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Abstract

Robustness and optimality are becoming the key prin-
ciples in designing efficient and reliable state-of-the-art
multi-processor real-time systems. However, due to com-
plex inter-processor dependencies, the variation of local
system parameters may have unpredictable system level im-
pact including timing anomalies. In this context, the former
heuristic optimization approaches used at resource level
become less suitable for distributed systems with hetero-
geneous components and dynamic scheduling techniques.
Techniques from exploration theory can better address the
optimization problems but suffer from huge search spaces
in general. In this paper, we present constructive meth-
ods for pointing out those system configurations that lead
to anomalous behavior of the performance metrics. These
are then used to guide the exploration process and reduce
the search space, thereby increasing efficiency and making
the approach applicable in practice. As a result, detailed
information about anomalies can be quickly obtained and
heavily exploited in system optimization, which we demon-
strate using comprehensible examples.

1. Introduction

As a current trend, traditional single-processor architec-
tures are replaced by large heterogeneous, networked sys-
tems based on multi-processor systems-on-chip (MpSoC)
in order to run complex distributed applications with real-
time constraints.

As a consequence of this development towards con-
currency on multiple levels of an architecture, the system
designer faces several new challenges concerning design,
integration and performance verification of such systems.
The entire design process became more complicated due
to real-world design flows characterized by tight time-to-

market, permanently changing requirements and very com-
plex supply-chains including platform based design, sub-
system integration and IP protection and reuse. Therefore,
in the early design phases of such systems not all informa-
tion required by the performance analysis is available up
front. Instead, designers must consider incomplete speci-
fications, early performance estimates, asserted values for
different system parameters, and so on. In this context, de-
sign space exploration and system optimization are two is-
sues intensively debated by the real-time community. So-
phisticated system dependencies can easily turn subsystem
best-case performance into system worst-case performance.
Therefore, the former heuristic techniques used for resource
level optimization become less suitable.

In case of functional dependencies between tasks on dif-
ferent system components, the performance metrics may
have unpredictable, anomalous behavior. A designer should
certainly be aware of potential anomaly hazards and their
quantitative effects to find optimal and robust system con-
figurations. Therefore, detecting the system parameter val-
ues that lead to such anomalies is a key problem in control-
ling the design space exploration and optimization process.

In this paper, we investigate preemptive task sets and the
influence of the activation offsets on the behavior of differ-
ent performance metrics, like task response times or path
latencies. Furthermore, we provide an efficient construc-
tive framework to calculate the bounds of the behavioral
intervals. Compared to time-consuming curve-traversal ap-
proaches, constructive methods substantially help guiding
the exploration process and reducing the search space dur-
ing optimization. As a result, detailed information about
anomalies can be quickly and reliably obtained.

After an overview on the state of the art in Section 2,
Section 3 shows that modifications of the task activation
offsets dynamically change the critical instant of the lower
priority tasks, leading to unpredictable, anomalous behav-
ior of their latencies. In Section 4 we bounds the anomaly



intervals characterizing the worst-case scenarios. Section 5
describes the algorithm used to identify the task-pairs with
anomalous dependencies. Finally, the application and the
benefits of the proposed algorithms are demonstrated using
a synthetic system example.

2. State-of-the-Art in Performance Analysis

System performance validation is key during the de-
sign of state-of-the-art real-time distributed systems. With
the increasing system complexity new performance analysis
models are required. Therefore, schedulability analysis has
grown beyond the single processor platforms and can now
cover large heterogeneous systems.

The holistic analysis approach developed by Tindell [16]
has extended former local analysis techniques, consider-
ing the scheduling influences along functional paths in the
system. He proposed a performance verification model
for distributed real-time systems with preemptive task sets
communicating via message passing and shared data areas.
Pop et al. [11] extended this approach for systems con-
sisting of fixed-priority scheduled CPUs connected via a
TDMA scheduled bus.

The compositional analysis approach combines local
scheduling analysis and event model propagation into a
system-level analysis. Richter [14] proposed a composi-
tional analysis model based on event model interfaces. Jer-
sak [4] has extended this approach to allow performance
analysis of applications with complex task dependencies,
including multiple activating inputs, functional cycles and
multi-rate data dependencies with intervals. Chakraborty et
al. [1] proposed a similar compositional approach based on
real-time calculus.

