
Flexibility/Cost-Tradeoffs
of Platform-Based Systems�

Christian Haubelt1, Jürgen Teich1, Kai Richter2, and Rolf Ernst2

1 DATE, University of Paderborn, Paderborn, Germany
{haubelt,teich}@date.upb.de

http://www-date.upb.de
2 IDA, Technical University of Braunschweig, Braunschweig, Germany

{richter,ernst}@ida.ing.tu-bs.de
http://www.ida.ing.tu-bs.de

Abstract. This paper provides a quantitative characterization of an em-
bedded system’s capability to implement alternative behaviors. This new
objective in system-level design is termed flexibility and is most notable
in the field of adaptive and reconfigurable systems, where a system may
change its behavior during operation. Different behaviors are also taken
into consideration while implementing platform-based systems. Based on
a hierarchical graph model which permits formal modeling of flexibility
and implementation cost of a system, an efficient exploration algorithm
to find the optimal flexibility/cost-tradeoff-curve is proposed. The feasi-
bility of our approach is demonstrated by a case study concerning the
design of a family of Set-Top boxes.

1 Introduction

Multi-dimensional optimization of a system for a given, single application is chal-
lenging, but has been formalized already by methods of graph-based allocation
and binding (see [1]) which are used in commercial systems such as VCC by
Cadence [2].

In platform-based design, however, a system should be dimensioned such
that it is able to implement not only one particular application optimally, but a
complete set of different applications or variants of a certain application. Hence,
the task is to find a tradeoff between cost and flexibility of an architecture which
is able to implement several alternative behaviors.

In adaptive systems which have to react to environmental changes, the defini-
tion of flexibility is of utmost importance. Here, it is also necessary to implement
different behaviors. Unfortunately, this may cause additional cost. For this pur-
pose, reconfigurable architectures seem to be an adequate choice.

As far as we are concerned, there is no approach that quantitatively trade-
offs implementational cost in terms of additional memory, hardware, network,
etc. and the flexibility of a system which implements multiple behaviors. Here,
� This work was supported by the German Science Foundation (DFG), SPP 1040.

E.F. Deprettere et al. (Eds.): SAMOS 2001, LNCS 2268, pp. 38–56, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Flexibility/Cost-Tradeoffs of Platform-Based Systems 39

we introduce flexibility as a tentative to quantitatively describe the functional
richness that the system under design is able to implement (Section 3). In or-
der to describe a set of applications, a hierarchical specification is useful, e.g.,
see [3,4]. In this paper, we introduce a hierarchical graph model for describing
alternatives of the behavior of a system. The same idea may be used in order to
describe reconfigurable architectures on the implementation side, i.e., systems
that change their structure over time.

With this model, we are then able to define the problem of dimensioning a sys-
tem that is able to dynamically switch its behavior and/or structure at run-time.
Basically, this problem extends previous approaches such as [1] to reconfigurable,
platform-based systems that implement time-dependent functionality.

Finally, an efficient exploration algorithm for exploring the flexibility/cost-
tradeoff-curve of a system under design is presented that efficiently prunes solu-
tions that are not optimal with respect to both criteria (Section 4). The example
of a flexible video Set-Top box is used as the guiding example throughout the
paper.

2 Hierarchical Specification Model

Each embedded system is developed to cover a certain range of functionality.
This coverage depends on the different types of tasks as well as on the scope
every task is able to process. A specification of such an embedded system is
depicted in Fig. 1.

The specification shows interacting processes of a digital television decoder.
There are four top-level processes, PA to handle the authentification process,
PC to control channel selection, frequency adjustment, etc., ID which performs
decryption, and IU for uncompression. Here, the uncompression process requires
input data from the decryption process. Furthermore, the controller and authen-
tification process are well known and are most likely to be implemented equally
in each decoder.

The main difference between TV decoders consists of the implemented com-
binations of decryption and uncompression algorithms. As shown in Fig. 1, we
use hierarchical refinement to capture all alternative realizations. There are three
decryption and two uncompression processes used in this decoder. Obviously, if
we implement even more of these refinements, our decoder will support a greater
number of TV stations. Consequently, the decoder possesses an increased flexi-
bility.

Before defining the flexibility of a system formally, we have to introduce
a specification model that is able to express flexibility. As shown in Fig. 1,
our specification model is based on the concept of hierarchical graphs, where a
hierarchical graph possesses vertices that can be refined by subgraphs. If it is
possible to replace such hierarchical vertices by a set of alternative subgraphs, we
call these subgraphs clusters and the hierarchical vertices are termed interfaces.
Definitions 1 to 3 declare this basic structure of hierarchical graphs.

40 Christian Haubelt et al.

γ
D3

γ
U1

γ
U2

γ
D1

γ
D2

PA

D UI I

PD

PD

PU

PU

PD

PC

1

2

3

1

2

Fig. 1. Specification of a Digital TV Decoder

Definition 1 (cluster). A cluster γ(I,O, V,E, Ψ) contains a directed non-hi-
erarchical graph G = (VG, EG), where V and Ψ define a partitioning of the set
of vertices VG and EG is the set of edges E. Furthermore, we define:

I = {i1, i2, . . . , iNI} is the set of inputs,
O = {o1, o2, . . . , oNO} is the set of outputs,
V = {v1, v2, . . . , vNV} is the set of non-hierarchical vertices or leaves,
E ⊆ (I × {V ∪ IΨ}) ∪ (V × {V ∪ IΨ}) ∪ (OΨ × {V ∪ O}) ∪ (V × O) is the
set of edges, where IΨ and OΨ denote the unions of the inputs and outputs
of the interfaces (see Def. 2), respectively, and
Ψ = {ψ1, ψ2, . . . , ψNΨ} is the set of hierarchical vertices or interface as de-
fined by Definition 2.

