
Dynamic Voltage Scaling for the Schedulability of
Jitter-Constrained Real-Time Embedded Systems*
Bren Mochocki and Xiaobo Sharon Hu

Department of CSE
University of Notre Dame

Notre Dame, IN 46556
{bmochock, shu }@cse.nd.edu

Razvan Racu and Rolf Ernst
Technical University of Braunschweig

Institute of Computer and
Communication Network Engineering

D-38106 Braunschweig, Germany
{razvan, ernst }@ida.ing.tu-bs.de

Abstract— Jitter is a critical problem for the design of both distributed
embedded systems and real-time control systems. This work considers
meeting the completion jitter constraints of a set of independent, periodic,
hard real-time tasks scheduled according to a preemptive fixed-priority
scheme. Control over completion jitter is achieved by judiciously applying
Dynamic Voltage Scaling (DVS). Through simulation, the proposed
method is shown to be an effective tool to meet jitter constraints on
a variety of systems.

I. I NTRODUCTION

Given the recent demand for portable and low-power computation
devices designed for extended battery life, current interest in design
techniques for power management and energy reduction is no sur-
prise. One such technique that has received a considerable amount of
attention in recent years is called Dynamic Voltage Scaling (DVS).
DVS capitalizes on the inherent convex dependence of power on
supply voltage in CMOS based circuitry to trade system performance
for reduced power and energy consumption. DVS is particularly
useful in embedded real-time applications, as task parameters and
timing constraints are well defined in such an environment. Many
real-time systems are composed of tasks that release jobs periodically,
a topic that has been considered in the DVS literature [6], [10].

An important class of constraints that has not been considered
by the DVS community is known as Jitter. In the context of real-
time periodic tasks, jitter refers to the variation of the release time
or completion time of a periodic task from its period. There are
many possible sources of jitter, e.g., preemption due to priority-based
scheduling or variation in execution times. Jitter can have a profound
impact on the performance of a system. Martiet. al.show that jitter in
a real-time control system can cause performance degradation or even
instability [8]. Another area where jitter becomes problematic is the
integration and synchronization of heterogeneous system components.
This is a key problem for Computer-Aided Design (CAD) tools such
as Symbolic Timing Analysis for Systems (SymTA/S) [12].

SymTA/S is a software tool for formal performance analysis of
heterogeneous SoCs and distributed systems. The SymTA/S analysis
approach couples local scheduling algorithms using event streams.
Event streams describe the possible I/O timing of tasks and are
characterized by appropriate event models such as periodic events
with jitter or bursts and sporadic events. SymTA/S supports the
combination and integration of different analysis techniques known
from real-time research. For this purpose, it is essential to transition
between the often incompatible event stream models resulting from
the dissimilitude of the local techniques. Such incompatibilities
appear, for instance, between an analysis technique assuming simple
periodic (no jitter) events at the input and another that generates jitter
at its output.

In this paper, we show that DVS has a large potential to both
increase jitter when used aggressively, or to meet jitter constraints
when used judiciously. Specifically, we consider meeting completion
jitter constraints on a set of independent, periodic, hard real-time tasks
scheduled according to a preemptive fixed-priority scheme. Fixed
priority is often the scheduling method of choice due to its high
predictability and low overhead [7]. To the best of our knowledge,
this is the first work that considers utilizing DVS for any purpose
other than power/energy reduction.

*This work is supported in part by the ARTIST Network of Excellence
and by NSF under grant numbers CCR02-08992 and CNS-0410771.

There is a considerable amount of work on managing jitter in
real-time systems. In [8], Martiet. al. present a method to make
control systems more tolerant of jitter by directly modifying control
algorithms, e.g., software implementations of PID or State Feedback
controllers. For systems scheduled according to EDF, Kimet. al.
present a linear program formulation to assign task deadlines [5].
Baruah et. al. present two deadline assignment algorithms that
bound the completion jitter of EDF tasks in polynomial and pseudo-
polynomial time respectively [1].