In general, system level analyses are based on classical
schedulability tests and algorithms available for the analysis
of local system components. Well known are the analyses
for static priority preemptive scheduling from Liu and Lay-
land [8] and Lehoczky [7]. Similar algorithms were derived
for time-driven [6] and deadline-driven [3] arbitration tech-
niques. However, some of these analyses can be unneces-
sarily pessimistic, because they ignore certain correlations
between tasks, leading to overly pessimistic worst-case load
distribution over time. Such an example is the analysis of
the task set mapped on CPU, as shown in Figure 1. Since
the analysis assumes that all tasks are independent, all tasks
are released simultaneously at the critical instant. In real-
ity, this may never happen because T1 and T2 have corre-
lated activation times. Such precedence relations were used
by Tindell [15], Palencia [9, 10] and Henia [5] to compute
tighter bounds for the response time analysis.

Recently, important work has been done to calculate
best-case response time bounds [2, 13], and to reduce the
timing uncertainty at task completion.
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Figure 1. System with precedence relations

Other system-level performance analysis models are
based on timed-automata, hybrid-automata, timed Petri-
nets, synchronous languages, temporal logic, binary deci-
sion diagrams etc. However, they are not described in detail
in this section since they use different formalisms from that
used in this paper.

An important aspect that should be noticed is that all per-
formance analysis models require that all timing properties
of the system are completely specified. The system feasi-
bility is decided by comparing the calculated performance
metrics against the set of timing constraints. However, if not
all constraints are satisfied, then it is often difficult to deter-
mine the source of the problem. This is due to the com-
plex dependencies between system configuration and per-
formance. The approach proposed in this paper efficiently
points out system configurations leading to anomalous be-
havior of the performance metrics. It can be shown that
variations between these points are safe with respect to pre-
dictability of system performance.

In the next section we show that variations of task exe-
cution times may lead to anomalous behavior of different
system timing properties, and we determine the intervals
where the performance metrics have a predictable behavior.
In this paper we focus only on preemptive task sets. Sim-
ilar anomalies can be found also for task sets mapped on
resources with other scheduling strategies, such as Earliest
Deadline First (EDF) or Round Robin.

3. Problem Formulation

The schedulability tests introduced by Liu and Lay-
land [8] check the feasibility of a preemptive task set as-
suming that the tasks are periodically activated and do not
interfere with each other. They defined the critical instant
of a task as the instant at which a request for that task would
have the largest response time. They proved that the criti-
cal instant of any task occurs whenever the task is released
simultaneously with releases of all higher priority tasks.
Based on this scenario the response time analysis calcu-
lates the worst-case response time of the task. Later on,
Lehoczky [7] extended the response time analysis for task
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sets with arbitrary deadlines and more complex task activa-
tion models. However, the assumption that the tasks do not
communicate with each other was preserved, and the defi-
nition of the critical instant was preserved, too.

With the appearance of complex multi-processor dis-
tributed systems new analysis models were required. The
classical schedulability tests used for single-processor ar-
chitectures became unnecessarily pessimistic. Ignoring the
functional dependencies between tasks, the response time
analysis determines too conservative results. Therefore, the
definition introduced by Liu and Layland for the critical in-
stant slightly changed, leading to more complex worst-case
execution scenarios. Tindell [15] and Palencia [9, 10] con-
sidered the correlations between the release times of differ-
ent tasks in order to compute tighter response time bounds.

Consider, for example, the system shown in Figure 1.
Task T1 is periodically executed on the processing element
CPU. It sends data at completion over the communication
element BUS at the dedicated processor CoProc, handling
for example external I/O operations. After data is com-
pletely transmitted, the coprocessor sends a status message
back to CPU. The message activates the execution of task
T2. In addition to T1 and T2, two periodic tasks, T0 and
T3 are executed on CPU. The arbitration of CPU is car-
ried out according to a static priority preemptive scheduling
policy. On BUS, channels C1 and C2 transfer data accord-
ing to a fixed communication order, such that they can not
disturb each other. Their response times are defined by their
communication times. In this example, C1 and C2 have the
communication times CC1 = 5 and CC2 = 5. The I/O sub-
routine, TI/O running on the dedicated coprocessor has a
constant execution time, CTI/O

= 10. The tasks mapped
on CPU have the following execution demands: CT0 = 10,
CT1 = 30, CT2 = 25 and CT3 = 150. The tasks are peri-
odically activated with the following periods: PT0 = 130,
PT1 = PT2 = 200 and PT3 = 500.

