
524 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

FunState—An Internal Design Representation for
Codesign

Karsten Strehl, Member, IEEE, Lothar Thiele, Member, IEEE, Matthias Gries, Student Member, IEEE,
Dirk Ziegenbein, Member, IEEE, Rolf Ernst, Member, IEEE, and Jürgen Teich, Member, IEEE

Abstract—In this paper, an internal design model calledFun-
State(functions driven by state machines) is presented that enables
the representation of different types of system components and
scheduling mechanisms using a mixture of functional program-
ming and state machines.

It is shown how properties relevant for scheduling and verifica-
tion of specification models such as Boolean dataflow, cyclostatic
dataflow, synchronous dataflow, marked graphs, and communi-
cating state machines as well as Petri nets can be represented in the
FunStatemodel of computation. Examples of methods suited for
FunStateare described, such as scheduling and verification. They
are based on the representation of the model’s state transitions in
the form of a periodic graph. The feasibility of the novel approach
is shown with an asynchronous transfer mode switch example.

Index Terms—Formal verification, high-level synthesis, internal
specification model, model of computation, symbolic scheduling.

I. INTRODUCTION

ONE OF the major sources of complexity in the design of
embedded systems is related to their heterogeneity. On

the one hand, the specification of the functional and timing
behavior necessitates a mixture of different basic models of
computation and communication, which come from transfor-
mative or reactive domains. On the other hand, we are faced
with an increasing heterogeneity in the implementation. This
not only concerns the functional units that may be implemented
in the form of dedicated or programmable hardware, microcon-
trollers, domain-specific, or even general-purpose processors.
In addition, these units communicate with each other via dif-
ferent media—e.g., buses, memories, and networks—and by
using many different synchronization mechanisms.

This heterogeneity caused a broad range of scheduling poli-
cies in hardware and software implementations. Two extreme
possibilities are static schedules such as those developed for
synchronous dataflow(SDF) models [1] andearliest deadline
first (EDF) schedules developed for dynamically changing task

Manuscript received February 11, 2000; revised December 4, 2000.
K. Strehl is with Research and Development, ETAS GmbH, Stuttgart 70469,

Germany (e-mail: strehl@computer.org).
L. Thiele and M. Gries are with the Computer Engineering and Networks Lab

(TIK), Swiss Federal Institute of Technology (ETH), Zurich 8092, Switzerland
(e-mail: thiele@tik.ee.ethz.ch; gries@tik.ee.ethz.ch).

D. Ziegenbein and R. Ernst are with the Institute of Computer and Commu-
nication Network Engineering (IDA), Technical University of Braunschweig,
Braunschweig 38106, Germany (e-mail: ziegenbein@ida.ing.tu-bs.de;
ernst@ida.ing.tu-bs.de).

J. Teich is with the Computer Engineering Lab (DATE), University of Pader-
born, Paderborn 33098, Germany (e-mail: teich@date.uni-paderborn.de).

Publisher Item Identifier S 1063-8210(01)03354-6.

structures. Many intermediate possibilities have been developed
over the years.

Recently, a methodology has been designed to deal with the
modeling problem of complex embedded systems for the pur-
pose of scheduling [2], [3]. This model,system property inter-
vals(SPI), is a formal design representation internal to a design
system. It combines the representation of communicating pro-
cesses with correlated operation modes, the representation of
nondeterminate behavior, different communication mechanisms
such as queues and registers, and scheduling constraints.

This paper is concerned with major refinements of the SPI
model in order to allow the explicit modeling of mixed control
and data flow within components. This enables the representa-
tion of scheduling mechanisms as well as efficient methods for
scheduling and verification of system properties.FunStatehas
been defined [4] to represent many different well-known models
of computation to support stepwise refinement and hierarchy
and to be suited to internally represent many different synchro-
nization, communication, and scheduling policies. Another ap-
plication of a mixed representation is the inclusion of third-party
or legacy system parts where control information is incomplete.
FunStateis a preferred representation wherever the control of a
process shall be exposed to a tool or to the user. A good example
is a scheduling method demonstrated in this paper.

The role of such an internal model in a multilanguage setting
is shown in Fig. 1. A specification of a system consists of dif-
ferent input formalisms. These different parts may be modeled
and optimized independently. Then the information useful for
methods such as allocation of resources, partition of the design,
scheduling, and verification must be estimated or extracted and
mapped to internal representations, which describe properties
of the subsystems and their coordination (synchronization and
communication). There may be different internal models for dif-
ferent tasks to be performed using system analysis and design.
As pointed out already, this is one major stage where the need for
a sound model of computation exists. Methods such as sched-
uling, abstraction, and verification work on these internal rep-
resentations and eventually refine them by adding components
and reducing nondeterminism.

The following new results are described in this paper.

1) TheFunStaterepresentation is defined, which serves as
an internal representation of heterogeneous embedded
systems for the purpose of scheduling and verification.
Extensions are provided that enable hierarchical repre-
sentations and support abstraction mechanisms.

2) As the FunState model explicitly separates control
and data flow, properties of many different models of

1063–8210/01$10.00 © 2001 IEEE

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 525

Fig. 1. Role ofFunStatein a design process.

computation can be represented, such as communicating
finite-state machines, marked graphs, synchronous,
cyclostatic, dynamic dataflow graphs, and Petri nets.
In contrast to other approaches, constraints and refine-
ments as occurring in a typical design process can be
represented directly in the model. Examples are timing
constraints or timing properties and different scheduling
policies such as static scheduling, quasi-static sched-
uling, and constant-rate scheduling.

3) The methods that will be described in this paper are based
on the representation of a state space in the form of a reg-
ular state transition graph, i.e., the state transition graph
of a regular state machine(RSM) [5]. These dynamic or
periodic graphs are theoretically well investigated. The
simplicity of the underlying semantics distinguishes the
presented representation from other approaches.

Before introducing the basicFunStatemodel in Section III
and model extensions enabling hierarchical specifications in
Section IV, we give an overview of related other approaches
to modeling mixed control and data flow (Section II). Then, in
Section V, the semantics of theFunStatemodel are explained
using regular state machines, a formal model that uses a
periodic graph to describe the state transition behavior of a
FunStatemodel. In Section VI, we explain the relationship
betweenFunStateand other models of computations. Finally,
efficient verification and scheduling methods are described in
Section VII. This paper concludes with a larger case study,
namely, specification and scheduling of an asynchronous
transfer mode (ATM) switch, in Section VIII.

II. RELATED WORK

In many applications such as embedded systems, the trans-
formative domain (data processing, stream processing) and the
reactive domain (reaction to discrete events, control flow) are
tightly interwoven. Application examples include mode and pa-
rameter control of dataflow processing systems, system con-
figuration, and initialization, e.g., in packet-based transmission
systems [6], wireless modems [7], etc.

It is not possible to give here an overview of all specification
models that have been proposed in this area. Many of them will
be covered in later sections when we relateFunStateto other

models of computation. An overview and classification of dif-
ferent models of computation including discrete-event, reactive,
and dataflow models is given in [8].

In the SPI model [2], [3], the control information is communi-
cated using data tokens. Two similar approaches are Huss’ code-
sign model [9] and Eles’ conditional process graph [10]. Many
other research groups independently proposed models that sepa-
rate data and control flow. These are, for example, the specifica-
tion and description language (SDL) [11], codesign finite-state
machines (CFSMs) [12] combining SDF [1] with finite-state
machines (FSMs) [13], [6], and program state machines [14].
Most of these approaches have limited composability as con-
trol and data flow cannot be mixed arbitrarily in the hierarchical
levels.

Also in this area, graphical formalisms based on extensions
of classical FSMs like hierarchical, concurrent FSMs as intro-
duced by Harel [15] with many variants [16], [17] have been de-
veloped. In the implementation of i-Logix Inc., the dataflow as-
pect of Statemate is covered in a separate domain called activity
chart. But similarly to the Stateflow model employed in the
Matlab/Simulink environment, the expressiveness of this part of
the model prohibits the development of efficient verification and
implementation methods. For example,FunStatedoes not allow
global variables, which makes the model modular. The state ma-
chine may only interrogate events that are local to the compo-
nent. InFunState,the dataflow network is also targeted very
much to modeling well-known dataflow process networks in-
cluding synchronous dataflow, cyclostatic dataflow, and others
used in many design systems for developing and prototyping
digital signal-processing (DSP) algorithms. Finally, activities in
Statemate have no explicit notion of the consumption of time.
This is not natural since activities once evoked may take longer
than one state machine transition. InFunState,functions may
explicitly consume time before finishing. Therefore, the timing
model is much more natural for computation-intensive activi-
ties than the single-step synchronous reactive processing in the
semantics of Statemate.

In charts [7], [18], unlike statecharts, CFSMs, and other
concurrent hierarchical FSMs, no model of concurrency is de-
fined a priori. Instead, the goal is to show how to embed FSMs
within a variety of concurrency models, i.e., dataflow models,
discrete-event models, and the synchronous/reactive model.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

526 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Whereas these authors favor the systematic combination
of disjoint semantics often combined with abstract graphical
models (block diagrams), e.g., [7], others seek a consistent se-
mantics for specification of the complete system, for example,
the COSYMA system [19] and the OLYMPUS system [20].

While in the unified approach the major problems deal with
the challenge of how to extract portions of a design in order
to be able to apply efficient analysis and synthesis techniques
to portions of the specification, a major problem in the mixed
approach lies in finding clean ways to combine diverse models
of computation at various levels of abstraction.

Complementary to the above approaches, theFunStatein-
ternal model attempts to reduce the design complexity by repre-
senting only those characteristics of a heterogeneous input spec-
ification that are relevant to certain design methods, in partic-
ular, scheduling and verification. Therefore, the primary pur-
pose is not to provide a unifying algorithm specification.

Besides the usual requirements for specification models such
as composability, hierarchical structure, well-defined seman-
tics, and adaptation to the heterogeneity present in the appli-
cation domain, we require four further properties.

1) The properties of different specification models (com-
puter languages, block diagrams) relevant to certain
design methods should be representable in the internal
model.

2) The internal model must support abstraction mechanisms
as necessary for the design of complex systems.