While leaves can not be refined, interfaces are used as placeholders to embed
subgraphs. Since the in-degree and out-degree of an interface is not limited, we
need the notion of ports. Interfaces are connected with vertices or other interfaces
via ports. These ports are used to embed clusters into a given interface. In the
sequel, we use the term ports for the union of the in- and outputs (I ∪O).

An interface is defined as follows:

Definition 2 (interface). An interface ψ(I,O, Γ, Φ) is a 4-tuple (I,O, Γ, Φ),
where

I = {i1, i2, . . . , iNI} denotes the set of inputs,
O = {o1, o2, . . . , oNO} denotes the set of outputs,
Γ = {γ1, γ2, . . . , γNΓ} is the set of associated clusters, and
Φ : IΓ ∪ OΓ → I ∪ O is a function which maps the ports of all associated
clusters γ ∈ Γ onto the ports of this interface, where IΓ and OΓ denote
the unions of the inputs and outputs of the associated clusters (see Def. 1),
respectively. In the following, we term this function as port mapping.

Flexibility/Cost-Tradeoffs of Platform-Based Systems 41

With the Definition 1 and 2 we are able to define hierarchical graphs.

Definition 3 (hierarchical graph). A hierarchical graph is a cluster (defined
by Def. 1) where the set of in- and outputs are empty, i.e., I = O = ∅.
Figure 1 shows a digital TV decoder as a hierarchical graph with its top-
level graph depicted at the bottom. The top-level graph consists of two non-
hierarchical vertices, V = {PA,PC} and two interfaces (Ψ = {ID, IU}). The
decryption interface ID itself can be refined by three clusters γD1, γD2, and γD3,
where each cluster represents an alternative refinement of ID. The set of clusters
is given by Γ = {γD1, γD2, γD3, γU1, γU2}. For simplicity, we omit the ports of
the vertices, interfaces, and clusters.

All clusters associated with the interface ψ represent alternative refinements
of ψ. The process of cluster-selection associated with each interface ψ deter-
mines exactly one cluster to implement ψ at each instant of time. In order to
avoid a loss of generality, we do not restrict cluster-selection to system start-up.
Thus, reconfigurable and adaptive systems may be modeled via time-dependent
switching of clusters.

The set of leaves of a hierarchical graph G is defined by the recursive equa-
tion1:

Vl(G) = G.V ∪
⋃

ψ∈G.Ψ

⋃
γ∈ψ.Γ

Vl(γ) (1)

As defined by Equation (1), the set of leaves Vl(G) of graph G shown in Figure 1
computes to Vl(G) = {PA,PC}∪{γD1.P1

D, γD2.P2
D, γD3.P3

D}∪{γU1.P1
U, γU2.P2

U}.
So far, we only considered the behavioral part of the specification. For imple-

mentation, we also require information about the possible structure of our sys-
tem, i.e., the underlying architecture. This leads to a graphical model for embed-
ded system specification, the so called specification graph GS = (GP, GA, EM).
It mainly consists of three components: a problem graph, an architecture graph,
and user-defined mapping edges (see also [1]). The respective graphs GP and GA
are based on the concept of hierarchical graphs as defined in Def. 3.

Problem Graph. The problem graph GP is a directed hierarchical graph GP =
(VP, EP, ΨP, ΓP) for modeling the required system’s behavior (see Fig. 1). Ver-
tices v ∈ VP and interfaces ψ ∈ ΨP represent processes or communication op-
erations at system-level. The edges e ∈ EP model dependence relations, i.e.,
define a partial ordering among the operations. The clusters γ ∈ ΓP are possible
substitutions for the interfaces ψ ∈ ΨP.

Architecture Graph. The class of possible architectures is modeled by a
directed hierarchical graph GA = (VA, EA, ΨA, ΓA), called architecture graph.
Functional or communication resources are represented by vertices v ∈ VA and
interfaces ψ ∈ ΨA, interconnections are specified by the edges e ∈ EA. Again, the
clusters γ ∈ ΓA represent potential implementations of the associated interfaces.
All the resources are viewed as potentially allocatable components.
1 The G.V notation is used as decomposition operation, e.g., to access the set of

vertices V inside the graph G.

42 Christian Haubelt et al.

Mapping Edges. Mapping edges e ∈ EM indicate user-defined constraints in
the form of a “can be implemented by”-relation. These edges link leaves Vl(GP)
of the problem graph GP with leaves Vl(GA) of the architecture graph GA.

Additional parameters, like priorities, power consumption, latencies, etc.,
which are used for formulating implementational and functional constraints, are
annotated to the components of GS. For simplicity, a specification graph can
also be represented only by its vertices and edges: GS = (VS, ES). The set of
vertices VS covers all non-hierarchical vertices, interfaces, and clusters contained
in the problem or architecture graph. The set of edges ES consists of all edges
and port mappings in the specification graph.