Since the execution of T2 functionally depends on the
execution of T1, obviously there exists a timing correlation
between the activations of T1 and T2. Therefore, the defini-
tion of the critical instant introduced in [8] may not apply
in all situations. In [15], Tindell showed that the critical in-
stant of T3 occurs either at the instant when T3 is released
at the same time with T1, or at the instant when T3 is re-
leased at the same time with T2. The worst-case response
time of T3 depends, on one hand, on the execution demands
of T1 and T2, and on the other hand, on the offset between
the activations of T1 and T2.

Figure 2(a) shows the Gantt-charts corresponding to
worst-case execution scenario of T3. At its critical instant
T3 occurs at the same time with the activation of T1, and
completes its execution after RT3 = 290. Task T2 is re-
leased after a timing offset φ2 = 50. This offset represents
the minimum time span between the activation of T1 and
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Figure 2. Variation of WCRT of T3 due to mod-
ifications of the offset between T1 and T2

the activation of T2, and, for the example in Figure 1 is
computed as the sum of best-case response times of T1, C1,
TI/O and C2.

Consider that the I/O subroutine running on the copro-
cessor changes such that TI/O would have an execution
demand CTI/O

= 50. The delay between T1 and T2 be-
comes larger, and the worst-case scheduling scenario of
T3 changes, as shown in Figure 2(b). Although CTI/O

in-
creased, the worst-case response time of T3 decreased from
290 to 255. The new value of φ2 shifted the activations of
T2 such that only one preemption from T2 occurred during
the worst-case response time of T3. Moreover, the interfer-
ence from other higher priority tasks, for example T0, was
reduced, as well.

Again, the execution demand of TI/O changes to CTI/O
=

110. Figure 2(c) shows the worst-case execution scenario
of T3 corresponding to the new delay between T1 and T2,
φ2 = 150. We can observe that, a further increase of CTI/O

,
and thus φ2, shifted the activation of T2 close to the next
activation of T1. Therefore, at the critical instant, T3 is
released simultaneously with T2 and not with T1. Because
T1 is released right after T2, the interference from T0, T1

and T2 during the response time of T3 is the same as in the
first case (Figure 2(a)).

As the simple case study shows, modifying the offset
between the activation of two tasks mapped on the same
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resource may lead to different response times of all lower
priority tasks mapped on the same resource. In general, the
worst-case response time of a lower priority task belongs to
one of the behavioral intervals presented in Figure 3.

Since this offset is determined by the best-case response
times of all tasks located within the same dependency path,
such anomalies may occur modifying the execution de-
mands of any of these tasks. Obviously, the bounds of the
behavioral intervals strongly depend on the configuration of
the entire task set.
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Figure 3. The worst-case response time of T3

as function of the execution demand of TI/O

The variation of the offset between the activations of two
tasks mapped on the same resource may influence not only
the worst-case response time of the lower priority tasks, but
the scheduling of the offset dependent task, as well. Con-
sider again the system presented in Figure 1. The tasks have
the same configuration as described above. Initially, the ex-
ecution demand of the I/O routine is CTI/O

= 30. The offset
between the activations of T1 and T2 equals to φ2 = 70.
Figure 4(a) shows the scheduling diagrams corresponding
to worst-case response time of T2. As it can be observed,
no interference occurred from T1 during the execution of
T2. T2 completes its execution after RT2 = 35.

If the processing time of TI/O increases to CTI/O
= 130,

the execution of T2 is preempted by next activation of T1,
as shown in Figure 4(b). Task T2 experiences its maximal
worst-case response time RT2 = 65.