3) The internal model should support refinement such that
results in the design process can be incorporated into the
model, e.g., scheduling decisions reducing the degree of
nondeterminism or back-annotation of computation times
of tasks.

4) It should be possible to incorporate design constraints
such as required timing properties.

III. T HE BASIC FUNSTATEMODEL

At first, the basic nonhierarchicalFunStatemodel is ex-
plained. The activation of functions in a network is controlled
by a finite-state machine, similar to the semantics of activity
charts in statecharts implementations; see [21]. In contrast to
dataflow models of computation, functions (or actors) are not
autonomous.

Definition III.1: The basicFunStatecomponent consists of
a network and a finite-state machine . The network

itself contains a set of storage units , a set of
functions , and a set of directed edges , where

.
Data are represented byvalued tokens. Storage units and

functions form a bipartite graph. In other words, there are no
edges connecting two storage units or two functions.

Fig. 2 shows an example of a simpleFunStatemodel. The
upper part represents the networkcontaining storage units

, , , and with 1, 2, 0, and 3 tokens, respectively, and
functions , , and . The lower part contains a finite-state
machine, in this example with just one state and three transition
edges. Details concerning the behavior of theFunStatemodel
are described below.

Fig. 2. Example of a simpleFunStatemodel.

Fig. 3. Example of a queueq with q#0 = 3, i.e., three initial tokens. The
current number of tokens isq# = 5.

Fig. 4. Example of a registerr of sizen = 3.

A. Elements of the Network

1) StorageUnits: For the sake of simplicity, only two sorts
of storage elements are introduced here, namely, queues and
registers. The actual access functionality and the available query
functions on storage unit types can be defined individually for
each type. Note that only examples are given here.

1) Queueshave first-in first-out (FIFO) behavior and un-
bounded length. They store tokens that are added (re-
moved) via incoming (outgoing) edges. The tokens rep-
resent data flowing through the network. The numbers of
tokens in queues are part of the system
state. denotes the initial number of tokens;
see Fig. 3. Depending on the abstraction level, we may
deal with colored tokens, i.e., tokens with values associ-
ated. In this case, , with de-
noting the values of the first, second, , th token in
queue , respectively. The assignment of initial values to
tokens is not considered here.

2) Registersare linear arrays of limited length of pairs
(address value) of addresses and values. In contrast to
tokens in a queue, the number of values in a register is
constant. These values , of a register

can be replaced via tokens on incoming edges or read
nondestructively via outgoing edges; see Fig. 4. In com-
parison with queues, registers do not impose a partial
ordering on function evaluations. Registers are used for
modeling the flow of information, e.g., in order to esti-
mate the necessary communication bandwidth or impose
timing constraints. The assignment of initial values to to-
kens is not considered here.

2) Functions: The function objects of a FunState
model are uniquely named and operate on tokens or values when

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 527

Fig. 5. Example of a function.

firing. Inputs and outputs of functions have associated variables
and , which denote the number of con-

sumed tokens (read values) and the number of produced tokens
(replaced values), respectively. The variables represent expres-
sions that evaluate to constants or random processes. If required,
additional constraints—for example, intervals—involving these
variables may restrict the numbers of consumed or produced to-
kens. Similar functions can be defined that denote the values of
the produced tokens.

With each function object, there is associated a latency func-
tion that evaluates to a constant or a random process as in
the case of the number of consumed and produced tokens.

A function object is in one of the statesidle or run . Initially,
the state of a function object isidle . In addition, the state of a
function object comprises a value , which denotes the re-
maining execution time. If a function object receives an event
(this process is described later in this paper), it changes state
from idle to run , consumes tokens (reads values) from its input
storage units, and initializes . As described in the oper-
ational semantics section, the state of a function object changes
from run to idle , and changes are made in the output storage
units when the function object finishes execution, i.e., the re-
maining execution time is .

When receiving an event, the functionshown in Fig. 5 con-
sumes tokens from queue and reads three values from reg-
ister . After the latency has expired,adds to some non-
deterministically chosen number of tokens in the interval
and replaces values in .

More general models of function objects are possible, e.g.,
having more states and understanding named events such as
start , kill , stop, andremove . This way, different kinds of in-
terrupts can easily be specified.

B. State Machine

There are many different possibilities to specify the finite-
state machine that controls the activation of embedded com-
ponents (see hierarchical model) or functions. In order to facil-
itate analysis, scheduling, and the concept of hierarchy, a syn-
chronous/reactive model is chosen. In particular, the model is
similar to ARGOS [16] developed at IMAG (Grenoble). It re-
sembles the statecharts formalism by Harel [15], [21] but re-
solves circular dependencies using fixed-point semantics.

Transitions are labeled with conditions and actions. Condi-
tions are predicates on storage units in the network.
These predicates very often only concern the number of tokens
in a queue, e.g., for some integer variable. Again,
this variable may represent a deterministic value or a random
process, possibly constrained. A transition is enabled if the cor-
responding predicate istrue . The action consists of a set of
names of function objects. Events are sent to these functions
when the transition is taken.

Fig. 6. Part of a simple automatonM of some component.

Fig. 6 shows the example of a simple automaton. The transi-
tion is taken if the automaton is in its initial state, if there are
at least three tokens in queue, and if the value of the second
token is less than 1.5. At the same time instant, functions named

and receive an event.

C. Operational Semantics of the Flat Model

Until now, we have not described how the state machine and
the network interact. The basicFunStatecomponent is executed
following the steps described below:

1) Initialization. The current state of the state machine is
set to its initial state. All function objects are in stateidle

and have the remaining execution time . Global
time is set to .

2) Check for progress.If from the current state there are no
more enabled state machine transition conditions (the cor-
responding conditions on the states of the storage units
have the valuefalse) and there are no function objects
that are in staterun , the execution is stopped. If there are
enabled state machine transition conditions originating in
the current state, the execution continues at “State ma-
chine reaction” [step 4)]. If there are no enabled state ma-
chine transition conditions but some function objects are
still in staterun , the execution continues at “Function ob-
ject termination” [step 3)].

3) Function object termination.Global time is progressed
to the point in time when the function objects with
the least remaining execution timewill finish their pro-
cessing. The remaining execution timesof all function
objects in state will be diminished by . All
function objects in staterun and with finish pro-
cessing at the new time instant. They write/add the to-
kens produced by the computational process of a function
object to their output storage units and enter stateidle .
If two function objects add tokens to the same queue at
the same instant, the resulting token order is nondeter-
ministic, but tokens from one function do not interleave
with those from other functions. If two function objects
write to the same register at the same instant, a nonde-
terministic decision is made about which write action de-
fines the final state. Again, the writing of one function is
atomic. The execution continues at “Check for progress”
[step 2)].

4) State machine reaction.The state machine makes at
most one transition. A transition can be taken if it orig-
inates in the current state and the value of the corre-
sponding condition evaluates totrue . At the same time,
the function objects whose names are in the action of the
taken transition receive an event. If they are in stateidle ,
they enter staterun , consume tokens (read values), and

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

528 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 7. Example of a state automaton withAND andXOR states.

initialize . Execution continues at “Check for
progress” [step 2)].

IV. M ODEL EXTENTIONS

A. Extensions of the State Machine Description

Several extensions of the above-described simple state ma-
chine lead to a model similar to ARGOS [16]. In particular, we
make use of the following concepts.

1) Hierarchy.States can be hierarchical, i.e., they may con-
tain other automata. In case of anXOR composition, the
father state is interpreted as being in one of its child states
(comparable to a conventional state machine). If the father
is refined usingAND composition, it is interpreted as being
in all of its child states at the same time (concurrency). In
figures, the child states are separated by dashed lines in
the following.

2) Events.Events can be part of predicates and action sets.
An event has the valuetrue if it is in the action set of a
taken transition andfalse otherwise. Events are not vis-
ible outside a component.

Note that events are used for communication inside compo-
nents only and reflect the control-oriented aspect of a system’s
behavior. They do not carry specific data but only exist or not at
a given point in time. Tokens, on the other hand, represent the
data-oriented part, may have (almost arbitrary) values and life-
times greater than zero, and are allowed to cross components’
boundaries in either direction.

A state machine involvingAND and XOR composition can
easily be flattened, i.e., transformed into a simple state machine
consisting of states and transitions labeled with conditions and
actions.

These straightforward extensions are explained with the ex-
ample of a simple exception handler in Fig. 7. Stateis re-
fined usingAND decomposition into three child states. If one
of the predicates and in is true , then is left and
one of the states and is entered to manage the exception.
The right-hand child state resolves simultaneous exceptions via
some priority rule. The communication uses the events, , ,
and . In particular, if only or both predicates aretrue , then
state is entered. If only is true , then a transition to state
occurs. All this happens within the same time instant.

B. Hierarchical FunState Network

The basic element of the hierarchical network of theFun-
Stateformalism is the component. Each component contains
a network and a state machine as defined for the basic

model. In addition, can also contain embedded components
and ports representing interfaces through which a component
exchanges tokens with its father component. A hierarchical
FunStatemodel has exactly one top-level component. This
top-level component has no interfaces.

Definition IV.1: The network of a
hierarchicalFunStatecomponent contains a set of functions,
a set of storage units, input ports , output ports , embedded
components with input and output ports and , respec-
tively, and directed edges

. There is at most one edge entering an input
port of an embedded component and at most one edge leaving
an output port of an embedded component.

This basically means that aFunStatecomponent can be re-
garded as a refinement of a function. A simple example of a
hierarchical component is shown in Fig. 8.

There are two further details concerning the hierarchicalFun-
Statemodel that must be explained.

1) The state machine of a component may only access in-
ternal storage units or storage units that are directly con-
nected to input ports—via the names of these input ports.
For example, the state machine in Fig. 8 may contain a
predicate of the form , i.e., the queue connected
to input must contain at least one token.

2) The state machine can send events to embedded compo-
nents. If the action set of a taken transition contains the
name of a component, then the state machine of this com-
ponent can make a transition, i.e., it is activated. If it con-
tains the name of an embedded component augmented
with a event, this event istrue within the embedded com-
ponent. For example, an action set of the state machine in
Fig. 8 may look like . Then components and

are activated, i.e., the state machines may perform a
reaction. In addition, is true in .