An example of a specification graph is shown in Figure 2. Again, the problem
graph specifies the behavior of our digital TV decoder. The architecture graph
is depicted on the right. It is composed of a µ-Controller (µP), an ASIC (A),
and an FPGA. There are two busses C1 and C2 to handle the communication
between the µ-Controller and FPGA and ASIC, respectively. Figure 2 also shows
the allocation cost for each resource in the architecture graph.

2C

1C

γ
U2

γ
U1

γ
D3

γ
D2

γ
D1

µP

FGPA

Architecture Graph

A

PA

D UI I

PD

PD

PU

PU

PD

PC

1

2

3

1

2

Problem Graph

25 ns

55 ns

10 ns

35 ns

85 ns

40 ns

15 ns

29 ns

59 ns

63 ns

$120

$10 $250

$10

D3

U2

$60

$60

Fig. 2. Hierarchical Specification Graph

The mapping edges (dotted edges in Fig. 2) outline the possible bindings
of processes of the problem graph to resources of the architecture graph. The
latencies to execute a given process on a specific resource are annotated to the
respective mapping edges. For example, the uncompression process P1

U is exe-
cutable on resource µP with a latency of 40 ns or on resource A with a latency
of 15 ns.

As shown in Figure 2, the hierarchical specification graph permits modeling of
adaptive systems by interchanging clusters in the problem graph. In our example,

Flexibility/Cost-Tradeoffs of Platform-Based Systems 43

we have to select a certain decryption and uncompression process to match the
requirements imposed by the TV station. Generally, an adaptive system responds
to environmental changes by selecting clusters according to the requirements of
input/output data at runtime. Therefore, clusters with various parameters or
perhaps totally different functionality are activated in the problem graph. On
the other hand, interchanging clusters in the architecture graph modifies the
structure of the system. If this cluster-selection is performed at runtime, the
architecture model characterizes reconfigurable hardware. For example, in order
to execute process P3

D, we have to configure the FPGA with the respective design
D3 (see Figure 2).

In order to specify an implementation, i.e., a concrete mapping, Blickle et al.
[1] introduce the concept of activation of vertices and edges. The activation of
a specification graph’s vertex or edge describes its use in the implementation.
Since we use hierarchical graphs, we have to define hierarchical timed activation
or, for short, hierarchical activation:

Definition 4 (hierarchical activation). The hierarchical activation of a spec-
ification graph GS = (VS, ES) is a function a : {VS∪ES}×T → {0, 1} that assigns
to each edge e ∈ ES and to each vertex v ∈ VS the value 1 (activated) or 0 (not
activated) at time t ∈ T (= R).

Hierarchical activation should support synthesis in such a way that no infeasi-
ble implementations are caused by the following rules. Here we summarize the
hierarchical activation rules:

1. The activation of an interface at time t implies the activation of exactly one
associated cluster at the same time:

a(ψ, t) =
{

1 if t ∈ T 1

0 if t ∈ T 0 ⇔
∑
γ∈ψ.Γ

a(γ, t) =
{

1 if t ∈ T 1

0 if t ∈ T 0 (2)

2. The activation of a cluster γ at time t activates all embedded vertices and
edges in γ:

a(γ, t) =
{

1 if t ∈ T 1

0 if t ∈ T 0 ⇔ ∀x ∈ {γ.V ∪ γ.Ψ} : a(x, t) =
{

1 if t ∈ T 1

0 if t ∈ T 0 (3)

3. Each activated edge e ∈ ES has to start and to end at an activated vertex.
This must hold for all times t ∈ T :

a(e, t) =
{{0, 1} if a(vi, t) = a(vj , t) = 1

0 else (4)

4. Due to (perhaps implied) timing constraints, the activation of all top-level
vertices and interfaces in the problem graph GP is required, i.e., ∀t ∈ T :
a(GP, t) = 1.

For a given selection of clusters, the hierarchical model can be flattened.
With the formalism of hierarchical activation rules, we are able to determine

44 Christian Haubelt et al.

the overall activation of the specification graph. The result is a non-hierarchical
specification.

With the definition of hierarchical activation, we formally define the term
implementation, where a feasible implementation consists of a feasible allocation
and a corresponding feasible binding.

Definition 5 (timed allocation). A timed allocation α(t) of a specification
graph GS is the subset of all activated vertices and edges of the problem and
architecture graph at time t, i.e.,

α(t) = αV(t) ∪ αE(t)
αV(t) = {v ∈ {Vl(GP) ∪ Vl(GA)} | a(v, t) = 1}
αE(t) = {e ∈ ES\EM | a(e, t) = 1} .

αV(t) denotes the set of activated leaves in the specification graph at time t.
αE(t) is the set of activated edges in the problem and architecture graph at time
t.

Definition 6 (timed binding). A timed binding β(t) is the subset of all ac-
tivated mapping edges at time t, i.e.,

β(t) = {e ∈ EM | a(e, t) = 1} .
In order to restrict the combinatorial search space, it is useful to determine the
set of feasible timed allocations and feasible timed bindings.