If the execution time of TI/O is again modified to
CTI/O

= 180, then the offset between the requests of T1 and
T2 becomes φ2 = 220. As shown in Figure 4(c), T2 is re-
leased during the next activation of T1. T2 is blocked before
execution only by the non-executed part of T1. Therefore,
the worst-case response time of T2 decreased to RT2 = 45.
Moreover, it can be easily observed that the worst-case re-
sponse time of T2 linearly decreases with the increase of
φ2. For values of φ2 larger than PT1 + rT1 , the worst-case
scheduling of T2 is similar to the case (φ3 mod PT1)+rT1 ,
where rT1 represents the best-case response time of T1.

The above case study showed that the worst-case re-
sponse time of T2 may belong to three behavioral intervals
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Figure 4. Variation of WCRT of T2 due to mod-
ifications of the offset between T1 and T2

depending on the value of its activation offset. The intervals
are presented in Figure 5.
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Figure 5. The worst-case response time of T2

as function of the execution demand of TI/O

Since the system path latencies directly depends on the
response times of the individual tasks within the paths,
it is obvious that the anomalous behavior of the task re-
sponse times determines also unpredictable behavior of
the end-to-end timing properties. Increasing the execu-
tion/communication times of a task/channel directly in-
creases its response time, but, at the same time, can reduce
the response times of other tasks in the system, and there-
fore the path latencies. Finding out the values leading to
anomalous behavior is an essential issue for the exact char-
acterization of all performance metrics.

In Section 4 we propose an algorithm to determine the
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values of the activation offset bounding the different behav-
ioral intervals of the response time.

4. Bounds of Behavioral Intervals

In this section we present a detailed analysis of the be-
havioral interval bounds described in Section 3. The anal-
ysis is based on the worst-case response time equations de-
rived for the schedulability tests of preemptive task sets with
hard real-time constraints. The algorithm determines the
values of the activation offsets leading to particular worst-
case response times. Since the activation offset depends on
the best-case response time of the task within the depen-
dency path, a straight-forward algorithm can be carried out
to determine the task execution demands corresponding to
the calculated offsets.

4.1. Tasks with Independent Activations

Consider a set of n periodic independent tasks mapped
on a resource and executed according to a static priority
preemptive arbitration policy. Task i, denoted τi, has pe-
riod Pi, and execution time Ci. The tasks priorities are
assigned in reverse order with respect to their indices, i.e.
prio(τi) > prio(τj) if i < j. According to [7], the worst-
case response time of τi can be calculated using the follow-
ing equation:

R
(n+1)
i = Ci +

∑
∀j∈HP (i)

⌈
R

(n)
i

Pj

⌉
· Cj ; R

(0)
i = Ci (1)

where HP (i) contains the indices of all tasks with priorities
higher than τi. The worst-case response time of τi, denoted
Ri, is iteratively calculated using (1), until R

(n+1)
i = R

(n)
i .

According to [15], if additional inter-task dependencies
exist, the worst-case response time analysis changes. As-
sume that tasks τk and τm belong to the same transaction
trans. A transaction is a collection of tasks related either
through some collectively performed function, or through
some shared timing attributes whereby it is convenient to
collect these tasks into a single entity [15]. If prio(τi) <
prio(τk) and prio(τi) < prio(τm), then the analysis of the
worst-case response time of τi is carried out analyzing two
scenarios that may generate the worst-case. In the first case,
the critical instant of τi is determined by the simultaneous
activation of τi, τk and all tasks τj such that, j ∈ HP (i)
and τj /∈ trans. In the second scenario, the critical instant
of τi is determined by the simultaneous activation of τi, τm

and all tasks τj such that, j ∈ HP (i) and τj /∈ trans.
Obviously, since τk, τm ∈ trans, the periods Pk and Pm

are equal to transaction period, Ptrans. Additionally, we
denote by φ the minimum offset between two consecutive

activations of τk and τm. Depending on the value of φ, the
worst-case response time analysis selects, out of the two
scenarios, the one building the longest response time of τi.
For the first scenario, Equation (1) changes into

R
′(n+1)
i = Ci +

j �=m∑
j∈HP (i)

⌈
R

′(n)
i

Pj

⌉
· Cj

(2)