The detailed semantics of the hierarchical model can be de-
scribed best by constructing an equivalent flat model. Before
doing this, some characteristics of the hierarchical model will
be summarized.

1) The hierarchy can be nested arbitrarily deep.
2) Each component contains a state machine as well as a

network of functions, embedded components, and storage
units.

3) Communication between embedded components is per-
formed via the explicit exchange of tokens, i.e., not syn-
chronous.

4) The father component explicitly activates its children in a
synchronous way, i.e., enables them to make a transition.

5) Flattening a hierarchicalFunStatemodel is quite simple.
In particular, hierarchy does not extend the computational
model of the basicFunStatemodel.

C. Removing Hierarchy

The operational semantics ofFunStateis defined in terms of
the basic model. To this end, the flattening of a hierarchicalFun-
Statemodel will be explained. The flattening transformation in-
volves several steps. Let us suppose that componentcontains
the embedded component , which will be flattened.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 529

Fig. 8. Example of a hierarchical component.

Fig. 9. Part of a hierarchicalFunStatemodel and its unfolding.

1) The function objects, embedded components, and storage
units and the edges of the network are moved from
to .

2) The sources of edges starting from an input port ofare
moved to the storage unit in having an edge pointing to
that input port, and the input port is removed.

3) The targets of edges ending in an output port ofare
moved to the storage unit in having an edge coming
from that output port, and the output port is removed.

4) Each occurrence of in the actions of any transition in
the state machine of is replaced by a new event name.
The condition of each transition in the state machine of
is extended with this new event name using conjunction.

5) The state machine of is added to usingAND-com-
position.

6) The remaining parts of the embedded component are re-
moved.

In the above procedure, a suitable naming scheme must be
used in order to avoid multiple occurrences and to uniquely
identify elements.

In Fig. 9, part of a hierarchicalFunStatemodel and its equiv-
alent flat model are shown. If predicatein Fig. 9 istrue , the
state machine of makes a transition. It also activates the com-
ponents and . The condition for the transition of the state
machine of is alsotrue , resulting in a reaction of the state
machine of in the same execution cycle ifis satisfied too.

D. Timing Constraints

The purpose of timing constraints is to guide the specification
or design process of a system by specifying certain deadlines.
Checking a timing constraint shows whether all executions of a
system satisfy the constraint.

Path constraints as defined by the following rules enable a
constructive method to check whether a certain execution trace
satisfies a given path constraint, as described in Section VII-D.

A path constraint is defined by a labeled path in the network
of a component. A path is of the form

involving storage units, 1 function objects, and 2 2
edges. The first and last storage units may be input and output
ports, respectively. Then they refer to the storage units that are
directly connected to them outside the component. In order to
specify deadlines properly, we are interested in two comple-
mentary properties, namely, the first and the last reaction in
storage unit as a result of a token’s arriving in unit .

To this end, the path is labeled with two predicates and
that involve a free variable, for example,

and . The free variable denotes
the time period that a token takes to travel along the specified
path. In particular, the measurement for the time period starts
when the token enters the first storage unitand ends when it
enters the last one . The predicates of a path constraint must
betrue for any token traveling along the specified path and for
all possible executions of the system.

1) The path constraint with respect to the first predicate
is said to be satisfied if the predicate is true for the
traveling time of thefirst token, which arrives in and
has been initiated by a token arrival in for all possible
execution sequences.

2) The path constraint with respect to the second predicate
is said to be satisfied if the predicate is true

for the traveling time of thelast token, which arrives in

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

530 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

and has been initiated by a token arrival infor all
possible execution sequences.

To clarify the meaning of traveling times, let us suppose that
a given system has two different execution traces only; see
Fig. 10. In the first trace, two tokens namedand enter the
first queue of a path constraint; in the second trace, there
is only one token . The upward arrows in Fig. 10 represent
the corresponding arrival times , , and . The
downward arrows represent the causally dependent tokens that
arrive in the last queue of the path. Obviously, the first token
arrives in queue after time periods and the last
token arrives after time periods . As mentioned
above, a method for automatically determining these sets of
traveling times and is presented in Section VII-D.

V. REGULAR STATE MACHINES

The purpose of this section is to introduceFunState’s under-
lying computational model called regular state machine (RSM)
[5]. It serves as the basis for the methods derived in this paper,
i.e., verification and scheduling. Because of the simplicity of
this model and its thorough investigation in combinatorial math-
ematics, many further results can be expected in the future.

The model is introduced in its simplest form. It can easily be
extended to more general settings. In particular, we start from
the following class ofFunStatemodels.

1) The conditions in theFunStatemodel do not contain data
dependencies, i.e., the free variables in predicates denote
numbers of tokens in queues only.

2) We suppose that the hierarchy of components has been
unfolded using the techniques described above. In ad-
dition, hierarchical state machines have to be flattened
using conventional techniques for unfolding.

3) The functions have constant consumption and production
rates and , respectively.

4) Timing is neglected.

An example of the relationship between aFunStatemodel
and its computational model is given in Fig. 11. The numbers of
tokens in queues correspond to the respective vector elements

as introduced below.
Definition V.1: A static state diagram is a directed edge-la-

beled graph with a set of nodes ;
a set of directed edges, where denotes an edge
with source and target ; a function ,
which associates with each edge an integer
distance vector of dimension ; a
predicate function true false ; and a node

and a vector with nonnegative elements , which
are called the initial state.

The static state diagram as defined above is a shorthand no-
tation for the (infinite) state transition diagram of a regular state
machine, denoted as a dynamic state transition diagram.

Definition V.2: The dynamic state diagram
of a given static state diagram

is an infinite directed graph
defined as follows. The nodes are called the states of
the regular state machine. We have , where

denotes the index set of the regular state machine

Fig. 10. Lower and upper path constraints.

and denotes a state for all and .
The state is the initial state. The edges
are called transitions of the dynamic state diagram. There
is an edge with and

iff , ,
and true .

A given FunStatemodel can be transformed into a static
graph by a simple syntactic operation. In particular, the nodes of
the finite-state machine in theFunStatemodel are the nodes ,
the transitions are the edges, the predicates on the transitions
are , and the initial state is . The dimension is the number
of queues in theFunStatemodel, is a vector containing the
numbers of initial tokens, and denotes the change in the
number of tokens caused by the transition corresponding to.

The state transition diagram of aFunStatemodel is given by
its dynamic state transition diagram. Therefore, theFunState
model is in state initially. A state transition via
some edge with source and target may
happen iff the state machine is in a state for some
index point and true . After the transition, the
FunStatemodel is in state .

In Fig. 11, the edges of the static state transition diagram are
labeled in the form . If the predicate istrue for all
index points or if , we simply write the label

or , respectively. The dynamic state transition dia-
gram in Fig. 11 only shows a part of the index space. At each
index point , there exist two states corresponding to the
two states of the static state transition diagram. The initial state
is shaded gray. The index point is shown in the
upper left corner. Each transition within the dynamic state tran-
sition diagram corresponds to one of the static diagram’s transi-
tions. By means of the variablesand , the dynamic diagram
also represents the queue contents ofand in addition to the
internal finite state of the state machine.

The model is similar to that of vector addition systems or Petri
nets. But in our case, there are several nodes for each index point
. Moreover, many results from combinatorial mathematics are

known for the class of periodic graphs considered here, e.g.,
[22]–[24].

VI. RELATIONSHIP TO OTHER MODELS

As theFunStatemodel serves as an internal representation,
properties relevant to scheduling and verification of different
input specifications should be easily representable.

The modeling power ofFunStateis coming neither from the
concept of hierarchical or parallel automata (as they can be

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 531

Fig. 11. A basicFunStatemodel, its equivalent static state transition graph, and its dynamic state transition diagram.

Fig. 12. Representation of the POLIS model.

Fig. 13. Example of a synchronous dataflow graph and its representation as aFunStatemodel with local control. Only embedded componentC is shown.

transformed to simple automata without events) nor from the
concept of embedded components (as they can be flattened).
Instead, the partition into a purely reactive part (state machine)
without computations and a passive functional part is the main
source for this capability.

As will be seen, the combination of embedded components,
refinement, and abstraction mechanisms leads to a new ap-
proach to solving complex problems such as efficient analysis
and scheduling.

The following comparison may lead to useful application- or
domain-specific restrictions of theFunStatemodel. This is one
of the major capabilities that leads to efficient methods for this
internal model.

A. Communicating Finite-State Machines

Basic concepts of statechart-like [15] specifications and syn-
chronous parallel state machines like ARGOS [16] are directly
included as theFunStatemodel supportsAND and XOR sub-
states. As a further example, the communication mechanisms
of the POLIS [12] model for specification and design of em-
bedded systems is described in some detail.

The POLIS model [12] has been invented for designing con-
trol-dominated embedded systems. Here, we will show how the
communication mechanism can be represented in theFunState

model. All FSMs operate asynchronously, here, and .
They communicate via single element buffers, e.g.,. When an
FSM writes into this buffer, the old value is replaced by a
new one. Reading from the buffer is nondestructive. This com-
munication model can be represented as shown in Fig. 12. It cor-
responds to the communication via a POLIS data signal. Other
communication mechanisms such as general signals and control
signals (involving also events) can be modeled easily as well.

B. Marked Graphs and Synchronous Dataflow Graphs

Marked graphs [25] and SDF graphs [26], [1] are labeled di-
rected graphs with nodes representing the actors of the system
and edges denoting the communication and the corresponding
FIFO queues between the actors. Two functionsand denote
the numbers of tokens removed from the queue if the actor at its
target fires and the number of tokens added to the queue if the
actor at its source fires, respectively. An actor may fire if in its
input queues there are at least tokens. For marked graphs,
we have for all edges .

A FunStatemodel that behaves like an SDF graph can be con-
structed easily. Fig. 2 shows aFunStatemodel corresponding to
the SDF graph shown in the left-hand part of Fig. 13. This model
is constructed as above and is an example of aglobal control
strategy. An example of a model with alocal control strategy

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

532 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 14. A cyclostatic dataflow node.

Fig. 15. SELECT and SWITCH nodes in Boolean dataflow graphs.

is shown in Fig. 13. The terms “local” and “global” here refer
to whether the “intelligence” of the scheduling strategy and its
control are distributed over the entire system or not.