Definition 7 (feasible timed binding). Given a specification graph GS and
a timed allocation α(t), a feasible timed binding is a timed binding β(t) that
satisfies the following requirements:

1. Each activated edge e ∈ β(t) starts and ends at a vertex, activated at time t,
i.e.,

∀e = (v, ṽ) ∈ β(t) : v, ṽ ∈ α(t)

2. For each activated leaf v ∈ {Vl(GP)∩α(t)} of the problem graph GP, exactly
one outgoing edge E ∈ EM is activated at time t, i.e.,

|{e ∈ β(t) | e = (v, ṽ), v ∈ {Vl(GP) ∩
α(t)} ∧ ṽ ∈ Vl(GA)}| = 1

3. For each activated edge e = (vi, vj) ∈ EP ∩ αE(t):
– either both operations are mapped onto the same vertex, i.e.,

ṽi = ṽj with (vi, ṽi), (vj , ṽj) ∈ β(t),

– or there exists an activated edge ẽ = (ṽi, ṽj) ∈ {EA ∩ αE(t)} to handle
the communication associated with edge e, i.e.,

(ṽi, ṽj) ∈ {EA ∩ αE(t)}
with (vi, ṽi), (vj , ṽj) ∈ β(t).

Flexibility/Cost-Tradeoffs of Platform-Based Systems 45

Definition 8 (feasible timed allocation). A feasible timed allocation is a
timed allocation α(t) that allows at least one feasible timed binding β(t) for all
times t.

In Figure 2, an infeasible binding would be caused by binding decryption process
P2

D onto the ASIC A and the uncompression process P1
U onto the FPGA. Since

no bus connects the ASIC and the FPGA, there is no way to establish the
communication between these processes.

Note that our hierarchical model extends the specification model proposed
in [1] by two important features:

1. modeling of alternative refinements in the problem graph (behavior) as well
as in the architecture graph (structure)

2. time-variant allocations and bindings.

These major extensions are necessary to model flexibility (reconfigurability) of
the behavior (architecture).

With the hierarchical refinements, one has to know exactly what happens
if a cluster’s execution is interrupted by its own displacement. The request for
interchanging clusters while in execution can cause two possible reactions (see
also [4]):

1. safe termination ensures that a subsystem terminates in a known state with-
out information about the time needed for this.

2. explicit kill immediately starts the interchanging process by ignoring the
state of computation of a subsystem.

In both cases, the system may become unpredictable. In the following, we neglect
the impact of reconfiguration times, context switches, etc.

So far, we have not accounted for system performance. Whether or not the
implementation meets the application’s performance requirements in terms of
throughput (e. g. frames per second) and latencies, depends on the existence of a
feasible schedule. Although it is possible to schedule any feasible implementation
as defined above, the resulting schedule may fail performance requirements. Such
scheduling or performance analysis is complex, especially for distributed systems,
and is not the scope of this paper. Thus, we do not include a complete analysis in
the exploration in Section 4. Rather, we quickly estimate the processor utilization
and use the 69% limit as defined in [5] to accept or reject implementations due
to performance reasons.

3 Definition of Flexibility

With the hierarchical specification model described above, we are able to quan-
tify the amount of implemented functionality. Subsequently, we denote this ob-
jective flexibility.

For example, consider the problem graph GP shown in Figure 3. This graph
is an extension of the TV decoder example in Figure 1. Here, our goal is to
design a Set-Top box family which supports multiple applications. Besides the
already known digital TV decoder, there are two more possible applications:

46 Christian Haubelt et al.

γ
U2

γ
U1

γ
D3

γ
D2

γ
D1

γ
G3

γ
G2

γ
G1

PA

D UI I

Digital TV

PD

PD

PU

PU

Games Console

PC PDGI

PG

PG

PG

InternetP

P PP

C

Set−Top Box

I

F

PD

G

I

DPC

1

2

1

2

3

1

2

3

γ
D

γ

γ
I

G

Fig. 3. Example for System’s Flexibility

1. An Internet browser, consisting of a controller process PI
C, parser process

PP for parsing HTML pages and a formatter process PF for formatting the
output.

2. A game console, modeled by a controller process PG
C , the game’s core inter-

face IG, and the graphics accelerator PD. The game’s core interface can be
refined by three different game classes denoted P1

G, P2
G, and P3

G in Fig. 3.
Since the output is constrained to a minimal frame period and the graphic
accelerator depends on data produced by the game core process, also the
game’s core process has to obey some timing constraints.

It should be clear that implementing only one of the three possible appli-
cations results in an inflexible system. Furthermore, implementing a digital TV
decoder with a great number of decryption algorithms (supported TV stations)
is desirable.

So, the basic idea, as stated here, is to enumerate the possible interchanges
of implementing clusters in the whole system’s problem graph. For example, the
flexibility of a trivial system with just one activated interface directly increases
with the number of activatable clusters.

The key concepts of flexibility are as follows:

– Since each cluster represents an alternative for the same functionality, we
know that implementing more clusters for a given interface increases system
flexibility in the sense that the system may switch at runtime to select a
different cluster.

Flexibility/Cost-Tradeoffs of Platform-Based Systems 47

– A cluster itself can contain interfaces, which can be implemented with dif-
ferent degrees of flexibility.

– Although flexibility depends on the implementation, we neglect the impact of
the underlying architecture on flexibility, e.g., we do not distinguish whether
the flexibility of a system is obtained by the use of either reconfigurable or
dedicated hardware components.

With these assumptions, flexibility can be defined as follows:

Definition 9 (flexibility). The flexibility fimpl of a given cluster γ is expressed
as:

fimpl(γ) = a+(γ) ·

[∑
ψ∈γ.Ψ

∑
γ̂∈ψ.Γ fimpl(γ̂)

]
−(|γ.Ψ | − 1) for γ.Ψ
= ∅
1 otherwise

where the term a+(γ) describes the activation of the cluster γ in the future. If
cluster γ will be selected at any time in the future then a+(γ) = 1. Otherwise
a+(γ) = 0, meaning it will not be implemented at all.