+

⌈
R

′(n)
i − φ

Ptrans

⌉
· Cm; R

′(0)
i = Ci

and for the second scenario the worst-case response time of
τi is determined by

R
′′(n+1)
i = Ci +

j �=k∑
j∈HP (i)

⌈
R

′′(n)
i

Pj

⌉
· Cj

(3)

+

⌈
R

′′(n)
i − (Ptrans − φ)

Ptrans

⌉
· Ck

Using equations (1) and (2) it can be observed that R′
i < Ri

only if ⌈
Ri

Ptrans

⌉
>

⌈
R′

i − φ

Ptrans

⌉

The left part of the above equation determines the num-
ber of preemptions from τm during the worst-case response
time of τi, ignoring the offset information. The right side of
the equation represents the number of τm’s activations dur-
ing the execution of τi, taking into account the activation
offset φ. Since τm is periodically activated, the activation
offset φ can reduce the interference from τm during the ex-
ecution of τi with at most one activation. Hence, the above
equation becomes⌈

R′
i − φ

Ptrans

⌉
=

⌈
Ri

Ptrans

⌉
− 1 (4)

From Equation (4) results that⎧⎨
⎩

φ ≥ R′
i − Ptrans ·

(⌈
Ri

Ptrans

⌉
− 1

)
φ < R′

i − Ptrans ·
(⌈

Ri

Ptrans

⌉
− 2

) (5)

Similarly, from equations (1) and (3) can be deduced that
R′′

i < Ri only if⌈
Ri

Ptrans

⌉
>

⌈
R′′

i − (Ptrans − φ)
Ptrans

⌉

Due to the periodic activation behavior of τk, we conclude
that ⌈

R′′
i − (Ptrans − φ)

Ptrans

⌉
=

⌈
Ri

Ptrans

⌉
− 1 (6)
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Equation (6) is valid if⎧⎨
⎩

φ ≤ Ptrans ·
⌈

Ri

Ptrans

⌉
− R′′

i

φ > Ptrans ·
(⌈

Ri

Ptrans

⌉
− 1

)
− R′′

i

(7)

The values of R′
i and R′′

i can be calculated using equa-
tions (2) and (3). The number of preemptions from tasks τm

and τk are determined using equations (4) and (6). R′
i and

R′′
i are introduced in equations (5) and (7) to determine the

intervals for which these statements are valid. Task τi ex-
periences its minimum worst-case response time for those
values of φ representing the intersection of the solutions of
(5) and (7). If the intersection of the solution is a void in-
terval then τi’s worst-case response time has no anomalous
behavior with respect to variations of φ.

If the analyzed tasks have arbitrary deadlines, equa-
tions (2) and (3) are replaced by the equations defining the
longest level-i busy window [7]:

w
′(n+1)
i (q) = q · Ci +

j �=m∑
j∈HP (i)

⌈
w

′(n)
i (q)
Pj

⌉
· Cj

(8)

+

⌈
w

′(n)
i (q) − φ

Ptrans

⌉
· Cm; w′(0)

i = q · Ci

and

w
′′(n+1)
i (q) = q · Ci +

j �=k∑
j∈HP (i)

⌈
w

′′(n)
i (q)
Pj

⌉
· Cj

(9)

+

⌈
w

′′(n)
i (q) − (Ptrans − φ)

Ptrans

⌉
· Ck

Furthermore, for tasks with activation jitters, equations
(8) and (9) are slightly changing:

w
′(n+1)
i (q) = q · Ci +

j �=m∑
j∈HP (i)

⌈
w

′(n)
i (q) + Jj

Pj

⌉
· Cj

(10)

+

⌈
w

′(n)
i (q) − φ

Ptrans

⌉
· Cm; w′(0)

i = q · Ci

and

w
′′(n+1)
i (q) = q · Ci +

j �=k∑
j∈HP (i)

⌈
w

′′(n)
i (q) + Jj

Pj

⌉
· Cj

(11)

+

⌈
w

′′(n)
i (q) + Jk − (Ptrans − φ)

Ptrans

⌉
· Ck

where Ji is the maximum activation jitter of task τi.
The number of preemptions from task τm during the

busy period w′
i – Equation (10) – is not affected by the

input jitter of task τm. If the critical instant of τi is de-
termined by the simultaneous activation of τi and τk, the
offset analyses presented in [15, 9, 10] assume that task τm

is always released as soon as possible, that means τm is ac-
tivated purely periodic. Quite the opposite, if the critical
instant of τi – Equation (11) – is determined by the simul-
taneous activation of τi and τm, then the first activation of
each higher priority task arrives as late as possible, while
the next requests are released as soon as possible. Thus,
the time span between the first and the second activation is
equal to Pj − Jj .

