Dynamic Voltage Scaling for the Schedulability of
Jitter-Constrained Real-Time Embedded Systems*

Bren Mochocki and Xiaobo Sharon Hu Razvan Racu and Rolf Ernst
Technical University of Braunschweig
Department of CSE Institute of Computer and
University of Notre Dame Communication Network Engineering
Notre Dame, IN 46556 D-38106 Braunschweig, Germany
{bmochock, shu }@cse.nd.edu {razvan, ernst }@ida.ing.tu-bs.de
Abstract— Jitter is a critical problem for the design of both distributed There is a considerable amount of work on managing jitter in

embedded systems and real-time control systems. This work considers real-time systems. In [8], Martet. al. present a method to make

meeting the completion jitter constraints of a set of independent, periodic, A ; frag
hard real-time tasks sc%eduled according to a preemptive fixed-priority control systems more tolerant of jitter by directly modifying control

scheme. Control over completion jitter is achieved by judiciously applying @lgorithms, e.g., software implementations of PID or State Feedback
Dynamic Voltage Scaling (DVSS. Through simulation, the proposed controllers. For systems scheduled according to EDF, Kimal.
method is shown to be an effective tool to meet jitter constraints on present a linear program formulation to assign task deadlines [5].
a variety of systems. Baruah et. al. present two deadline assignment algorithms that

|. INTRODUCTION bound the completion jitter of EDF tasks in polynomial and pseudo-
Rlynomial time respectively [1].

There has also been considerable work on jitter within the fixed-
'jprity framework. Tindellet. al. present a method for calculating
gzworst case response time of periodic and sporadic fixed-priority

s that exhibit input jitter and have arbitrary deadlines [13]. Bate

d Burns present a heuristic method that reduces task deadlines
Ed/or changes the offset of the initial task release times in order

meet jitter constraints [2]. Cervin also presents a heuristic that
%uces deadlines and introduces offset [3]. Additionally, tasks are

ritized in deadline monotonic order, so a priority assignment is
considered with respect to the altered deadlines. Detvidl.

Given the recent demand for portable and low-power computatig
devices designed for extended battery life, current interest in desj
techniques for power management and energy reduction is no
prise. One such technique that has received a considerable amou
attention in recent years is called Dynamic Voltage Scaling (DV
DVS capitalizes on the inherent convex dependence of power
supply voltage in CMOS based circuitry to trade system performa
for reduced power and energy consumption. DVS is particular
useful in embedded real-time applications, as task parameters
timing constraints are well defined in such an environment. Ma
real-time systems are composed of tasks that release jobs periodic sent a method that partitions tasks into jitter-constrained and non-

a topic that has been considered in the DVS literature [6], [10]. J#gr constrained sets [4]. The tasks are then offset optimally using

b At?]e'rg{;)srtirgmcrfjﬁitmi:?(rsls(}\;\?r:n;ss t‘?i?tterhe}f] Phoet Egﬁtgxiogfsgzﬂ_ Chinese Remainder Theorem to avoid the overlap of execution
y Y : indows. Deadline assignment is also considered in this method.

time periodic tasks, jitter refers to the variation of the release ti general, deadline assignment is not the best method from a

or complet_lgln time of af periodic task from |tsdper|0d. Th_erebar edulability standpoint, as the methods presented in [2], [4] may

g:%g%ﬁﬁr? Slorevzcr)igrt?oi? i(r)1 g)t(t:éhgbgh’tﬁ;?;mﬁ'tg? c:ne rt‘g\f’é'gmﬁfgj guarantee task deadlines after the deadlines are adjusted. Also,

impact ongthe erformance of a system. Mattial.show that 'itt(re)r in en considering DVS, decreasing task deadlines translates directly
P P Y : . J less flexibility for energy minimization. Changing the priority

a real-time control system can cause performance degradation or g\gnment or introducing task offset may or may not be possible

instability [8]. Another area where jitter becomes problematic is t : 1Y A . : !
integration and synchronization of heterogeneous system compone, g?;;&'igg ?onffﬂfhSf?Qgﬁggncgnm%lﬁisgﬁ?{ugrposs'b'e’ DVS can still