In other words: The flexibility of a cluster γ, if ever activated, is calculated
by the sum of all its interfaces’ flexibilities minus the number of its interfaces
less 1, and 1 if there is no interface in the given cluster. The flexibility of an
interface is the sum of flexibilities of all its associated clusters. If a cluster will
never be activated, its flexibility is 0.

The flexibility f(GP) of this problem graph shown in Figure 3 is computed as
follows:

f(GP) = a+(GP) · [f(γI) + f(γG) + f(γD)]
= a+(GP) · [a+(γI) + a+(γG) · [a+(γG1) +
a+(γG2) + a+(γG3)] + a+(γD) ·
[a+(γD1) + a+(γD2) + a+(γD3) +
a+(γU1) + a+(γU2) − 1]]

Based on this equation, the system’s flexibility is obtained by specifying the
utilization of each cluster γ in the future, denoted by a+(γ). If all clusters can be
activated in future implementations, system’s flexibility calculates to f(GP) = 8.
This is also the maximal flexibility fmax. If, e.g., cluster γG is not used in future
implementations the flexibility will decrease to f(GP) = 5.

For the sake of simplicity, we have omitted the architecture graph and the
mapping edges. Obviously, a cluster only contributes to the total flexibility if
it is bindable as per Def. 7. A more sophisticated definition of flexibility can
established by using weighted sums in Definition 9. The weight associated with
each cluster shows the cluster’s inherent functionality.

4 Design Space Exploration

Because of the accepted use of tools on lower design levels of abstraction, ex-
ploration becomes the next step in order to prevent under- or over-designing

48 Christian Haubelt et al.

a system. Typically, a system has to meet many constraints and should opti-
mize many different design objectives and constraints simultaneously such as
execution time, cost, area, power consumption, weight, etc.

A single solution that optimizes all objectives simultaneously is very unlikely
to exist. Instead, it should be possible to first explore different optimal solutions
or approximations, and subsequently select and refine one of those solutions.

f impl

1

c impl

Pareto−optimal
solution direction of exploration

Fig. 4. Flexibility/Cost-Design Space

4.1 The Flexibility/Cost-Design-Space and the Optimization Goal

In this paper, we consider the two objectives flexibility fimpl(α(t)), as described
in Section 3, and cost cimpl(α(t)). Here we use the so-called allocation cost model
cimpl(α(t)), where cimpl(α(t)) is the sum of all realization cost of resources in the
allocation α(t).

Figure 4 shows a typical tradeoff-curve between cost and the reciprocal value
of flexibility. As already mentioned we are concerned with a MOP (Multiob-
jective Optimization Problem). Our MOP consists of two objective functions
cimpl(α(t)) and 1

fimpl(α(t)) , where the parameter α(t) is the decision vector. The
optimization goal is to minimize cimpl(α(t)) and 1

fimpl(α(t)) simultaneously, i.e.,
to maximize system’s flexibility for minimal cost implementations.

Definition 10 (feasible set). Let allocation α(t) denote our decision vector.
The feasible set Xf is defined as the set of allocations α(t) that satisfy the
definition for feasible allocation (Def. 8) for all times t ∈ T .

Definition 11 (Pareto-optimality). For any two decision vectors a(t),b(t) ∈
Xf , a(t) dominates b(t) iff

(
cimpl(a(t)) < cimpl(b(t)) ∧ 1

fimpl(a(t)) ≤ 1
fimpl(b(t))

)
∨

Flexibility/Cost-Tradeoffs of Platform-Based Systems 49

(
cimpl(a(t)) ≤ cimpl(b(t)) ∧ 1

fimpl(a(t)) <
1

fimpl(b(t))

)
. A decision vector x(t) ∈ Xf

is said to be non-dominated with respect to a set A ⊆ Xf iff �a(t) ∈ A : a(t)
dominates x(t). Moreover, x(t) is said to be Pareto-optimal iff x(t) is non-
dominated regarding X (see also [6]).

Figure 4 shows two Pareto-optimal design points. The goal of design space ex-
ploration is to find all Pareto-optimal design points that also fulfill all timing
requirements. The points in Figure 4 represent possible solutions, where not
every solution has to be feasible in the sense of Def. 7, and not every feasible
solution has to meet the timing requirements. If we have found a Pareto-optimal
solution x that meets all requirements, the class of all design points dominated
by x can be pruned. This is shown in Figure 4 by boxes. In the following, we will
introduce an algorithm for efficiently exploring flexibility/cost-tradeoff-curves.

4.2 The Exploration Algorithm

Figure 4 shows the general distribution of design points. At this stage, we do
not distinguish between feasible and non-feasible solutions. Our objective is to
find all Pareto-optimal solutions that meet all timing constraints. At a glance, a
good strategy for design space exploration is to investigate each design point at
the front, where we use the order of increasing implementation cost (direction
of exploration). If a point represents an infeasible implementation or it misses
some performance requirements, we discard it and pick up the next one on the
front.

The problem of this idea is, that the set of possible implementations is un-
known. A possible modification of this strategy would be to determine all points
in advance, i.e., to determine all possible 2|VS| activations. Since binding is a
NP-complete problem (see [1]), this exhaustive search approach seems not to be
a viable solution.