4.2. Tasks with Correlated Activations

Assume the same task set described in Section 4.1. Ig-
noring the dependencies between tasks, the worst-case re-
sponse time of task τi is calculated using Equation (1),
where HP (i) contains the indices of all higher priority
tasks executed on the same resource as τi. Suppose that
exists a higher priority task τk, k ∈ HP (i) such that τk

and τi belong to the same transaction. Obviously, τk and τi

have the same activation period, labeled Ptrans. φ denotes
the minimum offset between any two consecutive activa-
tions of τk and τi. Considering that the activation of τi is
delayed with φ, the worst-case response time of τi is com-
puted using the following equation:

R
′(n+1)
i = Ci +

j �=k∑
j∈HP (i)

⌈
R

′(n)
i

Pj

⌉
· Cj

(12)

+

⌈
R

′(n)
i − (Ptrans − φ)

Ptrans

⌉
· Ck

Since τk is released periodically, activating τi with the off-
set φ relative to τk’s activation is equivalent with activating
τi exactly Ptrans−φ before the next activation of τk. Com-
paring equations (1) and (12) we observe that R′

i < Ri only
if ⌈

Ri

Ptrans

⌉
>

⌈
R′

i − (Ptrans − φ)
Ptrans

⌉

As explained in Section 3, depending on the value of φ,
three different behaviors of the worst-case response time of
τi can be distinguished.

Due to the functional dependency between τk and τi, τi

is always released after τk has completed its execution. The
entire activation pattern of τk is shifted with a time interval
φ before the activation of τi. If τi completes its execution
before any additional activation of τk is released then, by
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left-shifting the activation pattern of τk with φ may reduce
the number of preemptions from τk by one. Since τk is peri-
odically activated a further shifting of its activation pattern
can not decrease the number of preemptions anymore. This
can be observed comparing Figures 4(a) and 4(b). Hence,
the above equation becomes⌈

R′
i − (Ptrans − φ)

Ptrans

⌉
=

⌈
Ri

Ptrans

⌉
− 1 (13)

Equation (13) is valid if⎧⎨
⎩

φ ≤ Ptrans ·
⌈

Ri

Ptrans

⌉
− R′

i

φ > Ptrans ·
(⌈

Ri

Ptrans

⌉
− 1

)
− R′

i

(14)

R′
i is calculated replacing the number of activations of

τk in (12) with the right term of Equation (13). R′
i is intro-

duced in (14) to calculate the values of φ for which these
equations are valid. The solution of (14) represents the val-
ues of φ for which τi experiences its minimum worst-case
execution time. This values correspond to the scheduling
scenario presented in Figure 4(a), and bounds the first inter-
val in Figure 5.

For values of φ larger than the upper bound of the pre-
vious interval, task τi is preempted by an additional acti-
vation of τk. The number of activations of τk during the
response time of τi is equal to the number of preemptions
described by Equation (1), i.e.

⌈
Ri

Ptrans

⌉
. Task τi experi-

ences its longest worst-case response time.
The third behavioral interval occurs for values of φ such

that τi is released together with the next activation of τk, or
later. Since τk is periodically released, the interval is deter-
mined by values of φ for which the next equation holds:

φ > Ptrans (15)

The later the activation of τi, the smaller is the contribution
of the first activation of τk at the worst-case response time
of τi.

For tasks with arbitrary deadlines, Equation 12 is substi-
tuted by the equation defining the longest level-i busy win-
dow [7]:

w
′(n+1)
i (q) = q · Ci +

j �=k∑
j∈HP (i)

⌈
w

′(n)
i (q)
Pj

⌉
· Cj

(16)

+

⌈
w

′(n)
i (q) − (Ptrans − φ)

Ptrans

⌉
· Ck

The limits of the three intervals are determined replacing
Ri by wi(q) and R′

i by w′
i(q) in equations (13) and (14).