C. Cyclostatic Dataflow Graphs

In cyclostatic dataflow [27], [28], production and consump-
tion rates of actors change periodically. Fig. 14 shows a cyclo-
static actor and the correspondingFunStatecomponent. The dif-
ferent communication behaviors of the cyclostatic actor are rep-
resented by separate functions in theFunStatecomponent. The
state machine of theFunStatecomponent cycles through all pos-
sible consumption and production rates by cyclically activating
the corresponding functions. TheFunStatecomponents repre-
senting the actors are connected as in Fig. 13.

D. Boolean and Dynamic Dataflow Graphs

Boolean and dynamic dataflow graphs extend the previously
described SDF model by introducing data-dependent dataflow.
In particular, in the Boolean dataflow (BDF) model, two addi-
tional types of nodes called SELECT and SWITCH are defined;
see Fig. 15. SWITCH is enabled if the data input edgeand the
control input edge contain at least one token. Once enabled,
the node decides based on the value true false of the
first token to which output or the first token on the data
input edge is transferred. The SELECT node acts similarly, i.e.,
a token on either input or input is transferred to output
if there is a token on with value true or ,
respectively.

Fig. 16 shows the correspondingFunStatemodels. The con-
ditions are defined as

true

false

true

false

Fig. 16. SELECT and SWITCH nodes in theFunStatemodel.

Fig. 17. MERGE node in theFunStatemodel.

As an example of a node type defined in dynamic dataflow
graphs, Fig. 17 shows a nondeterministic merge node and its
equivalentFunStatemodel. A MERGE node is enabled for
firing if at least one input edge contains at least one token. The
node selects nondeterministically which token is transferred to
the output.

E. Petri Nets

At a first glance, theFunStatemodel seems to be almost
equivalent to colored Petri nets (CPNs) [29]. But there are sev-
eral major differences that as well tune the Petri net model to
the application domain of theFunStatemodel and at the same
time generalize it. The following differences can be noted.

1) The queues can be related to places in Petri nets. But
queues in theFunStatemodel have a FIFO behavior,
whereas this is not the case in CPN. This restriction
matches the modeling power necessary for embedded
systems and simplifies the operational semantics to a
great extent.

2) Usually, there are no registers defined in CPN. In order
to model the usual mechanism of passing values through
writing and reading of variables, this capability has been
added.

3) The activation and firing conditions are more general than
in CPN as arbitrary predicates on the queues in the preset
of a function can be used. Moreover, in theFunState
model, these predicates can be different from the number
of tokens removed while firing, e.g., it is possible that a
function is activated if there are at least four tokens in an
input queue, but at the time of firing, only two of them are
removed.

4) In a CPN, the transitions are continuously ready for being
activated. In theFunStatemodel, this can be controlled
by the finite-state machine. This capability enables the
simple consideration of limited resources and scheduling
policies.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 533

Fig. 18. Translation of a SPI process into aFunStatecomponent.

F. System Property Intervals

In contrast toFunState,SPI does not explicitly separate be-
tween control and data flow. Although SPI processes may have
internal data and thus an internal state [2], this state is not explic-
itly represented and thus not visible. Differences in the external
behavior of a SPI process due to state dependencies are mod-
eled by uncertainty intervals. Even the refinement of process
behavior using process modes [3] does not have a notion of state
since the execution mode of a process is determined only based
on the contents of incoming channels and is “forgotten” at com-
pletion of execution. Thus, with the existing set of constructs,1

the state of a SPI model is only composed of the channel con-
tents (amounts of tokens and mode tags).FunStaterefines the
SPI model by adding the capability of explicitly modeling state
information and control flow separately from dataflow. In the
following, we show how both models correspond, and transla-
tion rules are given and explained by means of simple examples.
Timing is ignored in this context.

The most important difference betweenFunStateand SPI is
the control strategy. While SPI processes are autonomous like
actors in dataflow models of computation,FunStatefunctions
and (embedded) components are controlled by a state machine.
Due to the top-level state machine inFunState, it is not generally
possible to represent everyFunStatemodel with SPI.2 On the
other hand, the representation of SPI models inFunStateis gen-
erally possible and equivalent to the representation of dataflow
models using a local control strategy (see Fig. 13).

Straightforward correspondences exist for the directly equiv-
alent storage elements inFunStateand SPI. Also,FunState
functions and SPI processes without modes and hierarchy
directly correspond. In the following, we show how an SPI
process can be represented by aFunStatecomponent and vice
versa.

An SPI process can be directly represented by aFunState
component having a state machine with a single state and sev-
eral loop transitions that all start and end in this state. The ac-
tions of these transitions trigger functions in the dataflow net-
work representing the modes of the corresponding SPI process.
The condition of each transition can be extracted from the acti-
vation function of the SPI process by combining the conditions

1Excluding function variants and configurations as proposed in [30].
2It is possible to explicitly model the state machine by a process that controls

the execution of each element of the dataflow network. But the synchronous
semantics is lost by this.

of the rules mapping to the respective mode. A potential uncer-
tainty in the mode selection of an SPI process resulting in a set
of possible modes is equivalent to the possible nondeterminism
in the state machine of aFunStatecomponent. This analogy is
shown for an example in Fig. 18 where is the set of modes,
is the activation function for process, and is theFunState
component representing process.

For the translation of aFunStatecomponent into a SPI
process, there are two different strategies. One approach is to
abstract theFunStatecomponent such that it complies with the
component template as in Fig. 18 that can be easily translated
into a SPI process. In the general case, this abstraction of the
FunStatecomponent involves loss of information due to the
necessary state reduction in the component’s state machine.

The other approach is to model the state-dependent behavior
of the FunStatecomponent in SPI. This can be achieved by
using virtual feedback channels for the SPI process that shall
represent aFunStatecomponent. So the SPI process can change
the state information as well as use it for adapting its behavior
accordingly.

The state of aFunStatecomponent is composed of the state
of its state machine and the contents of its internal storage el-
ements. Due to the unbounded FIFO queues, this results in an
infinite state space that cannot be visualized using a single feed-
back channel since there is only a finite mode tag set to encode
the state. Thus, one virtual channel is used for encoding the
states of theFunStatecomponent’s state machine using mode
tags. Additionally, for each internal storage element that is con-
tained in a predicate of the component’s state machine, a virtual
feedback channel is added to the corresponding SPI process.
Then, each transition in theFunStatecomponent’s state ma-
chine can be represented by a mode of the SPI process. The be-
havior and activation rules of this mode can be directly derived
from the triggered actions and the predicates, respectively.

VII. A PPLICABLE METHODS

The purpose of this section is to show the versatility of the
FunStatemodel by application examples. Again, we would like
to emphasize thatFunStateessentially is used as an internal rep-
resentation model during the design phase, e.g., for HW/SW
codesign.

A. Formal Verification

There are many different purposes of formal verification of an
internal design representation. Instead of dealing directly with

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

534 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 19. Two possibilities for static periodic scheduling.

the system specification, properties can be checked of a rep-
resentation that is the basis for design steps like scheduling,
binding, and allocation. It is possible to verify certain properties
of a partially completed design. For example, one may want to
prove that a chosen schedule results in a deadlock-free imple-
mentation or necessitates only a bounded amount of memory.

The proposed verification strategy forFunStatemodels is
based on their representation in the form of regular state ma-
chines (see Section V). Of course, during the verification, the
state space is not enumerated explicitly. Instead,symbolic model
checking[31] techniques are used for efficiency [5].

The verification goal is formulated by means of acomputa-
tion tree logic(CTL) formula. Consider the exampleFunState
model of Fig. 2. To show that may never contain more than
four tokens, the CTL formula can be checked. As
this formula evaluates totrue , it is proven that the memory re-
quired for is bounded by four. Another simple example is the
formula , which means that it is always pos-
sible to reach a system state that allowsto be executed. Thus,
such formulas can be used to prove the absence of deadlocks.

In summary, the above symbolic model-checking strategy en-
ables the efficient verification of certain temporal properties of
state-controlled process networks, where the explicit construc-
tion of an entire state transition graph is avoided by implicitly
depicting it using symbolic representations. Thus, usingFun-
Stateto internally model a mixed hardware/software system en-
ables its formal verification, comprising the whole well-known
area of symbolic model checking concerning the detection of
errors in specification and implementation.

Apart from this, formal verification may assist during the de-
velopment of scheduling policies. The system model can be ex-
tended to describe a scheduling policy as well, of which the be-
havior then is verified together with the system model. Thus,
common properties such as the correctness of a schedule may
be affirmed by proving the boundedness of the required memory
and the absence of artificial deadlocks, as described above.

Many formal verification methods such as conventional sym-
bolic model checking try to reduce the state explosion problem
by implicit construction of the state space. The major limiting
factor is the size of the symbolic representation, mostly stored
in hugebinary decision diagrams(BDDs) [32]. The traditional
BDD-based methods of automated verification suffer from the
drawback that a binary representation of the system model and
its state is required. As an alternative to BDDs,interval dia-
gram techniqueshave been shown to be convenient for formal
verification of, e.g., process networks [33], Petri nets [34], and
timed automata [35]. This new approach remedies some de-

ficiencies of traditional approaches and often provides advan-
tages with regard to computation time and memory resources
[36]. These results can be extended directly from simple process
networks toward the more complexFunStatemodel containing
both finite-state control components and infinite-state dataflow
queues. Even the timedFunStatemodel can be verified by com-
bining process networks and timed automata [37]. The verifica-
tion procedure forFunStatemodels has been implemented, and
its efficiency in comparison to other state set representations has
been shown [33]–[35], [37], [38].

B. Representing Schedules

Besides formal verification,FunStatehas been designed to
support diverse aspects of scheduling. First, we describe the
use ofFunStateas a representation model for several classes
of scheduling policies. Afterwards, a methodology is sketched
how to determine a partially static schedule of aFunStatemodel.

In a hierarchical approach to solving complex scheduling
problems, it is necessary that the results of partially scheduling
components can be represented in the same model. On the
one hand, this enables the analysis of the entire scheduled
model, such as formal verification. On the other hand, with
this information further scheduling steps can be performed.
This stepwise refinement corresponds to the stepwise reduction
of the nondeterminism in the model. This section contains
some examples of different scheduling mechanisms. Further
mechanisms that may be represented byFunStatemodels are
shown in [39].