To avoid superfluous computation of non-Pareto-optimal solutions, we pro-
pose two methods for search space reduction:

1. Possible Resource Allocations. A possible resource allocation is a partial
allocation of resources in the architecture graph which allows the implemen-
tation of at least one feasible problem graph activation by neglecting the
feasibility of binding first. Usually, we have to investigate all 2|VS| design
points. But only the elements covering a possible resource allocation repre-
sent meaningful activations in the sense that at least a required minimum of
problem graph vertices is bindable.

2. Flexibility Estimation. With the possible resource allocations we are able
to sort the remaining design points by increasing cost. If we inspect the
elements of this sorted list by increasing cost, a new calculated solution is
Pareto-optimal, iff it possesses a greater flexibility than each solution that
has been already implemented, as defined in Def. 11.

As shown in our case study (see Section 5), by using these two techniques, we
dramatically reduce the invocations of the solver for the NP-complete binding
problem.

50 Christian Haubelt et al.

With our approach of hierarchical specification and activations, we are able to
first determine the set of possible resource allocations: For each vertex vi inside
a given cluster γj , we determine the set Rij of reachable resources. A resource
r is reachable if a mapping edge between vi and r exists. Derived from the
hierarchical activation rules, only leaves v ∈ GA.V of the top-level architecture
graph or whole clusters of the architecture graph are considered. Next, we set
up the outer conjunction Rj of all power sets 2Rij . Consequently, the set Rj
describes all combinations of resource activations for implementing the non-
hierarchical vertices v ∈ γj .V of cluster γj by ignoring the feasibility of binding.

Finally, we have to inspect all hierarchical components γj .Ψ of cluster γj .
Since all clusters associated with an interface ψ ∈ γj .Ψ represent alternative
refinements of ψ, we compute the union of possible resource allocations for the
associated clusters.

The elements of the resulting set are the possible resource allocations, which
we sort by increasing implementation cost. The algorithm PRA to determine this
set of Possible Resource Allocations A(γ) for a given cluster γ is listed below:

PRA
IN: specification graph GS
IN: current cluster γcur
OUT: set of possible resource allocations A
BEGIN

A = ∅
FOR each vertex v ∈ γcur.V DO

Av = {va | (vi, va) ∈ EM ∧ va ∈ VA}
Aγ = {γa | (v, va) ∈ EM ∧ va ∈ γa.V }
A = A × 2Av∪Aγ \ε

ENDFOR
FOR each interface ψ ∈ γcur.Ψ DO

X = ∅
FOR each cluster γ ∈ ψ.Γ DO

X = X∪ PRA(γ)
ENDFOR
A = A × {

2X \ε}
ENDFOR

END

Here, ε denotes the element representing the empty set {∅}. For example,
the set A of possible resource allocations for the specification given in Figure 2
computes to:

A = {µP, µPC1, µPC2, µPC1C2, µPD3, µPU2,
µPC1D3, µPC2D3, µPC1U2, µPC2U2,
µPC1C2D3, . . . , µPC1C2D1U2A}

The elements of the ordered set of possible resource allocations are inspected
in ascending order of their allocation cost cimpl (see Fig. 4). For each possible

Flexibility/Cost-Tradeoffs of Platform-Based Systems 51

resource allocation, we remove all resources that are not activated from the
architecture graph GA. By removing these elements, also mapping edges are
removed from the specification graph. Next, we delete all vertices in the problem
graph with no incident mapping edge. This results in a reduced specification
graph.

In order to avoid superfluous computation of non-Pareto-optimal solutions,
we use a lower bound to restrict our search space: With Definition 9, the max-
imal flexibility fmax of the reduced specification graph can be calculated. Since
we explore flexibility/cost-objective-space by increasing cost (see Figure 4), we
are only interested in design points with a greater flexibility than already imple-
mented. So we use the already maximal implemented flexibility as lower bound
for pruning the search space. With the known maximal implemented flexibility,
we therefore may skip specifications with a lower implementable flexibility. Only
for specifications with greater expected flexibility, we try to construct a feasible
implementation next.

Generally, more than one activatable cluster for a problem graph’s interface
remains in the specification graph. Consequently, we have to identify so-called
elementary cluster-activations, which are defined as follows. Let Γact denote the
set of activatable clusters which is computed by traversing the problem graph
and checking the existing of at least one mapping edge per leaf. Only if all leaves
are incident to at least one mapping edge, the cluster is meant to be activatable.
An elementary cluster-activation ecs is a set ecs = {γi | γi ∈ Γact}, where exactly
one cluster is selected per activated interface. Since every activatable cluster has
to be part of the implementation to obtain the expected flexibility, we have to
determine a coverage [7] of Γact by elementary cluster-activations.

Given an elementary cluster-activation, we can select these clusters for imple-
mentation. Furthermore, we must determine valid cluster activations in the ar-
chitecture graph, e.g., it is possible that two problem graph clusters are mapped
on different configurations of the same FPGA. So, we have to guarantee that
each elementary cluster-activation can be bound to a non-ambiguous architec-
ture, i.e., there is exactly one activated cluster for every activated interface in
the architecture graph, e.g., one activated configuration for an FPGA.