This is a key problem for Computer-Aided Design (CAD) tools suc
as Symbolic Timing Analysis for Systems (SymTA/S) [12].
SymTA/S is a software tool for formal performance analysis

heterogeneous SoCs and distributed systems. The SymTA/S anal . . h
approach couples local scheduling algorithms using event strea icable during system design. If, for example, a software update

Event streams describe the possible I/O timing of tasks and xan already designed and deployed system requires an additional

characterized by appropriate event models such as periodic evi ﬁ% to be added, the current hardware buffers in the system may

with jitter or bursts and sporadic events. SymTA/S supports th@r D€ sufficient. In this case a software solution is more flexible.
combination and integration of different analysis techniques knowi'0ther disadvantage of the hardware approach is the additional

from real-time research. For this purpose, it is essential to transiti Hai(;]ecﬁr(‘jdegoi"r\]’errn;er?u"reerge?yi:]he It())l\jyeE)S\}vgrlvsensigﬁqtsD\{r?ethjlleﬁgg?%
between the often incompatible event stream models resulting fr ged Y I gf 9 o P o fy e toa

the dissimilitude of the local techniques. Such incompatibilitie§ > On Jitter is essentially a free fringe benefit that the designer can
appear, for instance, between an analysis technique assuming si %?'t'

g - : I e remainder of this paper is organized as follows. Section Il
p? r{odlct(notjltter) events at the input and another that generates J'tbef(resents definitions notat%npand a mgotivational example. Section Il
at its output.) .

In this paper, we show that DVS has a large potential to bomascribes. the proposed method. Section IV presents the experimental
increase jitter when used aggressively, or to meet jitter constraifESUlts: Finally, we conclude with Section V and offer several future
when used judiciously. Specifically, we consider meeting completifr‘\"?cuons of research. Note that all material omitted due to the page
jitter constraints on a set of independent, periodic, hard real-time tadiait (€-g, proofs) can be found in [9].
scheduled according to a preemptive fixed-priority scheme. Fixed Il. PRELIMINARIES

priority is often the scheduling method of choice due to its high Wi id I-ti ¢ d of ot iodi
predictability and low overhead [7]. To the best of our knowledg ke;oES|Ter1Eea- '?e 5_3(_5 ekn%s .com%otseh or a ?1 hmferlo. "?t
this is the first work that considers utilizing DVS for any purposteSkS.Z = {11, T3, ..., T»}. TaskT; is said to have a higher priority
other than power/energy reduction. an taski} if + < j. Each tasky; = (we;, ps, d;), is described by its
worst case execution cyclesc;, period,p;, and relative deadlinel;,

*This work is supported in part by the ARTIST Network of ExcellencaVith d; < p;. The systenmhyperperiod is the least common multiple
and by NSF under grant numbers CCR02-08992 and CNS-0410771. of all task periods. Each task is invoked periodically and we refer to

An effective method for eliminating jitter is to buffer the input
or input jitter) and output (for completion jitter). Indeed, this is the
roach used by Richtet. al.in [11]. However, this method is only

the k-th invocation of taskl’; as job.J;". The set of all jobs withinone 2 (a) T, Ly M¥y Mty kv
hyperperiod is denoted hy, while 7; represents the set of all jobs & ¥y 4 Fy 4
of taskT; in J and Jx,(;) represents the set of all jobs # with a = 31

ority hi g ObTF — (rk gk ok i & T %
priority higher thanT;. Each jobJ;" = (r7,d;, e;) is composed of - :
arelease time;¥, deadlined”, and end timee?. For any given job, 1 it
the termrelative timereferrers to some time measurement minus the ©)T, F
release time of the job. For example, tledative deadlinds d¥ — r¥ 7'y
and therelative end times e¥ — r¥. For now we assume that the the T,
DVS processor can operate at any voltage in the rahge., Vinaz] 7'y
with corresponding speeds iff.fin, Smaz] and incurs negligible T N) s .
transition overhead. A voltage schedule, denafed{ = {JF, S%}, OTL [y [y [y [y
is a set of job-speed pairs such that every joly/irmaps to exactly * 1 14 ,,43 2 4 %ié 33
one speed. The impact of processor limitations such as transition TZ* 1% 4:;;;; 7 3, * - A 4

overhead and discrete voltage levels is left for future work.
Releaseor input jitter refers to the variation in job release times,
while completion jitter is the variation in job completion times.
Completion jitter arises from several sources: (i) input jitter itself
can cause completion times of a task to vary, (i) preemptio%

