system is 4 (config. #13), corresponding to an delay of 14.46
time units, which is short of the constraint (15 time units).

Increasing the number of allowed parameter changes leads
to shorter end-to-end delays. With 5 (config. #8) and 6
(config. #5) parameter changes we can obtain end-to-end
delays of 13.84 and 12.99 time units for the path S2 → S5,
respectively. The shortest end-to-end delay for the path S2 →
S5, 12.24 time units, can be achieved with a minimum number
of 7 parameter changes.

IX. SENSITIVITY ANALYSIS OF THE INTEGRATED SYSTEM

In this section we determine the sensitivity of the pareto-
optimal system configurations presented in Section VIII-B.
Figure 11 shows the flexibility of the task execution times
and channels communication times. From the set of pareto-
optimal configurations we removed those that dominate the
other configurations in at least one computed parameter slack.
At a closer look we observe that configurations #4 and #7
determine the maximum available slack for most execution
times. In general, comparing the results presented in Figure 11
with the results obtained for the two independent subsystems
(Figure 7(a)) we observe that the slacks of the execution times
of the system tasks have decreased only by a small amount
after system integration. The slack of the communication
channels has evidently decreased due to the load increase of
CAN1.

Figure 12 shows the slack values obtained for the hardware
resource speed. Again, we selected only those configurations
that have a high overall robustness or those which dominate all
other configurations in at least one computed parameter slack.
Compared to the results presented in Figure 7(b) the only
resource with a noticeable smaller slack is the communication
bus, CAN1. The reason is again the increase of the overall
resource utilization after system integration.

Lastly, we determine the available slack corresponding to
the task activation periods. Figure 13 shows the values ob-
tained for some configuration selected from the set of pareto-
optimal configurations obtained in Section VIII-B. Compar-
ing these results with the results obtained before system
integration (Figure 7(c)) we observe that the only periods
whose slacks clearly decreased are S2, S3 and S9. Since
these periods obviously determine the communication rates of
the channels on CAN1 and, consequently, automatically the
utilization of this bus, and since the overall load on CAN1 has
increased after subsystem integration, the available headroom
of these periods decreased accordingly.

X. CONCLUSION

Formal models are an ideal basis to determine system
properties that are not amenable to simulation, such as system
robustness, and they allow rapid design space exploration.
Therefore, formal models are considered to play a major role
in automotive design in the future.

REFERENCES

[1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA — a platform
and programming language independent interface for search algorithms.
http://www.tik.ee.ethz.ch/pisa/.

[2] K. Gresser. An event model for deadline verification of hard real-time
systems. In Proceedings 5th Euromicro Workshop on Real-Time Systems,
pages 118–123, Oulu, Finland, 1993.

[3] A. Hamann, R. Henia, M. Jersak, R. Racu, K. Richter, and
R. Ernst. SymTA/S - Symbolic Timing Analysis for Systems.
http://www.symta.org/.

[4] A. Hamann, M. Jersak, K. Richter, and R. Ernst. Design Space
Exploration and System Optimization with SymTA/S - Symbolic Timing
Analysis for Systems. In Proc. of the 25th IEEE Real-Time Systems
Symposium (RTSS), Lisbon, Portugal, December 2004.

[5] J. C. Palencia and M. G. Harbour. Schedulablilty analysis for tasks
with static and dynamic offsets. In Proc. 19th IEEE Real-Time Systems
Symposium (RTSS’98), Madrid, Spain, 1998.

[6] J. C. Palencia and M. G. Harbour. Exploiting precedence relations in the
schedulablilty analysis of distributed real-time systems. In Proceedings
of the 20th Real-Time Systems Symposium (RTSS), 1999.

[7] P. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of
mixed time/event-triggered distributed embedded systems. In Tenth
International Symposium on Hardware/Software Codesign (CODES’02),
Estes Park, Colorado, USA, May 2002.

[8] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analysis in
real-time distributed systems. In Proc. of the 11th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), San
Francisco, California, March 2005.

[9] K. Richter. Compositional Performance Analysis. PhD thesis, Technical
University of Braunschweig, 2004.

[10] K. Richter and R. Ernst. Event model interfaces for heterogeneous
system analysis. In Proc. of the IEEE/ACM Design, Automation and
Test in Europe Conference (DATE), Paris, France, March 2002.

[11] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC
performance verification. IEEE Computer, 36(4), April 2003.

[12] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for
heterogeneous multiprocessor SoC. In Proc. of the 24th IEEE Real-Time
Systems Symposium (RTSS), Cancun, Mexico, December 2003.

[13] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition
for scheduling analysis in platform design. In Proc. of the 39th
IEEE/ACM Design Automation Conference (DAC), New Orleans, USA,
June 2002.

[14] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proc. of the IEEE International
Symposium on Circuits and Systems (ISCAS), Geneva, Switzerland, May
2000.

[15] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing & Microprogramming, 50(2-
3):117–134, April 1994.

[16] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
real-time systems. Microprocessing and Microprogramming - Euromi-
cro Journal (Special Issue on Parallel Embedded Real-Time Systems),
40:117–134, 1994.

[17] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. Technical Report 103, Gloriastrasse 35,
CH-8092 Zurich, Switzerland, 2001.

9

(a) Pareto-Front: #Parameter Changes - S2→ S5 (b) Pareto-Front: #Parameter Changes - S9→ S11

(c) Pareto-Front: #Parameter Changes - S3→ S8

Fig. 10 - OPTIMIZATION RESULTS

0%

50%

100%

150%

200%

250%

300%

T8 T9 T6 T10 T2 T3 T4 C0 C1 C3 C2

Configuration 1 Configuration 4 Configuration 7 Configuration 12

Fig. 11 - WCET FLEXIBILITY

0%

10%

20%

30%

40%

50%

60%

ECU3 ECU4 ECU1 ECU2 CAN1

Configuration 1 Configuration 2 Configuration 4 Configuration 5 Configuration 7 Configuration 12

Fig. 12 - RESOURCE SPEED FLEXIBILITY

0%

20%

40%

60%

80%

100%

S0 S1 S2 S4 S6 S7 S9 S10 S3

Configuration 1 Configuration 3 Configuration 6 Configuration 10 Configuration 12

Fig. 13 - ACTIVATION PERIOD FLEXIBILITY