Finally, we validate all timing constraints that are imposed on our implemen-
tation. Here, we use a statistical analysis method to check for fulfillment. Only
if a new calculated implementation

1. is feasible as defined in Def. 7,
2. possesses a greater flexibility as already implemented, and
3. obeys all performance constraints,

it is Pareto-optimal.
With these basic ideas of pruning the search space, we formulate our explo-

ration algorithm based on a branch-and-bound strategy [7,8]. For the sake of
clarity, we omit details for calculating a coverage of activatable problem graph
clusters or successive flexibility estimation, etc. The following code should be
self-explanatory with the previous comments.

52 Christian Haubelt et al.

EXPLORE
IN: specification graph GS
OUT: Pareto-optimal set O
BEGIN
fcur = 0
A = GS.possibleResourceAllocations()
fmax = GS.computeMaximumFlexibility()
FOR each candidate a ∈ A DO
f = a.computeMaximumFlexibility()
WHILE fcur < fmax THEN
α = GS.computeAllocation(a)
β = GS.computeBinding(α)
i = new Implementation(α, β)
IF i.isFeasibleImplementation() THEN

IF i.meetsAllConstraints() THEN
IF i.flexibility() > fcur THEN

O = O ∪ i
fcur = i.flexibility()

ENDIF
ENDIF

ENDIF
ENDWHILE

ENDFOR
END

In the worst case, this algorithm is not better than an exhaustive search
algorithm. But, a typical search space with 105-1012 design points can be reduced
by the EXPLORE-algorithm to a few 103-104 possible resource allocations. Since
we only try to implement design points with a greater expected flexibility than
the already implemented flexibility, again, only a small fraction of these point
has to be taken into account, typically less than 100.

5 Case Study

In our case study we investigate the specification of our Set-Top box depicted in
Figure 5. Again, we increased the complexity of our example. The architecture
graph is now composed of two processors (µP1 and µP2), three ASICs (A1 to A3),
and an FPGA. The ASICs are used to improve performance for the decryption,
uncompression, game’s core, and graphic acceleration processes. The FPGA can
also be used as coprocessor for the third decryption, the second uncompression,
or the first game core class. The allocation cost of each component are annotated
in Fig. 5.

In Figure 5, we have omitted the mapping edges. Possible mappings and
respective core execution times are given in Table 1. Furthermore, we assume
that all communications can be performed on every resource. No latencies for

Flexibility/Cost-Tradeoffs of Platform-Based Systems 53

γ
G1

γ
G2

γ
G3

γ
D1

γ
D3

γ
D2

γ
U1

γ
U2

PA

D UI I

Digital TV

PD

PD

PU

PU

Games Console

PC PDGI

PG

PG

PG

InternetP

P PP

C

Set−Top Box

I

F

PD

5

6

7

4

3

2

FGPA

µP1

µP2

Problem Graph

Architecture Graph

G

I

DPC

1

2

3

1

2

3

1

2

A 1

A

A 3

2

8

1

8

D3

U2

G1

C

C

C

C

C

C

C

C

Cto1C

γ

γ

γ
I

G

D

$100

$120

$10

$350

$280

$250

$60

$60

$60

Fig. 5. Specification of a Set-Top Box

external communications are taken into account. Timing constraints for the game
console and digital TV are given by the minimal periods of the output processes
(PD, P1

U, and P2
U). PD has to be executed every 240 ns. The output for the

digital TV box is less restrictive: P1
U and P2

U should be executed at least every
300 ns if activated.

As described above, our algorithm starts with the determination of the set of
all possible resource allocations. Here, elements that are obviously not Pareto-
optimal or no feasible implementations are left out, e. g., all combinations of
a single functional component and an arbitrary number of communication re-
sources. The beginning of the ordered subset A of possible resource allocations
is given by:

A = {µP2, µP1, µP2D3C1, µP2U2C1, µP2G1C1,
µP1D3C5, µP1U2C5, µP1G1C5, µP2D3U2C1,
µP2D3G1C1, µP2U2G1C1, µP1D3U2C5,
µP1D3G1C5, µP1U2G1C5, µP1µP2, . . .}

Next, we determine all elementary cluster activations that can be activated under
the given resource allocation. For the first resource allocation (µP2), we find the
elementary cluster activations γI, γG1, and γD1γU1. The estimated flexibility
as defined by Def. 9 calculates to fimpl = 3. Since our already implemented
flexibility is 0 (there is no feasible implementation yet), we try to find feasible
implementations for the given elementary cluster activations. With Figure 5 and
Table 1, we are able to find a feasible allocation and binding for all elementary
cluster activations.

54 Christian Haubelt et al.

Table 1. Possible Mappings in Figure 5

Process µP1 µP2 A1 A2 A3 D3 U2 G1
PI

C 10ns 12ns - - - - - -
PP 15ns 19ns - - - - - -
PF 50ns 75ns - - - - - -
PG

C 25ns 27ns - - - - - -
P1

G 75ns 95ns 15ns 15ns 15ns - - 20ns
P2

G - - 25ns 22ns 22ns - - -
P3

G - - 50ns 45ns 35ns - - -
PD 70ns 90ns 30ns 30ns 25ns - - -
PD

C 10ns 10ns - - - - - -
PA 55ns 60ns - - - - - -
P1

D 85ns 95ns 25ns 22ns 22ns - - -
P2

D - - 35ns 33ns 32ns - - -
P3

D - - - - - 63ns - -
P1

U 40ns 45ns 15ns 12ns 10ns - - -
P2

U - - 29ns 27ns 22ns - 59ns -

Next, we have to check all timing constraints. Therefore, we define a maxi-
mal processor utilization of 69%. If the estimated utilization exceeds this upper
bound, we reject the implementation as infeasible. Since the Internet browser
need not meet any timing constraints, this particular implementation is indeed
feasible.