0O 10 20 30 40 50 60 70 80 90 100 110 120
No DVS:[_] Release: & Min Response: ¢ Time
DVS: Deadiine: ¥ Max Response: <>

e e ; i i 1g. 1. An example two-task system: (a) Executing at the maximum processor
{/I\%eerh O_Lljjléterrecayse? by taSkIpre?rznptl(t)t?l and (t“') exectutlon J'ttle eed, (b) scheduled using DVS for minimum energy, (c) scheduled using
jobs require fewer cycles than the worst case to complegss for minimum jitter.

Completion jitter can be measured in two ways. Inter-completion jitter

is measured with respect to consecutive jobs, and is important for

control applications. Absolute jitter refers to the difference between

the minimum and maximum system variable in question. This work I1l. PROPOSEDMETHOD

specifically targets completion jitter due to task preemptions. . . i
Definition 1: Inter-Completion Jitter- The variation in relative There are several implications resulting from the focus on a fixed-

end times of consecutive jobs of the same task, i.e., priority system. First, in a fixed-priority system, lower-priority jobs
) _ cannot impact the execution of higher-priority jobs. Thus it makes
iJtr(Ty, k) = |(e] —) — (ef —7F)], (1) sense to examine the tasks individually, in a decreasing order of
' priority. Next, it is important to understand exactly how DVS can
j=kmod|T;| +1 alleviate the jitter problem. By its very nature, DVS is only capable
The modulus is used to compare the first and last jobs in tlé&introducing delay, i.e., the processor speed is reduced to extend the
hyperperiod. execution time of a job. The result is that an individual job may end

Definition 2: Absolute Completion Jitter- The difference be- any time during its active interval (i.e., [release, deadline]). However,
tween the maximum and minimum response times of jobs of tlaejob cannot end during an interval in which a higher priority job
same task, i.e., is being executed. This segments the active interval of a job into

X X o . feasible completion regions, which we refer to as islands. Identifying

aJtr(T;) = max(e; —r;) — min(e; — ;) (2) the island in which a job should be completed is one critical step in

solving Problem 1. Although many combinations of end times may

o k _=_1--\~7z'\ . meet the jitter constraints for an individual task, the earliest set should

Based on (1) and (2) it is trivial to show that the following lemmae selected to maximize the chance that lower priority tasks will also
holds. _ meet their jitter constraints.

Lemma 1:3Jtr (T, k) < aJtr(T3) for any taskl; and any value pefinition 3: An island I(i, k) of job J¥ refers to thej-th
of k wherel < k < |J;]. interval in time during which the worst case execution cycles/bf

We define a set of jitter constraints7C, as a set of S'tUpleSdcan be completed, without missird@. The start and end of an island

{(4, type, value) }. The first element;, indicates that the associated;" .
task isT,. The second elementype € {a, ic}, takes on the value I'is denoted bystart(Z) andend(/). The set of all such islands for