There has also been considerable work on jitter within the fixed-
priority framework. Tindellet. al. present a method for calculating
the worst case response time of periodic and sporadic fixed-priority
tasks that exhibit input jitter and have arbitrary deadlines [13]. Bate
and Burns present a heuristic method that reduces task deadlines
and/or changes the offset of the initial task release times in order
to meet jitter constraints [2]. Cervin also presents a heuristic that
reduces deadlines and introduces offset [3]. Additionally, tasks are
prioritized in deadline monotonic order, so a priority assignment is
also considered with respect to the altered deadlines. Davidet. al.
present a method that partitions tasks into jitter-constrained and non-
jitter- constrained sets [4]. The tasks are then offset optimally using
the Chinese Remainder Theorem to avoid the overlap of execution
windows. Deadline assignment is also considered in this method.
In general, deadline assignment is not the best method from a
schedulability standpoint, as the methods presented in [2], [4] may
not guarantee task deadlines after the deadlines are adjusted. Also,
when considering DVS, decreasing task deadlines translates directly
into less flexibility for energy minimization. Changing the priority
assignment or introducing task offset may or may not be possible,
depending on the application in question. If possible, DVS can still
be applied to further reduce completion jitter.

An effective method for eliminating jitter is to buffer the input
(for input jitter) and output (for completion jitter). Indeed, this is the
approach used by Richteret. al. in [11]. However, this method is only
applicable during system design. If, for example, a software update
to an already designed and deployed system requires an additional
task to be added, the current hardware buffers in the system may
not be sufficient. In this case a software solution is more flexible.
Another disadvantage of the hardware approach is the additional
space and power required by the buffers. Given that DVS will already
be included in many emerging low-power systems, the benefit of
DVS on jitter is essentially a free fringe benefit that the designer can
exploit.

The remainder of this paper is organized as follows. Section II
presents definitions, notation and a motivational example. Section III
describes the proposed method. Section IV presents the experimental
results. Finally, we conclude with Section V and offer several future
directions of research. Note that all material omitted due to the page
limit (e.g., proofs) can be found in [9].

II. PRELIMINARIES

We consider real-time systems composed of a set ofn periodic
tasks,T = {T1, T2, ..., Tn}. TaskTi is said to have a higher priority
than taskTj if i < j. Each task,Ti = (wci, pi, di), is described by its
worst case execution cycles,wci, period,pi, and relative deadline,di,
with di ≤ pi. The systemhyperperiod, is the least common multiple
of all task periods. Each task is invoked periodically and we refer to

thek-th invocation of taskTi as jobJk
i . The set of all jobs within one

hyperperiod is denoted byJ , while Ji represents the set of all jobs
of taskTi in J andJhp(i) represents the set of all jobs inJ with a
priority higher thanTi. Each jobJk

i = (rk
i , dk

i , ek
i) is composed of

a release time,rk
i , deadline,dk

i , and end time,ek
i . For any given job,

the termrelative timereferrers to some time measurement minus the
release time of the job. For example, therelative deadlineis dk

i − rk
i

and therelative end timeis ek
i − rk

i . For now we assume that the the
DVS processor can operate at any voltage in the range [Vmin, Vmax],
with corresponding speeds in [Smin, Smax] and incurs negligible
transition overhead. A voltage schedule, denotedSCH = {Jk

i , Sk
i },

is a set of job-speed pairs such that every job inJ maps to exactly
one speed. The impact of processor limitations such as transition
overhead and discrete voltage levels is left for future work.

Releaseor input jitter refers to the variation in job release times,
while completion jitter is the variation in job completion times.
Completion jitter arises from several sources: (i) input jitter itself
can cause completion times of a task to vary, (ii) preemption
jitter, or jitter caused by task preemption, and (iii) execution jitter,
when jobs require fewer cycles than the worst case to complete.
Completion jitter can be measured in two ways. Inter-completion jitter
is measured with respect to consecutive jobs, and is important for
control applications. Absolute jitter refers to the difference between
the minimum and maximum system variable in question. This work
specifically targets completion jitter due to task preemptions.

Definition 1: Inter-Completion Jitter- The variation in relative
end times of consecutive jobs of the same task, i.e.,

iJtr(Ti, k) = |(ej
i − rj

i)− (ek
i − rk

i)|, (1)

j = k mod |Ji|+ 1
The modulus is used to compare the first and last jobs in the
hyperperiod.