1) Static Scheduling:As a first example, we consider a
purely static periodic schedule of the synchronous dataflow
graph shown on the left-hand side of Fig. 13 for a uniprocessor
system. Methods to construct such a schedule are well known
and will not be repeated here.

The chosen schedule executes the functions, , and
iteratively in the following order: . In
comparison with Fig. 2, only the state machine of the com-
ponent must be changed in order to represent the schedule.
Fig. 19 shows two different possibilities, both reflecting the pe-
riodic schedule described above. The second possibility takes
into account that the subsequence occurs twice in the
schedule and uses theAND composition facility of parallel state
machines.

2) Scheduling with Static Priorities:In real-time systems,
tasks can usually be suspended for the purpose of scheduling.
An example is the theory of rate-monotonic scheduling [40],
where mathematical conditions are provided for checking the

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 535

Fig. 20. Example for fixed priority scheduling with preemption.

schedulability of a set of periodic tasks. The rate-monotonic
scheduling algorithm simply assigns priorities to the tasks in the
order of their rates.

In the example shown in Fig. 20, there are three tasks, ,
and . The request for executing a task is signaled by putting
a token into the corresponding input queue of the component,
i.e., into queues connected to, , or , respectively. This
could be done in an enclosing component by some sort of clock
generator. A task puts a token into its output queue when it has
finished computation. The two state machines are responsible
for detecting the end of a task and for priority scheduling, re-
spectively. The following conditions are used: ,

, , , , and
.

C. Conflict-Dependent Scheduling

To overcome drawbacks of either purelystatic or dynamic
scheduling approaches and to combine their advantages, Lee
proposed a technique calledquasi-static scheduling [41].
Similarly to static scheduling, most of the scheduling decisions
are made during the design process, providing little run-time
overhead and partial predictability. Only data-dependent
choices—depending on the value of the data or resulting from
a reactive, control-oriented behavior—have to be postponed
until run time. Techniques related to quasi-static scheduling
have been developed using, e.g., constraint graphs [42], [43],
dynamic dataflow graphs [44], actors with data-dependent
execution times [45], free-choice Petri nets [46], andFunState
models [47]. In the following, the latter approach toconflict-de-
pendent schedulingof FunStatemodels is sketched.

Problems that are typical for the design of complex em-
bedded systems are, e.g., different kinds of nondeterminism
such as partially unknown specification (to be resolved at
design time), data-dependent control flow (to be resolved
at run time), unknown scheduling policy (to be resolved at
compile time), and dependencies between design decisions
for different system components. These properties necessitate
new scheduling approaches as the number of execution paths
to be considered grows exponentially with increasing degrees
of nondeterminism. Moreover, the complexity of the models of
computation and communication greatly increases the danger
of system deadlocks or queue overflows; see, e.g., [48].

Conflict-dependent scheduling [47] is able to deal with
mixed data/control flow specifications and takes into account
different mechanisms of nondeterminism as occurring in the

Fig. 21. ExampleFunStatemodel with conflict and schedule specification.

design of embedded systems. Constraints imposed by other al-
ready implemented components are respected. The scheduling
approach avoids the explicit enumeration of execution paths by
using symbolic techniques. It guarantees to find a deadlock-free
and bounded schedule if one exists. The generated schedule
consists of statically scheduled blocks that are dynamically
called at run time.

Applying conflict-dependent scheduling to aFunStatemodel
may be regarded as an example of a refinement step usingFun-
Stateas an internal design representation. The specification as
well as the result of the scheduling procedure are represented as
FunStatemodels. The scheduling method proceeds as follows.

1) The basis is aFunStatemodel that specifies all pos-
sible schedules by means of nondeterminate transition
behavior—representing all design alternatives.

2) By symbolic exploration of the resulting regular state ma-
chine, the state space is traversed to search for cycles rep-
resenting valid schedules. This is motivated by the fact
that after having traversed a cycle in the dynamic state
transition diagram, an already visited state is reached for
which the scheduling behavior is known. Thus, by finding
all necessary cycles, nondeterminism is reduced as far
as possible. Hence, design alternatives are removed by
taking decisions.

3) The extracted schedule consisting of paths in the dynamic
state transition diagram is transformed into a finite-state
machine, which then is compacted using state minimiza-
tion techniques.

4) Finally, the result is embedded in the originalFunState
model by replacing the schedule specification part. Fur-
thermore, it may be transformed into program code.

1) Conflicts and Alternatives:The scheduling methodology
is introduced intuitively with the following example. Queue
in Fig. 21 is a multireader queue that may contain tokens, which
only one of the queue’s readersand consumes (depending,
e.g., on the token data) but the other one does not. The state
machine describes a specification of possible schedules for this
component (item 1 of the above methodology description).

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

536 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 22. Resulting controller automaton of example model.

If the predicates of all state machine transitions leaving a cer-
tain state are mutually disjoint, then the state is calleddetermi-
nate; otherwise, it isnondeterminate. We distinguish between
two different kinds of nondeterminism, which leads to a classi-
fication of nondeterminate states as follows.

1) Conflict.Nondeterminate states are involved in a conflict
concerning its outgoing transitions if the nondeterminism
can be resolved only at run time. Hence, no design deci-
sion is possible. Conflicts occur, for instance, when deci-
sions depending on the value of data are made or when
environmental circumstances have to be taken into ac-
count. The transitions involved in a conflict are called
conflicting.

2) Alternative.If among several transitions leaving a state
any transition can be chosen, this fact represents an alter-
native. Like this, for instance, different scheduling poli-
cies—i.e., different orderings of actor executions—can be
modeled. Such decisions do not directly depend on the
value of data but describe design alternatives that may
even be fixed at compile time. Furthermore, different al-
ternative algorithms can be modeled, of which one or
some can be selected during the design phase.

This way, we can identify different sources of nondeterminism
and use this information for methods such as scheduling or
formal verification.

In the following, conflicts are represented by light-shaded
conflict states,while alternatives are depicted by dark-shaded
alternative states. In Fig. 21, the data dependency regarding
represents a conflict that is modeled using a conflict state. In
contrast, all transitions starting in the alternative state represent
design alternatives that may be chosen during schedule devel-
opment. In the following, white states denote determinate states
that either have only one outgoing transition or of which all tran-
sitions have disjoint predicates.

Intuitively, conflict-dependent scheduling, as proposed in
[47] and sketched in Section VII-C2, replaces dark-shaded
states by white states—taking decisions and thus removing de-
sign alternatives (item 2). The result is theschedule controller
automatonshown in Fig. 22 (item 3), which may replace the
automaton in Fig. 21 for analysis or synthesis purposes (item
4). It consists of three static cycles and a conflict state switching
between them. The predicateidentifies the run-time decision
associated with the conflict node.

The controller automaton can easily be transformed into pro-
gram code as shown in Table I as pseudocode. The introduced

TABLE I
CONTROLLER PROGRAM CODE OFEXAMPLE MODEL

Fig. 23. Paths in dynamic state transition graph describing schedule.

approach has been applied to perform conflict-dependent sched-
uling for a molecular dynamics simulation system [47]. In Sec-
tion VIII, conflict-dependent scheduling is applied to an ATM
switch model.

2) Performing Conflict-Dependent Scheduling:The aim
of the scheduling process described here is to sequentialize
actor executions specified as concurrent while preserving all
given conflict alternatives. The resulting schedule has to be
deadlock-free and bounded.

In the following, the scheduling procedure is explained based
on Fig. 23. First, the dynamic state transition graph of the corre-
sponding regular state machine is searched for the shortest paths
from the initial state to itself or any state already visited during
the search. One of these (possibly multiple) shortest paths—rep-
resenting or at least containing a cycle—is selected as the basis
of the following scheduling procedure— in this example.

All conflict states of the selected path need further investi-
gation, as no conflict decision may be taken during schedule de-
sign. Hence, beginning with the successor states of the conflict
state marked with , again the dynamic state transition graph
is searched until reaching any state visited already—resulting in

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 537

the paths and . Additional conflict states traversed during
this search are also treated as described above. Thus, the con-
flict marked with causes the path . Finally, causes .

The schedule is complete when each successor state of each
visited conflict state has been considered. Thus, it is guaranteed
that any conflict alternative during run time may be treated by
providing a determinate schedule until the next conflict to be
resolved.

If no schedule has been found while traversing one of the con-
flict paths, another shortest path is selected to repeat the sched-
uling procedure. If all shortest paths have been checked without
finding a complete schedule, longer paths are selected. By intro-
ducing a bounding box on the state space, consisting of bounds
on state variable values, the search space may be restricted if
necessary. Thus, the termination of the algorithm is guaranteed.
Furthermore, if a deadlock-free and bounded schedule exists,
the above procedure will find it.

The length of the paths as the optimization objective is a
heuristic criterion to minimize the number of actor executions
and run-time decisions. This objective can be combined or re-
placed by criteria such as the least number of conflicts involved
and their extent, or the shortest execution time along a path.
In addition, the size of the bounding box on the state space is
closely related to the amount of memory needed to store data
of the scheduledFunStatemodel. Therefore, restrictions on the
run time as well as on the required memory can be included in
the scheduling procedure.

Unfortunately, graph traversal tasks such as the mentioned
search for paths in the dynamic state transition graph often suffer
from the “state explosion” problem for real-world applications.
This means that the possibly exponential blowup of the number
of states to be considered severely restricts the feasibility of such
techniques. To avoid this, a symbolic approach to the sched-
uling problem [47], [49] has been introduced that uses symbolic
model checking principles in order to avoid the explicit enumer-
ation of execution paths.

In order to perform conflict-dependent scheduling, the
dynamic state transition graph is traversed symbolically
without constructing it explicitly. This way, shortest paths are
determined by symbolic breadth-first searches. To achieve
this, sets of states reachable from another set of states are
considered—and computed in a single operation—instead of
traversing the state transition graph path after path, state by
state. For more details on conflict-dependent scheduling, the
reader is referred to [47], [49], [37], and [5].