a if the constraint is on the absolute jitter, and if the constraint jobs in 7 is Z;, and for jobJ* is Z7'. Island sets are sorted by their
is on the maximum inter-completion jitter. The final elementjue, Start ime in a monotonically increasing order. _)
indicates the magnitude of allowable jitter. dfilue = oo then the _ For the highest priority task, there is always a single island per job.
task is unconstrained by the given type of jittgfC is indexed by For all lower priority tasks, there may be one or more islands per
JC¥P¢, which returnsvalue. If a given task set can meet all jitter /D, depending on the preemption pattern of higher priority jobs. This
constraints without deadline violations, we say that the task setAgint is illustrated in Figure 2(a). Notice that jolf has two islands,
schedulableunder the given constraints. i.e., 2](2, 2,31) angl(2,2,2), resulting from t.he possmlg preemption
Next, the impact of aggressively applying DVS on completioff J2 by Ji. If J5 was not completed by this preemption, then there
jitter is introduced. Figure 1 gives an example task set with tw@ust be at least one execution cycle left. This is accounted for by
tasks havingp; = 30, di = 20, we; = 10, pa = 40, do = 40 delaying the island (2, 2,2) by one time step. _
andwez = 10. In (a), the tasks are executed using the maximum When comparing islands of the same task, it is sometimes helpful
processor speed, resulting @vtr(T;) = 0 andaJtr(1:) = 10. In o draw a Relative-time Island Diagram (RID). A RID is constructed
(b), DVS is applied to minimize the energy consumption. Howeveby first subtracting the release timg from the start and end times of
this causes an increase in jitter for both tasks, withtr(77) = 5, allislandsI(i, k, 7). Next, all islands are drawn along the x-axis, with
andaJtr(T2) = 20. Finally, in (c), DVS is applied less aggressivelya height on the y-axis corresponding to their job indekigure 2(b)
resulting inaJtr(T>) = 1. Note that there is still slack available ingives the RID forly, and Figure 2(c) gives the RID fdr,. Although
(c), which could be used to either minimize the jitter for lower priorityFigure 2 shows the locations of the islands/6f they cannot actually
tasks, if they were present, or to minimize energy consumption. The identified until the end time of every job i is fixed.
problem of interest is introduced formally in Problem 1. An important The island-identifying algorithm, denoteldentify Islands finds
extension to Problem 1 is how to simultaneously minimize energfe islands for jobs at a particular task levegiven the end times
We leave this extension to future work. of all higher priority jobs. Essentially, all idle times for each job of
Problem 1: Constrained-Jitter Voltage Scheduling-Given a set taskT; are identified, and the early idle times of each job are “filled
of independent, fixed-priority, periodic tasis and a corresponding up” with the worst case execution cycles of the corresponding job.
set of jitter constraints/C. Find a voltage schedul@CH such that For brevity, the pseudocode is omitted. Once the set of islands have
all constraints in7C are met and no deadline i is missed, or been identified for task’;, the next step is to identify a set of end
determine that it is impossible to do so. times for each job off; that meets the jitter constraints I#iC;.

2@, LD 52 1320 55131 5. (141) Lemma 3:The minimum absolute jitter for an island solution set
5 T, is given directly by the following equation:
=)) L) : ' ;
o min(aJtr(ZS;)) = max(Smaz (i) — €min (1), 0) (5)
T 3 l A 7 I %’ H i 3 !! \ 4 If the minimum absolute jitter according to Equation 5 is greater
4 |(5T; L) |(32_1’ |(222)|(;gl)lm than the absolute jitter constraint, then the job corresponding to
0 10 503 40 9 60 70 80 %0 100 110 112 emin(i) belongs in se€ according to Lemma 2, and can be replaced

by the next island for that job. However, the method for determining

(0)a PARRN (©) Time which islands belong in€ based on the inter-completion jitter
o3 Srd 23| ¢ —— constraint is more involved.
S 2 : S 2 HHH The unified method for identifying the validity of an island solution
I > 1 > set is given in Algorithm 1. The algorithm is divided into two
0 10 20 0 10 20 30 40 general phases, the first phase (Lines 3-5) checks and enforces
Relative Time Relative Time the absolute jitter constraint, while the second phase (Lines 6-16)