Definition 2: Absolute Completion Jitter- The difference be-
tween the maximum and minimum response times of jobs of the
same task, i.e.,

aJtr(Ti) = max(ek
i − rk

i)−min(ek
i − rk

i) (2)

k = 1..|Ji|
Based on (1) and (2) it is trivial to show that the following lemma
holds.

Lemma 1: iJtr(Ti, k) ≤ aJtr(Ti) for any taskTi and any value
of k where1 ≤ k ≤ |Ji|.
We define a set of jitter constraints,JC, as a set of 3-tuples
{(i, type, value)}. The first element,i, indicates that the associated
task isTi. The second element,type ∈ {a, ic}, takes on the value
a if the constraint is on the absolute jitter, andic if the constraint
is on the maximum inter-completion jitter. The final element,value,
indicates the magnitude of allowable jitter. Ifvalue = ∞ then the
task is unconstrained by the given type of jitter.JC is indexed by
JCtype

i , which returnsvalue. If a given task set can meet all jitter
constraints without deadline violations, we say that the task set is
schedulableunder the given constraints.

Next, the impact of aggressively applying DVS on completion
jitter is introduced. Figure 1 gives an example task set with two
tasks havingp1 = 30, d1 = 20, wc1 = 10, p2 = 40, d2 = 40
and wc2 = 10. In (a), the tasks are executed using the maximum
processor speed, resulting inaJtr(T1) = 0 andaJtr(T2) = 10. In
(b), DVS is applied to minimize the energy consumption. However,
this causes an increase in jitter for both tasks, withaJtr(T1) = 5,
andaJtr(T2) = 20. Finally, in (c), DVS is applied less aggressively,
resulting inaJtr(T2) = 1. Note that there is still slack available in
(c), which could be used to either minimize the jitter for lower priority
tasks, if they were present, or to minimize energy consumption. The
problem of interest is introduced formally in Problem 1. An important
extension to Problem 1 is how to simultaneously minimize energy.
We leave this extension to future work.

Problem 1: Constrained-Jitter Voltage Scheduling-Given a set
of independent, fixed-priority, periodic tasksT and a corresponding
set of jitter constraintsJC. Find a voltage scheduleSCH such that
all constraints inJC are met and no deadline inT is missed, or
determine that it is impossible to do so.

T1

T2P
ri

or
ity

T1

T
2

J2
3J2

2J2
1

J1
1 J1

2 J1
3 J1

4

Time
0 30 60 90 1202010 40 50 70 80 100 110

T
1

T2 J2
3J2

2J2
1

(a)

(b)

(c)

J1
1 J1

2 J1
3 J1

4

J
2

3J
2
2J

2
1

J1
1 J1

2 J1
3

J1
4

Deadline: Max Response:DVS:
Release: Min Response:No DVS:

Fig. 1. An example two-task system: (a) Executing at the maximum processor
speed, (b) scheduled using DVS for minimum energy, (c) scheduled using
DVS for minimum jitter.

III. PROPOSEDMETHOD

There are several implications resulting from the focus on a fixed-
priority system. First, in a fixed-priority system, lower-priority jobs
cannot impact the execution of higher-priority jobs. Thus it makes
sense to examine the tasks individually, in a decreasing order of
priority. Next, it is important to understand exactly how DVS can
alleviate the jitter problem. By its very nature, DVS is only capable
of introducing delay, i.e., the processor speed is reduced to extend the
execution time of a job. The result is that an individual job may end
any time during its active interval (i.e., [release, deadline]). However,
a job cannot end during an interval in which a higher priority job
is being executed. This segments the active interval of a job into
feasible completion regions, which we refer to as islands. Identifying
the island in which a job should be completed is one critical step in
solving Problem 1. Although many combinations of end times may
meet the jitter constraints for an individual task, the earliest set should
be selected to maximize the chance that lower priority tasks will also
meet their jitter constraints.