Hence, in addition to formal verification, as described above,
symbolic methods may be used not only for analyzing but even
for developing scheduling policies forFunStatemodels. Due to
similar transition behaviors, the above advantages of symbolic
approaches based on interval diagram techniques as an alterna-
tive to BDDs may be transferred to the area of symbolic sched-
uling. Symbolic scheduling methods turned out to often out-
perform both integer linear programming and heuristic methods
while yielding exact results. There exist some BDD-based sym-
bolic approaches to control/data path scheduling in high-level
synthesis. BDDs are used for describing scheduling constraints
and solution sets either directly [50] or encapsulated in finite-
state machine descriptions [51]–[53]. Control/data path sched-

Fig. 24. Example of a path constraint.

uling mostly is performed on theregister-transfer level(RTL),
which is located below the abstraction levels to whichFun-
Stateis dedicated. BDDs are well suited to represent RTL-based
models.

D. Performance Analysis

In Section IV-D, path constraints have been introduced as
a means of specifying timing constraints on a model. In the
following, a constructive path-constraint-based method for
checking the satisfaction of timing and performance properties
is presented.

For a given path constraint, let us define setsand that
contain as elements all time periods of possible first and last
causal dependencies, respectively. In other words, the predicates

and as defined in Section IV-D must betrue for all
time periods and , i.e., for all tokens entering
and for all possible execution traces of the system.

Let us now construct these setsand in principle. As
shown in Section IV-D, we have to consider all possible exe-
cution traces of the system—for each trace, all tokens that are
written/added to , the first storage unit in the path. For each
of these execution-token pairs, we do the following steps.

1) Let us suppose that a tokenis added/written to at
some time . Then, the token is marked.

2) Let us suppose that a marked token is either read through
an edge or removed via by function object
for some . Then the tokens that are
added/written to by that instance of function unit
are also marked.

3) If a marked token enters storage unit(the last storage
unit in the path) at some time, then the mark is removed
from the token. If the token was the first marked one that
enters , then add the time period to ; if it was
the last one, add the time period to . In the case
that marked tokens are coming for an infinitely long time
period, add to .

All path constraints in the system must be checked indepen-
dently.

The meaning of the path constraints should be obvious from
the above construction. The second rule takes into account that
we are interested in causality chains only, i.e., the value of the
token in may depend on the value of the marked token in.
Only the dependency via the path is taken into account.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

538 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 25. Hierarchical ATM switch model.

It is possible to extend the above definitions to the case where
a path constraint involves an embedded component. Let us sup-
pose that the path enters an embedded componentat input
port and leaves it at output port. Corresponding to our hierar-
chical approach, the path need not be specified within. Then,
all possible paths in from to are considered. In particular,
the second rule holds for all queues, functions, and edges in the
embedded component .

As an example, consider the component shown in Fig. 24. It
modelsaniterativealgorithm(function)with latency .
The algorithm needs four coefficients, which can be put into
the system via input port. In the example, this happens in any
execution trace at times 1, 2, 3, and 4. Function objectwith
latency transmits thecoefficients to register.Thepath
constraint is drawn as a dotted arrow from the input port (queue
connectedto)totheoutputport (queueconnectedto).

We have and . For example, the
predicate istrue ,as thefirstcausallydependent
tokenarrivesinthequeueconnectedtonolaterthansixtimeunits
afteracoefficientarrives in thequeueconnectedto.

VIII. ATM S WITCH EXAMPLE

This section treats a model of a shared memory ATM switch
mapping ATM connections arriving at four input ports onto con-
nections leaving on four output ports. SeveralFunStatefeatures
and applications are explained with this model.

A. The ATM Switch Model

Fig. 25 shows the structure of the ATM switch model consid-
ered. The model is composed of several components working in
parallel. The model imitates the tasks in the ATM user plane of
the ATM layer [54] that are necessary for the switching of ATM
cells. The interface to the physical layer is modeled according to

Fig. 26. Self-clocked fair queuing component performing fair service
calculation.

the UTOPIA [55] specification using the octet-level handshake
mode.

All input and output buffers are realized in a single memory
block, which is shared by all ports. This block is subdivided into
segments that are large enough to store the information of an
ATM cell. Usually, payload data and scheduling information for
the output ports are stored separately. The 48-byte data field can
be stored at arbitrary addresses in the shared memory since the
address of this field is stored in an FIFO organized queue of the
corresponding connection together with scheduling information
and the cell header. Another FIFO queue keeps track of addresses
of free memory segments for storing payload fields. For each
outputport, thereisaschedulerthatmustdecidewhichconnection
willbeallowednexttotransferacell ifacellslotbecomesavailable
on theoutputport.Recently, variantsof theweighted fairqueuing
(WFQ) [56] scheduling algorithm have been used for this task.
A survey of scheduling algorithms including WFQ for packet
and cell switching networks can be found in [57]. The basic idea
of WFQ is to calculate a priority tag for each incoming ATM cell

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 539

according to the reserved and currently used bandwidth of the
correspondingconnection.Then, thecellwith thehighestpriority
tag is chosen by the scheduler for transmission. WFQ assumes an
ideal fluid server for the calculation of the priority tags in order to
achieve a fair service of connections with a schedule close to the
order in which the cells would have finished their transmission if
the scheduler had served multiple connections simultaneously in
proportionof their reservedrates.

This functionality is modeled as follows. Incoming ATM cells
are processed byte by byte by the UTOPIA interface. For each
byte, the interface generates an event (UtopInEv) and produces
a token carrying one byte of information (UtopInBuf). The first
five bytes of the cell contain the cell header. When the beginning
byte of a cell is signaled by the input processing component (IP),
the switch starts several tasks. In order to find a free memory
segment for the storage of the cell payload, the address queue
PayloadAddrQueue is readoutbythestoragemanagementcom-
ponent (SM). If nomemorysegment isavailable, thewholeATM
cell and all associated temporary information will be dropped.
Furthermore,aprioritytagVimustbecalculatedinthefairservice
calculation component (FSC) with the help of a virtual service
measureVtotAi at the arrival time of the cell. The priority tag is
used later to schedule cells of different connections sharing the
same output port. After the whole header has been transferred
from the interface to componentIP and stored atHeaderStruct ,
connection information can be extracted from the header by
componentIP and transferred viaVPIVCI to the switching
information component (SI), where it is used to map the cell onto
an output port according to connection mapping data stored in an
internal lookup table.The lookupadditionally revealsconnection
context informationthat isneededbycomponentFSC andpassed
throughContext . The header can now be stored in one of the
output port queuesHeaderQueues ,each of which is sorted by
rising priority. The sorting is performed in componentSM . The
payload is stored independently in the FIFO organized queue of
the corresponding connectionPayloadQueues at the address
determined before (PayloadAddr). For this task, componentIP
passes the payload field viaPayload to the storage management.
However, if the lookupincomponentSI determinesanimpermis-
sible cell, e.g., if the cell belongs to a nonexisting connection, the
cellandall itsassociatedtemporaryinformationwillbedropped.

The readout of cells via the output ports is triggered by the
corresponding output UTOPIA interface, again byte by byte. It
generates events (UtopOutEv) for each free byte in the output
buffer of the interface. If sufficient free byte slots are available,
the cell content is reconstructed in the output processing compo-
nent (OP) by concatenating header and payload and then trans-
ferred to the corresponding output port buffer (UtopOutBuf).
However, if there is no cell stored in the switch for transmission,
the event tokens generated byUtopOutEv will be dropped. Fi-
nally, each cell transmission may trigger an update of the virtual
service measure throughConContext . This measure is used
within componentFSC for priority tag calculations. Note that
the priority tag calculation used in WFQ does not depend on this
trigger since updates of the virtual service measure are initiated
by an emulated ideal fluid server within componentFSC . How-
ever, most approximations of WFQ use cell transmissions as a
trigger for an update or a recalibration of internal variables.

The state machine of theFunStatemodel in Fig. 25 schedules
the components in a parallel manner. This is suited to a parallel

implementation, e.g., by means of separate functional blocks in
hardware. As an example, we pick one of the components to
give a more detailed insight into the ATM switch. Component
FSC in Fig. 26 performing fair service calculation shows an im-
plementation that uses a WFQ approximation as cell scheduling
algorithm.Self-clocked fair queuing(SCFQ) [58] simplifies the
calculation of priority tags by estimating the virtual service mea-
sure by the priority tag of the cell currently in service. SCFQ’s
fair service calculations component thus only needs temporary
registers for storing the current virtual time measure per output
portVtot and the priority tag of the preceding cell per connec-
tion Vi1 . The functions within this component are scheduled
sequentially by the state machine, which reflects a software im-
plementation of the component. As mentioned above, function
CalcVi must not be executed on impermissible cells in queue
Context . This is ensured by using the predicatepermissible in
the respective state machine transition.

B. Taking Advantage of FunState

The above implementation of SCFQ requires little computing
resources. However, SCFQ is not able to guarantee as sharp
delay bounds for cell transmissions as WFQ does. Therefore,
one may be interested in modeling a fair service calculations
component for WFQ. Within theFunStatemodel in Fig. 25, the
SCFQ component in Fig. 26 can be replaced by the WFQ com-
ponent shown in Fig. 27. This is achieved by simply plugging
another component into the model in Fig. 25. Obviously, hier-
archy and modularity are well supported byFunState.

The additional temporary registers are needed in order to keep
track of the state of the emulated ideal fluid server such as the set
of backlogged connections and the level of the emulated header
queues. In addition, the WFQ component needs a timer com-
ponent in order to model the appearance of cell transmissions
in the fluid system, which trigger updates of the virtual service
measure. Moreover, the timer must be interruptable at the arrival
of new cells since a cell arrival may initiate updates of all tempo-
rary registers in the WFQ component. Analogously to Fig. 26,
the functions in Fig. 27 are scheduled sequentially. The transi-
tion labels indicated by “ ” and “ ” are omitted for clarity.
In parallel to function execution, the timer is scheduled. This
componentTimer is shown in Fig. 28.