For the validation of the digital TV application, we need some more informa-
tion. As we know the timing constraint imposed on the uncompression and the
decryption process, we only need information about how often the authentifica-
tion and controller processes are executed. The execution of the authentification
is scheduled once at system start up. Statistically, the controller process makes
up about 0.01% of all process calls in the digital TV application. So, we neglect
the authentification and controller process in our estimation. For fulfillment of
the performance constraint, the sum of the core execution times of process P1

D
and P1

U (95ns+ 45ns) must be less than 0.69 · 300ns. Evidently, this constraint
is met.

Unfortunately, we have to reject the implementation of the application of the
game console violating the upper utilization bound (95ns+90ns � 0.69 ·240ns).
So our implemented flexibility calculates to fimpl = 2 which is still greater than
the already implemented flexibility.

Now, we continue with the next possible resource allocation, i.e., µP1. Due
to space limitations, we only present the results. The set of Pareto-optimal so-
lutions for this example is shown in Table 2. At the beginning, our search space
consisted of 225 design points. By calculating the set of possible resource alloca-
tions, this design space was reduced to 214 design points. That is, by traversing
our specification graph and setting up one boolean equation we are able to re-
ject about 99.9% of our design points as non-Pareto-optimal. After investigating
approx. 7000 design points, we have found all 6 Pareto-optimal solutions. For

Flexibility/Cost-Tradeoffs of Platform-Based Systems 55

Table 2. Pareto-Optimal Solutions

Resources Clusters c f

µP2 γI, γD1, γU1 $100 2
µP1 γI, γG1, γD1, γU1 $120 3
µP2, G1, U2, C1 γI, γG1, γD1, γU1, γU2 $230 4
µP2, D3, G1, U2, γI, γG1, γD1, γD3,
C1 γU1, γU2 $290 5
µP2, A1, C2 γI, γG1, γG2, γG3,

γD1, γD2, γU1, γU2 $360 7
µP2, A1, D3, C1, γI, γG1, γG2, γG3,
C2 γD1, γD2, γD3, γU1, γU2 $430 8

these design points, we estimated the implementable flexibility by solving a sin-
gle boolean equation. In only approx. 1050 cases (0.0032% of the original search
space) the estimated flexibility was greater than the already implemented flexi-
bility. Only for these points, we needed to try to construct an implementation.
Hence, our exploration algorithm typically prunes the search space so much that
industrial size applications can be efficiently explored within minutes.

Conclusions and Future Work

Based on the concept of hierarchical graphs, we have introduced a formal defi-
nition of system flexibility. Furthermore, an algorithm for exploring the flexibil-
ity/cost design space was presented. Due to the underlying branch-and-bound
strategy, we are able to prune about 99.9% of a typical search space, while still
finding all Pareto-optimal implementations. Hence, industrial size applications
can be explored efficiently.

In the future, we would like to extend the proposed approach by an ex-
act scheduling method to check performance constraints. In [9], first results in
scheduling hierarchical dataflow graphs are presented.

References

1. Blickle, T., Teich, J., Thiele, L.: System-Level Synthesis Using Evolutionary Algo-
rithms. In Gupta, R., ed.: Design Automation for Embedded Systems. Number 3.
Kluwer Academic Publishers, Boston (1998) 23–62

2. Cadence: Virtual Component Co-design (VCC). (2001) http://www.cadence.com.
3. Chatha, K.S., Vemuri, R.: MAGELLAN: Multiway Hardware-Software Partition-

ing and Scheduling for Latency Minimization of Hierarchical Control-Dataflow
Task Graphs. In: Proc. CODES’01, Ninth International Symposium on Hard-
ware/Software Codesign, Copenhagen, Denmark (2001)

4. Richter, K., Ziegenbein, D., Ernst, R., Thiele, L., Teich, J.: Representation of Func-
tion Variants for Embedded System Optimization and Synthesis. In: Proc. 36th
Design Automation Conference (DAC’99), New Orleans, U.S.A. (1999)

56 Christian Haubelt et al.

5. Liu, C.L., Layland, J.W.: Scheduling Algorithm for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM 20 (1973) 46–61

6. Pareto, V.: Cours d’Économie Politique. Volume 1. F. Rouge & Cie., Lausanne,
Switzerland (1896)

7. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. 2 edn.
Kluwer Academic Publishers, Norwell, Massachusetts 02061 USA (1998)

8. Micheli, G.D.: Synthesis and Opimization of Digital Circuits. McGraw-Hill, Inc.,
New York (1994)

9. Bhattacharya, B., Bhattacharyya, S.: Quasi-static Scheduling of Reconfigurable
Dataflow Graphs for DSP Systems. In: Proc. of the International Conference on
Rapid System Prototyping, Paris, France (2000) 84–89

	Flexibility/Cost-Tradeoffs of Platform-Based Systems
	1 Introduction
	2 Hierarchical Specification Model
	3 Definition of Flexibility
	4 Design Space Exploration
	4.1 The Flexibility/Cost-Design-Space and the Optimization Goal
	4.2 The Exploration Algorithm

	5 Case Study
	Conclusions and Future Work
	References