Definition 3: An island I(i, k, j) of job Jk
i refers to thej-th

interval in time during which the worst case execution cycles ofJk
i

can be completed, without missingdk
i . The start and end of an island

I is denoted bystart(I) andend(I). The set of all such islands for
jobs inJi is Ii, and for jobJk

i is Ik
i . Island sets are sorted by their

start time in a monotonically increasing order.
For the highest priority task, there is always a single island per job.

For all lower priority tasks, there may be one or more islands per
job, depending on the preemption pattern of higher priority jobs. This
point is illustrated in Figure 2(a). Notice that jobJ2

2 has two islands,
i.e., I(2, 2, 1) andI(2, 2, 2), resulting from the possible preemption
of J2

2 by J3
1 . If J2

2 was not completed by this preemption, then there
must be at least one execution cycle left. This is accounted for by
delaying the islandI(2, 2, 2) by one time step.

When comparing islands of the same task, it is sometimes helpful
to draw a Relative-time Island Diagram (RID). A RID is constructed
by first subtracting the release timerk

i from the start and end times of
all islandsI(i, k, j). Next, all islands are drawn along the x-axis, with
a height on the y-axis corresponding to their job indexk. Figure 2(b)
gives the RID forT1, and Figure 2(c) gives the RID forT2. Although
Figure 2 shows the locations of the islands ofT2, they cannot actually
be identified until the end time of every job ofT1 is fixed.

The island-identifying algorithm, denotedIdentify Islands, finds
the islands for jobs at a particular task leveli given the end times
of all higher priority jobs. Essentially, all idle times for each job of
taskTi are identified, and the early idle times of each job are “filled
up” with the worst case execution cycles of the corresponding job.
For brevity, the pseudocode is omitted. Once the set of islands have
been identified for taskTi, the next step is to identify a set of end
times for each job ofTi that meets the jitter constraints inJCi.

T1

T2 J2
3J2

2J2
1

J1
1 J1

2 J1
3 J1

4I(1,1,1) I(1,2,1) I(1,3,1) I(1,4,1)

I(2,1,1) I(2,2,1) I(2,2,2) I(2,3,1) I(2,3,2)
0 10 20 30 40 50 60 70 80 90 100 110 112

Time

P
ri

or
ity (a)

Deadline:Release: T2 Islands:T1 Islands:
Relative Time

Jo
b

1
2
3

0 10 20 30 40
Jo

b

(c)

Relative Time

(b)

1
2
3
4

0 10 20

Fig. 2. (a) An Island example for a two-task system. (b) The RID ofT1.
(c) The RID ofT2

The first step in assigning job end times is to identify a set of
islands that will allow both the absolute jitter and inter-completion
jitter constraints to be met. To help formalize the discussion, the
concept of an island solution set is introduced in Definition 4.

Definition 4: Island solution set- A set of islands of taskTi,
denoted byISi = {ISk

i }, k = 1..|Ji|, one for each jobJk
i ∈ Ji.

An island solution set is said to be valid if there exists an end time
ek

i such thatstart(ISk
i) ≤ ek

i ≤ end(ISk
i) for k = 1..|Ji| and all

jitter constraints inJCi are met.
The goal of meeting the jitter constraints of a single task can be

achieved if one can identify a valid island solution set for the task.
How to identify this set becomes a key issue. A convenient method
would scan the islands from the earliest to the latest, as ending early
preserves slack time for lower priority tasks. Lemma 2 provides the
basis on which a linear search method can be constructed.

Lemma 2:Consider a task,Ti, with corresponding jobs,Ji, jitter
constraints,JCi, and an arbitrary island solution set,ISi, from the
set of possible islands,Ii. Assume that any islandI ∈ Ik

i that
satisfiesend(I) < start(ISk

i) for k = 1..|Ji| does not belong to
any valid island solution set ofTi. Further, letE be the set of all end
times ek

i such that when the absolute (resp., inter-completion) jitter
of Ti is minimized,ek

i = end(ISk
i), and reducingek

i will result in a
larger jitter. IfISi is not valid, then(i) E 6= ∅ and(ii) all islandsISk

i

corresponding toek
i ∈ E do not belong to any valid island solution

set ofTi.
Putting the complicated notation aside, Lemma 2 affirms that ifek

i

cannot both be insideISk
i and meet the given jitter constraints, then

ISk
i will never belong to any valid island solution set and can be

removed from consideration.
Based on Lemma 2, a solution to Problem 1 begins to emerge.