If the tasks have a periodic with jitter activation model,
Equation (16) is replaced by

w
′(n+1)
i (q) = q · Ci +

j �=k∑
j∈HP (i)

⌈
w

′(n)
i (q) + Jj

Pj

⌉
· Cj

(17)

+

⌈
w

′(n)
i (q) + Jk − (Ptrans − φ)

Ptrans

⌉
· Ck

Moreover, Equation (15) becomes

φ > Ptrans − Jk (18)

5. Task-Pairs with Anomalous Dependencies

In the previous sections we showed that tasks with cor-
related release times may easily change the worst-case
scheduling scenario of other tasks in the system. We car-
ried out an analysis to detect the bounds of the intervals
where the worst-case response times may have anomalous
behavior. In this section we propose an algorithm to find
task-pairs that may suffer from such anomalies.

Algorithm 1 Task pairs with anomalous dependencies
INPUT: The system graph G = (T ,F); T , the set of tasks

in the system; F , the set of inter-tasks functional de-
pendencies; τi, the task to be analyzed.

OUTPUT: [Tanomaly], the set of tasks that may generate
anomalies during the execution of τi.

1: get CPU, the resource on which τi is executed;
2: get TCPU, the set of tasks mapped on CPU;
3: for all τj ∈ TCPU do
4: if prio(τj) ≥ prio(τi) then
5: insert j into HP (i);
6: get PAT H, the set of paths in G = (T ,F);
7: Tanomaly = ∅;
8: for all path ∈ PAT H do
9: get Tpath, the set of tasks in path

10: I = ∅
11: for all k ∈ HP (i) do
12: if τk ∈ Tpath then
13: add pathIndex(τk) to I;
14: if |I| > 1 then
15: for j = 0 to |I| − 2 do
16: idstart = j; idend = j + 1;
17: for all τm ∈ Tpath do
18: if pathIndex(τm) ∈ (idstart; idend) then
19: add τm to Tanomaly;
20: return Tanomaly;

Algorithm 1 identifies the tasks that possibly influence
the scheduling of τi leading to non-monotonic behavior of
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the worst-case response time of τi. τi is executed on the
processing element CPU. Basically, the algorithm consists
of a systematic search applied on the entire task graph in or-
der to identify the transactions containing at least two tasks,
say τm and τk, mapped on CPU and with priorities higher
than τi. If such a transaction exists, then the variation of
the execution demand of any task located in that transaction
between τm and τk can influence the scheduling of τi. Fur-
thermore, these tasks possibly disturb also the scheduling of
τk, where prio(τm) > prio(τk).

Lines 3 to 5 identify the tasks mapped on CPU with a
priority higher than τi. The algorithm selects a transaction
(line 6) and determines all its tasks (line 9). During the next
step, the algorithm finds the tasks in the transaction with
priorities higher than τi (line 11 and 12) and insert their
transaction indices in I (line 13). Each task in that transac-
tion located between any two tasks with indices in I may
generate a scheduling anomaly for τi. If the cardinality of I
is bigger than 2, then the algorithm systematically analyzes
all tasks located between the indices defined by any two
consecutive elements of I. The previous algorithm (line 9
to 19) is repeated until all transaction have been analyzed.

Notice that the index of task τi is also inserted in HP (i)
to guarantee that the transactions containing τi are also se-
lected and analyzed. The algorithm complexity linearly de-
pends on the number of transactions in the system.

6. Experiments

In this section we apply the analysis presented in Sec-
tion 4 to the hypothetical distributed system depicted in
Figure 1. The system configuration was already presented
in detail at the beginning of Section 3. The initial execu-
tion demand of TI/O and the initial communication times of
C1 and C2 are CTI/O

= 10 and CC1 = 5 and CC2 = 5,
respectively. Using the algorithm presented in Section 5
we determine the set of task-pairs with independent release
times and the set of task-pairs with correlated activations,
that may have anomalous dependencies. We find out that
the worst-case response time of task T3 may be influenced
by the execution/communication demands of TI/O, C1 and
C2. The same tasks determine also the offset of T2, and can
influence the worst-case response time of T2, as well.