checks and enforces the inter- completion jitter constraint. Line 3
uses Equation 5 to identify the minimum absolute jitter and compare
i it with the absolute jitter constraint. Lines 4 and 5 duplicate the island
Fig. 2. - (a) An Island example for a two-task system. (b) The RIDI0f 5q|ytion set, convert it to relative time, and enforce the absolute jitter
(c) The RID of T» - . -) :
constraint. Line 6 uses Lemma 1 to skip the second phase if the inter-
completion jitter constraint is greater than or equal to the absolute
)) o)))) jitter constraint (i.e., the inter-completion jitter constraint is met
The first step in assigning job end times is to identify a set Gutomatically). Starting with the island after the one corresponding
islands that will allow both the absolute jitter and inter-completiory s, (i), the previous island/.52? , is extended by the inter-
jitter constraints to be met. To help formalize the discussion, th®mpletion jitter constraint and the intersection of the two intervals
concept of an island solution set is introduced in Definition 4. is computed (Line 9). Intuitively, the intersection represents every
Definition 4: Island solution set- A set of islands of taski;, possible end time off* in the islandIS¥ that satisfies7C¢ with
denoted byZS; = {ISF}, k = 1.|7i|, one for each jobJf" € Ji. respect toJ?. The loop continues until the island of,.. (i) is
An island solution set is said to be valid if there exists an end timeached again.
ey such thatstart(1.57) < e < end(ISy) for k = 1..|7;| and all Once it has been determined that the given island solution set is
jitter constraints in7C; are met.]] valid, the final consideration for the task at the current level is where
The goal of meeting the jitter constraints of a single task can lige end times of each job should be placed. Lemma 4 shows that this
achieved if one can identify a valid island solution set for the taskccurs when the end times are placed as early as possible. Lines 15
How to identify this set becomes a key issue. A convenient methggld 17 serve this purpose by repeating the intersection process from
would scan the islands from the earliest to the latest, as ending eaHy job of s,,4. (i), but proceeding instead in the opposite direction.
preserves slack time for lower priority tasks. Lemma 2 provides thehe resulting islands ifS2; represent the intervals in which the end
basis on which a linear search method can be constructed. times of each job may be placed that will satisfy the inter-completion
Lemma 2:Consider a task;, with corresponding jobsy;, jitter jitter constraint from both adjacent jobs, as well as satisfying the
constraints,7C;, and an arbitrary island solution séiS;, from the absolute jitter constraint. The minimum end time is simply the start
set of possible islandsZ;. Assume that any island € ZF that of that island (plus the job release to transform the end time back
satisfiesend(I) < start(ISF) for k = 1..|7;| does not belong to from relative time). Theorem 1 states the correctness and complexity
any valid island solution set df;. Further, let€ be the set of all end of Algorithm 1.
times el such that when the absolute (resp., inter-completion) jitter Lemma 4:Given a task[T; € 7 , with jobs, 7;, jitter constraints,
of T; is minimized,e! = end(75¥), and reducing* will resultina JC;, and a valid island solution seZS;, from the set of possible
larger jitter. IfZS; is not valid, ther(i) £ # () and(ii) all islands7 S} islands.Z;. Assume that all islands iR less than the corresponding
corresponding te* € £ do not belong to any valid island solutionisland ISy for k = 1..|7:| do not belong to any valid island solution
set of T;. set of 7. If 7 is schedulable undeyC given the current selection of
Putting the complicated notation aside, Lemma 2 affirms thelt if end times for jobs 'Whﬁu), then it is a sufficient (but not necessary)
cannot both be insidéS* and meet the given jitter constraints, therfondition of a valid schedule that the end time of each joyirs

15" will never belong to any valid island solution set and can b@linimized while still meeting the constraints #C;. .
resﬁwoved from consid%ration.y Theorem 1:Algorithm 1 identifies one island in the island solution

gé_et that is not part of any valid island solution set, or determines that

Based on Lemma 2, a solution to Problem 1 begins to emer - ; . ; >U : .
This method requires the repeated testing of island solution sef& island solution set is valid and minimizes the end times of jobs

beginning with the earliest set of islands. The solution set then hdPs”i: While meeting all jitter and deadline constraints. Algorithm 1
from island to island, moving forward in time until a valid set ig €quiresO(|7:|) time. - .
found. One difficulty with this approach is that Lemma 2 requires the YSing Algorithm 1, determining a schedule that meets all deadlines
jitter to be minimized for each island solution set. However, for thand itter constraints is a relatively straightforward process. The

method presented here, it is sufficient to determine if the minimu oclegs_, ldegotequp,lslands' Iﬁe%ins by identi:‘jying thg i.S'a"d]§ and h
jitter is less than or equal to the given jitter constraints. To facilitag valid island solution set with the corresponding end times for eac

the minimization process, the concepts of maximum island start afi§* N @ decreasing order of priority. If a valid solution set exists for
minimum island end times are introduced. every task, then a voltage schedule is constructed using the islands

Definition 5: The maximum relative island start time of an &nd end times. This is done by identifying the idle time allocated to

Release: 4 Deadline: * T,ldlands:<> T,lslands ¢»

island solution set, denoteg,.. (i), is given by: each job,JF , which is equivalent to the sum of all island intervals
in the range § , e¥]. The speed for the¥ is then scaled according
Smaz(i) = max(start(IS}) — ry), (3) to the available idle time using} = -7 Theorem 2 states the
k= 1.|75i] correctness and complexity of this method.)
=1..|ZS; ' . .
Definition 6: The minimum relative island end time of an island Theorem 2: Hopislandssolves Problem 1 i©(|7] x |7 %) time.
solution set, denotedmm(i), is given by: IV. EXPERIMENTAL RESULTS
(i) = min(end(ISF) — ¥ 4 This section describes the experiments used to evaluate the ef-
emin(1) = min(end(157) —r7), “) fectiveness of the proposed method with respect to meeting jitter
k=1.ZS;] constraints. The processor was assumed to have continuous frequency