This method requires the repeated testing of island solution sets,
beginning with the earliest set of islands. The solution set then hops
from island to island, moving forward in time until a valid set is
found. One difficulty with this approach is that Lemma 2 requires the
jitter to be minimized for each island solution set. However, for the
method presented here, it is sufficient to determine if the minimum
jitter is less than or equal to the given jitter constraints. To facilitate
the minimization process, the concepts of maximum island start and
minimum island end times are introduced.

Definition 5: The maximum relative island start time of an
island solution set, denotedsmax(i), is given by:

smax(i) = max(start(ISk
i)− rk

i), (3)

k = 1..|ISi|
Definition 6: Theminimum relative island end time of an island

solution set, denotedemin(i), is given by:

emin(i) = min(end(ISk
i)− rk

i), (4)

k = 1..|ISi|
Definitions 5 and 6 can be used to directly compute the minimum

absolute jitter, as shown in the following lemma.

Lemma 3:The minimum absolute jitter for an island solution set
is given directly by the following equation:

min(aJtr(ISi)) = max(smax(i)− emin(i), 0) (5)
If the minimum absolute jitter according to Equation 5 is greater

than the absolute jitter constraint, then the job corresponding to
emin(i) belongs in setE according to Lemma 2, and can be replaced
by the next island for that job. However, the method for determining
which islands belong inE based on the inter-completion jitter
constraint is more involved.

The unified method for identifying the validity of an island solution
set is given in Algorithm 1. The algorithm is divided into two
general phases, the first phase (Lines 3–5) checks and enforces
the absolute jitter constraint, while the second phase (Lines 6–16)
checks and enforces the inter- completion jitter constraint. Line 3
uses Equation 5 to identify the minimum absolute jitter and compare
it with the absolute jitter constraint. Lines 4 and 5 duplicate the island
solution set, convert it to relative time, and enforce the absolute jitter
constraint. Line 6 uses Lemma 1 to skip the second phase if the inter-
completion jitter constraint is greater than or equal to the absolute
jitter constraint (i.e., the inter-completion jitter constraint is met
automatically). Starting with the island after the one corresponding
to smax(i), the previous island,IS2p

i , is extended by the inter-
completion jitter constraint and the intersection of the two intervals
is computed (Line 9). Intuitively, the intersection represents every
possible end time ofJk

i in the islandISk
i that satisfiesJCic

i with
respect toJp

i . The loop continues until the island ofsmax(i) is
reached again.

Once it has been determined that the given island solution set is
valid, the final consideration for the task at the current level is where
the end times of each job should be placed. Lemma 4 shows that this
occurs when the end times are placed as early as possible. Lines 15
and 17 serve this purpose by repeating the intersection process from
the job ofsmax(i), but proceeding instead in the opposite direction.
The resulting islands inIS2i represent the intervals in which the end
times of each job may be placed that will satisfy the inter-completion
jitter constraint from both adjacent jobs, as well as satisfying the
absolute jitter constraint. The minimum end time is simply the start
of that island (plus the job release to transform the end time back
from relative time). Theorem 1 states the correctness and complexity
of Algorithm 1.

Lemma 4:Given a task,Ti ∈ T , with jobs,Ji, jitter constraints,
JCi, and a valid island solution set,ISi, from the set of possible
islands,Ii. Assume that all islands inIk

i less than the corresponding
islandISk

i for k = 1..|Ji| do not belong to any valid island solution
set ofTi. If T is schedulable underJC given the current selection of
end times for jobs inJhp(i), then it is a sufficient (but not necessary)
condition of a valid schedule that the end time of each job inJi is
minimized while still meeting the constraints inJCi.

Theorem 1:Algorithm 1 identifies one island in the island solution
set that is not part of any valid island solution set, or determines that
the island solution set is valid and minimizes the end times of jobs
in Ji, while meeting all jitter and deadline constraints. Algorithm 1
requiresO(|Ji|) time.