Table 1 shows the behavioral intervals of the worst-
case response time of T3 depending on the execu-
tion/communication times of TI/O, C1 and C2. As expected,
task T3 experiences its minimum worst-case response time
in interval II . We apply a binary search algorithm [12] on
intervals II and III to determine the eventual variations of
the worst-case response time of T3 generated by external
scheduling perturbations.

As it can be seen in the column corresponding to the third
interval, the worst-case response time of T3 increases up to

Behavioral intervals
I II III

CC1 [0; 10) [10; 95] (95; 175] (175; 187] (187; 188]
RT3 290 255 290 315 340
CTI/O

[0; 15) [15; 100] (100; 193]
RT3 290 255 290
CC2 [0; 10) [10; 95] (95; 188]
RT3 290 255 290

Table 1. Behavioral intervals for WCRT of T3

340. Due to the large communication demand of C1, the bus
load increases and the scheduling of C2 is disturbed. Be-
cause C2 has not a constant response time, T2 is activated
within a jitter interval, leading to a larger worst-case re-
sponse time. Figure 6 shows the behavior of T3’s response
time corresponding to the values contained in Table 1. The
worst-case response time of T3 as function of the execution
demand of TI/O was already presented in Figure 3.

Table 2 shows the behavioral intervals of the worst-case
response time of T2 computed using the algorithm pre-
sented in Section 4.2. T2 experiences its minimum worst-
case response time in intervals I and III . We apply the
same binary search algorithm to find out if the scheduling
of T2 is disturbed by external factors. Again, for large val-
ues of C1 the high bus load affects the scheduling of C2.
Obviously, this lead to a completion jitter at C2’s output,
influencing the scheduling of T2.

Behavioral intervals
I II III

CC1 [0; 110] (110; 155] (155; 175] (175; 180) [180; 187]
RT2 35 65 (65; 45) (70; 65) 65

CTI/O
[0; 115] (115; 160] (160; 190) [190; 193]

RT2 35 65 (65; 35) 35

CC2 [0; 110] (110; 155] (155; 185) [185; 188]
RT2 35 65 (65; 35) 35

Table 2. Behavioral intervals for WCRT of T2

Figure 7 depicts the evolution of T2’s worst-case re-
sponse time as function of the communication demands of
C1 and C2. Figure 5 at page 4 shows the behavior of T2’s
worst-case response time as function of the execution de-
mand of TI/O.

Finally, we measure the global path lateness, i.e. the
sum of all path latencies in the system. As expected, we
identify different behavioral intervals corresponding to the
behavioral intervals of the individual task response times.
Figure 8 shows the evolution of the global path lateness as
function of the communication demands of channels C1 and
C2. As it can be observed, the global path lateness is piece-
wise linear, but it has discontinuity points exactly at the in-
terval margins described in Section 4. Of special interest
are the points where the global path lateness sinks, increas-
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WCRT of T3 as function of CC1 WCRT of T3 as function of CC2

Figure 6. Task with independent release times

WCRT of T2 as function of CC1 WCRT of T2 as function of CC2

Figure 7. Tasks with correlated release time

Global path lateness as function of CC1 Global path lateness as function of CC2

Figure 8. The variation of global path lateness
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ing therefore to overall system performance, even though
the total load in the system has risen.

7. Conclusion

Variations of local system parameters may easily lead to
unpredictable behavior of the system performance metrics.
Such anomalies are very common in distributed systems
with complex dependencies. As they invalidate local com-
ponent worst-case assumptions, they are a potential threat
to system verification and to system robustness.

In this paper, we identified the necessary and sufficient
conditions for the occurrence of such anomalies and gave
equations to determine their effects. This is helpful for man-
ual design and as a support of automated design space ex-
ploration, which was shown in the examples.

Besides the contributions to analytical, formal tech-
niques, the same methods can be used to significantly im-
prove coverage in simulation, which is urgently demanded
in industry. Component suppliers can thus document poten-
tial anomalies and provide their customers with appropriate
simulation patterns – a large improvement towards robust-
ness and optimization in todays design practice.
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