Definitions 5 and 6 can be used to directly compute the minimulavels available in the range of 10 to 100 MHz and negligible
absolute jitter, as shown in the following lemma. transition overhead.

Algorithm 1 [I] = Is_Valid(7;, ZS:, JC;) Jitter Aware DVS Rate Monotonic

T] 1_
1: INPUT: The set of jobs7;, the island solution sefS;, and the % o'; (a) (b) | |n
jitter constraints7C;, of taskT;; 3|06 §\\‘ e
2: OUTPUT: I, an island inZS; that is not part of any valid 2 83 ~—]
solution st ofT3, or () if the island solution set is valid. *** If the o I et | s |
solution set is valid, the end times of jobs .Jf are minimized,; HE -
3 if max(Smar(i) — emin(i), 0) > JCI° then retun the island 5los %T\\ () @3
corresponding t@:x (7); w| 0.6 N [T o
4 I82; = IS;; o ~— ~—, |
5: Transform each island ifS2; to relative time, and restrict o N —t— |
relati\(/e)] start and end times to the rang&.f.(i) — JC?, 03 04 05 06 07 03 04 05 06 07,
Smaz(2)];) Utilization
6: if JC7 > JC;° then —— 5Tasks —#— 10 Tasks —&— 15 Tasks —%— 20 Tasks
7: IS := the island corresponding ... (i);
8: for each island, starting from the island aftéf***, and Fig. 3. Percentage of randomly generated task sets schedulable with various
i i Qmazx apsolute jitter constraints using a, C) an , .
looping back around untifS;"** is reachedio ' bsolute jitt traint JADVS (a, c) and RM (b, d)
o: 1527 = 1S2F [start(1S2F)+JCi°, end(1S27) — JCil;
10: if ISQk — 0 then : o Jitter Aware DVS y Rate Monotonic ‘
11 if end(1SF) —rF < start(1S?) — r? then return 1S¥; 2 00 (@) (b) |w
12: else return 157; 3|06 :\\\ e
13: end |f -u=> 0.4 . '\\ %
14: end for Pl RS S e
15: ***Repeat the intersection process for each island, looping in i S A A
the reverse direction; Blos | A (c) d |z
16: end if £los N H
17: ** for every jobJF do setef := start(152F) 4 r¥; o o~ , = = |F
18: return {); ol S T a—— it ———3 |I°
03 04 05 06 0.7 03 04 05 06 07,
Utilization

. . —&— 5Tasks —®— 10 Tasks —&— 15 Tasks —— 20 Tasks
The simulation was conducted on randomly generated task sets of

5 to 20 tasks with periods from 1 to 100 ms. The utilization wWagig 4. percentage of randomly generated task sets schedulable with various

varied from 0.3 to 0.7 in order to gage the effect of an increaseter-completion jitter constraints using JADVS (a, c) and RM (b, d).

load on the results. The jitter was set for every task as a percentage

of the period, 2% for a highly constrained jitter and 10% for a less

constrained jitter. behavior, sporadic tasks, and voltage transition overhead must be
Figures 3 and 4 show the effectiveness of the proposed meth vior SP ; . 9s | ;

called Jitter Aware DVS (JADVS) and rate-monotonic (RM) scheduP—§nSIdered for this method to be useful in practice.

ing on absolute and inter-completion jitter, respectively. As expected, REFERENCES

the general trend is that it becomes more difficult to meet J'tte_i] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling

constraints as the utilization and the number of tasks increase. With' periodic task systems to minimize output jitter. Rroceedings of

a restrictive absolute jitter (Figures 3(a) and (b)) it is easy to see the International Conference on Real-Time Computing Systems and

thfa-t JADVS wins out over RM. For example, with 5 tasks and 1%] ﬁpé){l;;:eatg)nnds ,FD)\{M‘:]BeuSrr?s2 _GAgr'\ %ep%régc?f?'to task attribute assignment for

utlllzatlon_of 0.3, JADVS can schedule 6 times as many task sets dniprocessor éystems'. In The 11th Euromicro Conference on Real-