Using Algorithm 1, determining a schedule that meets all deadlines
and jitter constraints is a relatively straightforward process. The
process, denotedHop Islands, begins by identifying the islands and
a valid island solution set with the corresponding end times for each
task, in a decreasing order of priority. If a valid solution set exists for
every task, then a voltage schedule is constructed using the islands
and end times. This is done by identifying the idle time allocated to
each job,Jk

i , which is equivalent to the sum of all island intervals
in the range [rk

i , ek
i]. The speed for theJk

i is then scaled according
to the available idle time usingSk

i = wci
wci+idle

. Theorem 2 states the
correctness and complexity of this method.

Theorem 2: HopIslandssolves Problem 1 inO(|T |× |J |2) time.

IV. EXPERIMENTAL RESULTS

This section describes the experiments used to evaluate the ef-
fectiveness of the proposed method with respect to meeting jitter
constraints. The processor was assumed to have continuous frequency
levels available in the range of 10 to 100 MHz and negligible
transition overhead.

Algorithm 1 [I] = Is Valid(Ji, ISi, JCi)
1: INPUT: The set of jobsJi, the island solution setISi, and the

jitter constraintsJCi, of taskTi;
2: OUTPUT: I, an island inISi that is not part of any valid

solution st ofTi, or ∅ if the island solution set is valid. *** If the
solution set is valid, the end times of jobs inJi are minimized;

3: if max(smax(i) − emin(i), 0) > JCic
i then return the island

corresponding toemin(i);
4: IS2i := ISi;
5: Transform each island inIS2i to relative time, and restrict

relative start and end times to the range [smax(i) − JCa
i ,

smax(i)];
6: if JCa

i > JCic
i then

7: ISmax
i := the island corresponding tosmax(i);

8: for each island, starting from the island afterISmax
i , and

looping back around untilISmax
i is reacheddo

9: IS2k
i := IS2k

i

⋂
[start(IS2p

i)+JCic
i , end(IS2p

i)−JCic
i];

10: if IS2k
i = ∅ then

11: if end(ISk
i)− rk

i < start(ISp
i)− rq

i then return ISk
i ;

12: else return ISp
i ;

13: end if
14: end for
15: ***Repeat the intersection process for each island, looping in

the reverse direction;
16: end if
17: *** for every jobJk

i do setek
i := start(IS2k

i) + rk
i ;

18: return ∅;

The simulation was conducted on randomly generated task sets of
5 to 20 tasks with periods from 1 to 100 ms. The utilization was
varied from 0.3 to 0.7 in order to gage the effect of an increased
load on the results. The jitter was set for every task as a percentage
of the period, 2% for a highly constrained jitter and 10% for a less
constrained jitter.

Figures 3 and 4 show the effectiveness of the proposed method,
called Jitter Aware DVS (JADVS) and rate-monotonic (RM) schedul-
ing on absolute and inter-completion jitter, respectively. As expected,
the general trend is that it becomes more difficult to meet jitter
constraints as the utilization and the number of tasks increase. With
a restrictive absolute jitter (Figures 3(a) and (b)) it is easy to see
that JADVS wins out over RM. For example, with 5 tasks and a
utilization of 0.3, JADVS can schedule 6 times as many task sets as
RM. At higher utilizations RM cannot schedule any tasks. JADVS
can schedule as many as 20% of task sets consisting of only 5 tasks
even at high utilizations (0.7). With a less restrictive jitter (Figure 3(c)
and (d)) both algorithms improve, but JADVS maintains a 40 to 60%
improvement for 5 tasks, and can even schedule 70 to 95% of task
sets of 20 tasks at utilizations of 0.4 and 0.3 respectively.

The story is very similar for inter-completion jitter (Figure 4).
The difference is that inter-completion jitter only restricts adjacent
tasks, so it is less restrictive than absolute completion jitter. RM
does not benefit from the less restrictive nature of inter-completion
jitter (Figure 4(b) and (d)) because in cases where tasks are released
simultaneously, the best case response time happens directly after the
worst case response time, making the absolute and inter-completion
jitters equal. While applying DVS, however, this is not the case. This
is particularly evident from the 15 and 20 task curves with 10%
jitter (Figures 3(c) and 4(c)). Notice that a utilization of 0.5, JADVS
can schedule 40% of sets with 15 tasks under inter-completion
constraints, but only 20% under absolute jitter constraints, a2×
difference.