FunctionInit initializes the timer delay with the value of an
incoming token. The current remaining delay is stored in queue
Time . FunctionDecr with a latency of one time unit repeatedly
decreases the value of the token inTime until it has reached zero.
Then functionTrig outputs a token triggering the superordinate
component. The peculiarity of this timer is that if another token
arrives at its input port during timer execution, the timer has to
restart immediately without producing any output. This behavior
caneasilybemodeledusingFunState,asshowninFig.28.

C. Conflict-Dependent Scheduling

In this section, conflict-dependent scheduling is applied to the
ATM switch model. Scheduling is performed after removing the
hierarchy of the SCFQ model using the techniques described in
Section IV. This results in the model shown in Fig. 29, which has
been extended by a schedule specification. Obviously, the data

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 27. Weighted fair queuing component emulating ideal fluid server within fair service calculation.

Fig. 28. Timer component within weighted fair queuing scheduling.

dependency mentioned above regarding impermissible cells in
queueContext has been abstracted by a conflict since it can
only be resolved at run time. Software scheduling for a unipro-
cessor is performed; hence the implementation is sequential in
contrast to the parallel model used above. The partial state ma-
chinesInSequ andOutSequ ensure that the correct order of in-
coming and outgoing ATM cell fields is guaranteed.

Table II shows the transition labels corresponding to the tran-
sitions abbreviated by “ ” and “ ” in Fig. 29, each starting
and ending in the dark-shaded state.

In addition to the explicit eventRead , function calls in
the FSM part are also used as events for communication be-
tween concurrent state machines. For the sake of clearness,
two state variablesContextCon free Imperm

andAddrCon free DropIt —both initialized with
free—have been introduced, which could be replaced by further
concurrentstatemachines,eachwith twostates.An in-stateoper-
ator in hasbeenintroduced,which istrue iffstatemachine
is in itsstate .

The queues involved in conflicts are marked by shading in
Fig. 29. All three conflicts have in common that usually one
of their conflicting functions (CalcVi Store OutHeader) is
executed and the other one (Impermit Drop EmptyQueue)
is only in case of an irregular operation, which depends on the
value of the token in the respective queue.

TheNewHeader conflictdiffersfromboththeContext andthe
Addr conflict in that the transition predicates of both conflicting
functionsOutHeader andEmptyQueue are equal. Hence, the
conflict model represents the fact that if one of the transitions is
enabled, theotherone isenabledaswell. Then,basedon thevalue
of the token inNewHeader , the conflict can be resolved directly
byexecutingeitherOutHeader orEmptyQueue .

The latter isnot thecase for theContext conflict (and theAddr
conflict as well). IfCalcVi is enabled, thenImpermit is also
enabled and can be executed, but not vice versa. If the execution
predicate ofCalcVi is satisfied, the conflict is resolved based
on the token inContext : EitherCalcVi is executed directly or
Impermit hastobeexecuted—whichpossiblycannotbedonedue
to its unsatisfied predicate. To avoid the necessity of repeatedly
evaluating the conflict decision or of delaying the execution of
CalcVi , the result of the conflict resolution is stored by changing
theinternalstateoftheconflictmodelandthusbindingtheconflict
to Impermit by settingContextCon Imperm. Later on,
only the remaining execution predicates ofImpermit have to be
checked, which results in less dynamic decision overhead than
otherwise.Thevaluefree representsanunresolvedconflict,while
the valuesImperm andDropIt denote that a conflict is bound to
therespective transition.

For the sake of clearness, transitions resulting from the asyn-
chronous behavior of the interfaces to the environment are
disregarded here. Techniques for the automatic generation of a
FunStatemodel representing the conflict behavior from a given
PetrinetmodelasshowninFig.29havebeendescribedin[49]and
[37].

Based on theFunStatemodel in Fig. 29, the conflict-depen-
dent scheduling procedure introduced above has been applied.
The dynamic state transition graph of the schedule has been
transformed into the controller automaton shown in Fig. 30. The
result is a scheduling policy that may be implemented, e.g., as
a software controller on a uniprocessor.

Conflict decisions remaining in the resulting schedule again
are represented by conflict states in Fig. 30. Besides conflict de-
cisions—which cannot be resolved during compile time—only

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 541

TABLE II
TRANSITION LABELS ABBREVIATED BY “flg” IN FIG. 29

Fig. 29. ATM switch model with schedule specification.

three decisions had to be postponed until run time. Hence, the
overhead by such dynamic decisions has been drastically re-

duced in comparison to the originalFunStatemodel. The sched-
uling process has been performed mainly using the symbolic

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

542 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Fig. 30. Resulting controller automaton of ATM switch model.

model checking tool of Carnegie-Mellon University. The
computation took 11.1 s on a Sun Ultra 60 with 360 MHz.

For an implementation, the state machine representing the
schedule may be transformed easily into program code, as
shown in Table III as pseudocode. The predicatesidentify
run-time decisions associated with the respective conflicts and
depending on token values. For instance, predicate is
equivalent to permissible Context .

In the preceding example, several ATM cells are allowed
to be in a preprocessing state within the ATM switch, i.e.,
waiting for lookups or tag calculations. Thus, an outgoing
link may be idle although there are cells in the system for
this link. We can introduce a timing constraint so as to
bound the preprocessing time, as sketched in Fig. 29. In
the worst case, demanding that the switch should work at
wire speed, we could constrain the preprocessing delay by

SizeOfATMCell LinkBandwidth .
In this way, only a single cell is allowed to be in a preprocessing
state—virtually bounding the corresponding FIFO queues to the
lengthone.

IX. CONCLUDING REMARKS

As has been explained in this paper, theFunStatemodel en-
ables the internal representation of complex system behavior. In
order to cope with the design complexity, the following hierar-
chical step-by-step approach is advertised and supported by the
FunStatemodel

1) Restriction in some portions of the system, i.e., com-
ponents, to well-known and simple models of computa-
tion. Within these subsystems, specialized and adapted
methods can be applied.

2) Making use of the hierarchical composition to design hi-
erarchical methods. To this end, it should be possible to
restrict the scope of, e.g., scheduling, code generation,
or verification to one component. Consequently, its en-
vironment as well as its embedded components must be
simplified without sacrificing the quality or correctness
of the overall result. This simplification should take into
account the results of, e.g., previous scheduling or veri-
fication results for parts of the environment or embedded
components.

TABLE III
PROGRAM CODE REPRESENTINGSCHEDULE OFATM SWITCH MODEL

The whole approach can be interpreted as a stepwise reduc-
tion of the nondeterminism in a system specification. It has been
shown that theFunStatemodel supports the first item, as it can
represent different important elementary models of computa-
tion. The major property required for the second item is abstrac-
tion. It has been shown in this paper that theFunStatemodel can
represent the result of a (partial) schedule.

An approach to symbolic scheduling of mixed hardware/soft-
ware systems has been presented. It is based on aFunState
model of the system and the scheduling constraints. The result
is a scheduling policy that may be implemented, e.g., as a soft-
ware controller on a uniprocessor.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
constructive comments and helpful suggestions.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al.: FunState—AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 543

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,”Proc.
IEEE, vol. 75, pp. 1235–1245, 1987.

[2] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele, “Combining
multiple models of computation for scheduling and allocation,” inProc.
6th Int. Workshop Hardware/Software Codesign (Codes/CASHE ’98),
Seattle, WA, Mar. 1998, pp. 9–13.

[3] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, “Represen-
tation of process mode correlation for scheduling,” inProc. IEEE/ACM
Int. Conf. Computer-Aided Design (ICCAD-98), San Jose, CA, Nov.
1998.

[4] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich, “Fun-
State—An internal design representation for codesign,” inProc.
IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD-99), San Jose,
CA, Nov. 1999.

[5] L. Thiele, J. Teich, and K. Strehl, “Regular state machines,”J. Parall.
Alg. Applicat. (Special Issue on Advanced Regular Array Design), vol.
15, pp. 265–300, 2000.

[6] T. Grötker, R. Schoenen, and H. Meyr, “PCC: A modeling technique for
mixed control/data flow systems,” inProc. Eur. Design and Test Conf.
(ED&TC 97), 1997.

[7] W.-T. Chang, A. Kalavade, and E. A. Lee, “Effective heterogeneous de-
sign and co-simulation,” inProc. NATO/ASI Workshop Hardware/Soft-
ware Codesign, 1995, pp. 187–212.

[8] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,”IEEE Trans. Comput.-Aided Design, vol. 17,
pp. 1217–1229, 1998.

[9] W. Boßung, S. A. Huss, and S. Klaus, “High-level embedded system
specifications based on process activation conditions,”J. VLSI Signal
Processing, vol. 21, no. 3, pp. 277–291, July 1999.

[10] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of
conditional process graphs for the synthesis of embedded systems,” in
Proc. Design, Automation and Test in Europe Conf. (DATE98), 1998,
pp. 132–138.

[11] R. Saracco, J. R. W. Smith, and R. Reed,Telecommunications Systems
Engineering Using SDL. Amsterdam, The Netherlands: Elsevier,
1989.

[12] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara,Hardware–Software Co-Design of Embedded Systems: The
Polis Approach. Norwell, MA: Kluwer, 1997.

[13] M. Pankert, O. Mauss, S. Ritz, and H. Meyr, “Dynamic data flow and
control flow in high level DSP code synthesis,” inProc. 1994 IEEE Int.
Conf. Acoustics, Speech, and Signal Processing, vol. 2, Apr. 1994, pp.
449–452.

[14] F. Vahid, S. Narayan, and D. D. Gajski, “SpecCharts: A VHDL frontend
for embedded systems,”IEEE Trans. Computer-Aided Design, vol. 14,
no. 6, pp. 694–706, 1995.

[15] D. Harel, “Statecharts: A visual formalism for complex systems,”Sci.
Comput. Program., vol. 8, 1987.

[16] F. Maraninchi, “Argonaute: Graphical description, semantics, and ver-
ification of reactive systems by using a process algebra,” inProc. Int.
Workshop Automatic Verification Methods for Finite State Systems, New
York, 1989.

[17] M. von der Beeck, “A comparison of statecharts variants,” inProc.
Formal Techniques in Real Time and Fault Tolerant Systems, vol. LNCS
863, New York, 1994, pp. 128–148.