RM. At higher utilizations RM cannot schedule any tasks. JADVS Time Systems (ECRTS99pges 46-53, 1999.

can schedule as many as 20% of task sets consisting of only 5 tagk$ A. Cervin. Improved s«;hedu?ing of control tasks. the 11th Euromicro

even at high utilizations (0.7). With a less restrictive jitter (Figure 3(c/)$4] Eogfergnge éintthea|-Tlélﬂlfrl ?\lystemlf (%@%{?Tﬁﬁﬁge?A—lor 1999h dui

and (d)) both algorithms improve, but JADVS maintains a 40 to 609 - David, F. Cottet, , and M. INissanke. Jitter contros in on-line scheauling

improvement for 5 tasks, and can even schedule 70 to 95% of task g';ggﬁ?sn%3rr¥]g§§ih%m&%§§éefﬁﬁeg'%’;C.O%Bf 22nd Real-Time

sets of 20 tasks at utilizations of 0.4 and 0.3 respectively. [5] T.Kim, H. Shin, and N. Chang. Deadline assignment to reduce output
The story is very similar for inter-completion jitter (Figure 4). jitter of real-time tasks. IrProceedings of the 16th IFAC workshop on

The difference is that inter-completion jitter only restricts adjacen D'SE(”itr’Tl]Jt%d Eiommpgrt]%f SCOEUR}I iﬁﬁ?ggg%ﬂ%ﬁ Q'&ﬁ}nzgog?gomhm

tasks, so it is .less restrictive than .at_)solute Compl.et'on jitter. R for dyn’am'ic-pric')rity hard real-time systems using slack time analysis.

doeS not beneﬁt fl’0m the IeSS restrictive nature Of Inter-Completlon In Proceedings of the 2002 Design’ Automation and Test in Euroope

jitter (Figure 4(b) and (d)) because in cases where tasks are released Conference and Exhibition (DATEpages 788-794, Mar. 2002.

simultaneously, the best case response time happens directly after tAleC. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-

; ; ; ~ ; ming in a hard-real-time environmentlournal of the ACM (JACM)
worst case response time, making the absolute and inter-completion 20(1):46-61, Jan. 1973.

jitters equal. While applying DVS, however, this is not the case. Th|§8] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham. Jitter
is particularly evident from the 15 and 20 task curves with 10% ~ compensation for real-time control systems.Pimceedings of the 22nd
jitter (Figures 3(c) and 4(c)). Notice that a utilization of 0.5, JADVS _ Real-Time Systems Symposium (RTf&)es 39-48, Dec. 2001.
can schedule 40% of sets with 15 tasks under inter-completiolf] B, C. Mochocki. = Dynamic voltage scaling for the schedulability

: " : of jitter-constraind real-time embedded systems: Supplementary mate-
constraints, but only 20% under absolute jitter constraintgxa rial. Technical Report TR-2005-12, University of Notre Dame: online-

difference. http://cse.nd.edu/research/teports/, July 2005.
[10] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-
V. SUMMARY power embedded operating systems. Pimceedings of the eighteenth
We have shown through simulations and detailed examples that ASM Symposium on Operating systems principles (SOp&jes 89—

. . ! . f . 102, 2001.
DVS is a viable option for meeting absolute and inter-completi K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for

jitter constraints. This method can be readily incorporated into * heterogeneous multiprocessor socPmceedings of the 24nd Real-Time
the SymTA/S framework to manage both jitter and energy for a Systems Symposium (RTS3¢c. 2003. _
distributed real-time system. However, much work remains. First, theZ] E%{B“}ﬁfvﬁvw ‘Syﬁ%g“g%'/c timing analysis for systems. online-
effectiveness of this meth(_)d on a larger range of systems should %ﬁ K. Tindell, A. Burns, and A. J. Wellings. An extendible approach
explored and compared with previous methods of jitter management.” for analysing fixed priority hard real-time tasksReal-Time Systems
Second, issues such as input jitter, variation in execution time, bursty 6(2):133-151, Nov. 1994.