V. SUMMARY

We have shown through simulations and detailed examples that
DVS is a viable option for meeting absolute and inter-completion
jitter constraints. This method can be readily incorporated into
the SymTA/S framework to manage both jitter and energy for a
distributed real-time system. However, much work remains. First, the
effectiveness of this method on a larger range of systems should be
explored and compared with previous methods of jitter management.
Second, issues such as input jitter, variation in execution time, bursty

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

F
ra

ct
io

n
 S

ch
ed

u
la

b
le

Utilization

Jitter Aware DVS Rate Monotonic

(a) (b)

(c) (d)

2%
 Jitter

10%
 Jitter

5 Tasks 10 Tasks 15 Tasks 20 Tasks

Fig. 3. Percentage of randomly generated task sets schedulable with various
absolute jitter constraints using JADVS (a, c) and RM (b, d).

F
ra

ct
io

n
 S

ch
ed

u
la

b
le

Utilization

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7

Jitter Aware DVS Rate Monotonic

(a) (b)

(c) (d)

2%
 Jitter

10%
 Jitter

5 Tasks 10 Tasks 15 Tasks 20 Tasks

Fig. 4. Percentage of randomly generated task sets schedulable with various
inter-completion jitter constraints using JADVS (a, c) and RM (b, d).

behavior, sporadic tasks, and voltage transition overhead must be
considered for this method to be useful in practice.

REFERENCES

[1] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling
periodic task systems to minimize output jitter. InProceedings of
the International Conference on Real-Time Computing Systems and
Applications, pages 62–69, Dec. 1999.

[2] I. Bate and A. Burns. An approach to task attribute assignment for
uniprocessor systems. InIn The 11th Euromicro Conference on Real-
Time Systems (ECRTS99), pages 46–53, 1999.

[3] A. Cervin. Improved scheduling of control tasks. Inthe 11th Euromicro
Conference on Real-Time Systems (ECRTS99), pages 4–10, 1999.

[4] L. David, F. Cottet, , and N. Nissanke. Jitter control in on-line scheduling
of dependent real-time tasks. InProceedings of the 22nd Real-Time
Systems Symposium (RTSS), pages 49–58, Dec. 2001.

[5] T. Kim, H. Shin, and N. Chang. Deadline assignment to reduce output
jitter of real-time tasks. InProceedings of the 16th IFAC workshop on
Distributed Computer Control Systems, pages 67–72, Nov. 2000.

[6] W. Kim, J. Kim, and S. L. Min. Dynamic voltage scaling algorithm
for dynamic-priority hard real-time systems using slack time analysis.
In Proceedings of the 2002 Design, Automation and Test in Euroope
Conference and Exhibition (DATE), pages 788–794, Mar. 2002.

[7] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment.Journal of the ACM (JACM),
20(1):46–61, Jan. 1973.

[8] P. Marti, J. M. Fuertes, G. Fohler, and K. Ramamritham. Jitter
compensation for real-time control systems. InProceedings of the 22nd
Real-Time Systems Symposium (RTSS), pages 39–48, Dec. 2001.

[9] B. C. Mochocki. Dynamic voltage scaling for the schedulability
of jitter-constraind real-time embedded systems: Supplementary mate-
rial. Technical Report TR-2005-12, University of Notre Dame: online-
http://cse.nd.edu/research/techreports/, July 2005.

[10] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. InProceedings of the eighteenth
ACM symposium on Operating systems principles (SOSP), pages 89–
102, 2001.

[11] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for
heterogeneous multiprocessor soc. InProceedings of the 24nd Real-Time
Systems Symposium (RTSS), Dec. 2003.

[12] Symta/s - symbolic timing analysis for systems. online-
http://www.symta.org/.

[13] K. Tindell, A. Burns, and A. J. Wellings. An extendible approach
for analysing fixed priority hard real-time tasks.Real-Time Systems,
6(2):133–151, Nov. 1994.