[18] A. Girault, B. Lee, and E. A. Lee, “A preliminary study of hierarchical
finite state machines with multiple concurrency models,” Electronics
Research Laboratory, College of Engineering, Univ. of California at
Berkeley, Tech. Rep. UCB/ERL M97/57, 1997.

[19] R. Ernst, J. Henkel, and T. Benner, “Hardware–software cosynthesis for
microcontrollers,”IEEE Design Test Comput., pp. 64–75, Dec. 1993.

[20] G. De Micheli, D. Ku, F. Mailhot, and T. Truong, “The Olympus syn-
thesis system,”IEEE Design Test Comput., 1990.

[21] D. Harel and A. Naamad, “The STATEMATE semantics of statecharts,”
ACM Trans. Software Eng. Meth., vol. 5, no. 4, Oct. 1996.

[22] W. Backes, U. Schwiegelshohn, and L. Thiele, “Analysis of free
schedule in periodic graphs,” inProc. 4th Annu. ACM Symp. Parallel
Algorithms and Architectures, San Diego, CA, June 1992, pp. 333–342.

[23] S. R. Kosaraju and G. F. Sullivan, “Detecting cycles in dynamic graphs
in polynomial time (preliminary version),” inProc. 20th Annu. ACM
Symp. Theory of Computing, 1988, pp. 398–406.

[24] J. Orlin, “Some problems in dynamic and periodic graphs,” inProgress
in Combinatorial Optimization, W. R. Pulleyblank, Ed. Orlando, FL:
Academic, 1984, pp. 215–225.

[25] F. Commoner and A. W. Holt, “Marked directed graphs,”J. Comput.
Syst. Sci., vol. 5, pp. 511–523, 1971.

[26] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,”IEEE Trans. Comput.,
vol. C-36, no. 1, pp. 24–35, 1987.

[27] G. Bilsen, P. Wauters, M. Engels, R. Lauwereins, and J. Peperstraete,
“Development of a static load balancing tool,” inProc. 4th Workshop
Parallel and Distributed Processing, Sofia, Bulgaria, 1993, pp. 179–194.

[28] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete, “Cyclo-static
data flow: Model and implementation,” inProc. 28th Asilomar Conf.
Signals, Systems, and Computers, Pacific Grove, CA, 1994, pp.
503–507.

[29] K. Jensen, “Colored Petri nets: A high level language for system de-
sign and analysis,” inAdvances in Petri Nets 1990. ser. Lecture Notes
Comput. Sci., LNCS 483, G. Rozenberg, Ed. New York: Springer-
Verlag, 1990.

[30] K. Richter, D. Ziegenbein, R. Ernst, J. Teich, and L. Thiele, “Represen-
tation of function variants for embedded system optimization and syn-
thesis,” inProc. 36th Design Automation Conf. (DAC ’99), New Orleans,
LA, June 1999.

[31] K. L. McMillan, Symbolic Model Checking. Norwell, MA: Kluwer
Academic, 1993.

[32] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, pp. 677–691, Aug. 1986.

[33] K. Strehl and L. Thiele, “Symbolic model checking of process networks
using interval diagram techniques,” inProc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD-98), San Jose, CA, Nov. 1998, pp.
686–692.

[34] , “Interval diagram techniques for symbolic model checking of Petri
nets,” inProc. Design, Automation, and Test in Europe Conf. (DATE99),
Munich, Germany, Mar. 1999, pp. 756–757.

[35] K. Strehl, “Interval diagrams: Increasing efficiency of symbolic
real-time verification,” inProc. 6th Int. Conf. Real-Time Computing
Systems and Applications (RTCSA ’99), Hong Kong, Dec. 13–15, 1999,
pp. 488–491.

[36] K. Strehl and L. Thiele, “Interval diagram techniques and their applica-
tions,” in Proc. 8th Int. Workshop Post-Binary ULSI Systems, Freiburg
im Breisgau, Germany, May 19, 1999, pp. 23–24.

[37] K. Strehl, Symbolic Methods Applied to Formal Verification and
Synthesis in Embedded Systems Design. Aachen, Germany:
Springer-Verlag, 2000.

[38] K. Strehl and L. Thiele, “Interval diagrams for efficient symbolic veri-
fication of process networks,”IEEE Trans. Comput.-Aided Design, vol.
19, pp. 939–956, Aug. 2000.

[39] L. Thiele, J. Teich, M. Naedele, K. Strehl, and D. Ziegenbein, “Fun-
State—Functions driven by state machines,” Computer Engineering
and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH),
Zurich, Tech. Rep.TIK-33, Jan. 1998.

[40] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,”J. ACM, vol. 20, no. 1, pp. 46–61,
1973.

[41] E. A. Lee, “Recurrences, iteration, and conditionals in statically sched-
uled block diagram languages,” inVLSI Signal Processing III, R. W.
Brodersen and H. S. Moscovitz, Eds. New York: IEEE Press, 1988,
pp. 330–340.

[42] D. C. Ku and G. De Micheli, “Relative scheduling under timing con-
straints: Algorithms for high-level synthesis of digital circuits,”IEEE
Trans. Comput.-Aided Design, vol. 11, pp. 696–718, June 1992.

[43] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli, “Software
synthesis for real-time information processing systems,” inCode
Generation for Embedded Processors, P. Marwedel and G. Goossens,
Eds. Norwell, MA: Kluwer, 1995, pp. 260–279.

[44] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded memory
using the token flow model,” Ph.D. dissertation, Dept. EECS, Univ. Cal-
ifornia, Berkeley, 1993.

[45] S. Ha and E. A. Lee, “Compile-time scheduling of dynamic constructs in
dataflow program graphs,”IEEE Trans. Comput., vol. 46, pp. 768–778,
July 1997.

[46] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli,
“Quasistatic scheduling of embedded software using free-choice Petri
nets,” inProc. Workshop Hardware Design and Petri Nets (HPWN ’98),
1998.

[47] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, “Sched-
uling hardware/software systems using symbolic techniques,” inProc.
7th Int. Workshop Hardware/Software Codesign (CODES’99), Rome,
Italy, May 3–5, 1999, pp. 173–177.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

[48] E. A. Lee and T. M. Parks, “Dataflow process networks,”Proc. IEEE,
vol. 83, no. 5, pp. 773–799, 1995.

[49] K. Strehl, L. Thiele, D. Ziegenbein, and R. Ernst, “Scheduling
hardware/software systems using symbolic techniques,” Computer
Engineering and Networks Lab (TIK), Swiss Federal Institute of
Technology (ETH) Zurich, Gloriastrasse 35, CH-8092, Zurich, Tech.
Rep. TIK-67, Jan. 1999.

[50] I. Radivojevićand F. Brewer, “Ensemble representation and techniques
for exact control-dependent scheduling,” inProc. 7th Int. Symp. High-
Level Synthesis, 1994, pp. 60–65.

[51] C. N. Coelho Jr. and G. De Micheli, “Dynamic scheduling and syn-
chronization synthesis of concurrent digital systems under system-level
constraints,” inProc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD-94), 1994, pp. 175–181.

[52] S. Haynal and F. Brewer, “Efficient encoding for exact symbolic
automata-based scheduling,” inProc. IEEE/ACO Int. Conf. Com-
puter-Aided Design (ICCAD-98), 1998.

[53] , “A model for scheduling protocol-constrained components and
environments,” inProc. 36th Design Automation Conf. (DAC ’99), 1999.

[54] The ATM Forum Technical Committee, “ATM User–Network
Interface Specification, Version 3.1,”, ftp://ftp.atmforum.com/pub/ap-
proved-spdcs/af-uni-0010.002.pdf.tar.Z, Sept. 1994.

[55] The ATM Forum Technical Committee, “UTOPIA, An ATM-PHY
Interface Specification, Level 2, Version 1.0,”, ftp://ftp.atm-
forum.com/pub/approved-specs/af-phy-0039.000.pdf, June 1995.

[56] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: The single-node
case,”IEEE/ACM Trans. Networking, vol. 1, pp. 344–357, June 1993.

[57] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,”Proc. IEEE, vol. 83, pp. 1374–1396, Oct.
1995.

[58] S. J. Golestani, “A self-clocked fair queueing scheme for broadband
applications,” inProc. IEEE INFOCOM ’94, vol. 2, June 1994, pp.
636–646.

Karsten Strehl (S’97–M’00) received the Diploma
degree (with distinction) in electrical engineering
from the University of Karlsruhe, Germany, in 1997
and the Doctor of Technical Sciences degree from
the Swiss Federal Institute of Technology (ETH),
Zurich, in 2000.

In 1997, he joined the Computer Engineering
and Networks Lab (TIK) at ETH Zurich. Since June
2000, he has been with ETAS GmbH, Stuttgart,
Germany. His research interests include design
automation methods and tools for specification,

analysis, and synthesis of embedded hardware/software systems, in particular
high-level system design approaches, formal methods, and automated produc-
tion code generation.

Dr. Strehl received the 1997 Award of the Faculty of Electrical Engineering
at Karlsruhe University, the 1997 Siemens Information and Communication
Award, and the ETH Medal for his Ph.D. dissertation.

Lothar Thiele (S’83–M’85) received the Dipl.-Ing.
and Dr.-Ing. degrees in electrical engineering from
the Technical University of Munich, Germany, in
1981 and 1985, respectively.

In 1981, he joined the Institute of Network Theory
and Circuit Design, Technical University of Munich,
as a Research Associate. After finishing his habil-
itation thesis, he joined the Information Systems
Laboratory, Stanford University, Stanford, CA, in
1987. In 1988, he became Chair of Microelectronics
in the Faculty of Engineering, Saarland University,

Saarbrücken, Germany. He joined ETH Zurich, Switzerland, as a Full Professor
in Computer Engineering in 1994. His research interests include models,
methods, and software tools for the design of embedded systems.

Dr. Thiele received the Award of the Technical University of Munich for his
Ph.D. dissertation in 1986. He received the 1987 Outstanding Young Author
Award from the IEEE Circuits and Systems Society. In 1988, he received the
1988 Browder J. Thompson Memorial Prize from the IEEE.

Matthias Gries (S’97) received the Dipl.-Ing. degree
in electrical engineering from the Technical Univer-
sity of Hamburg-Harburg, Germany, in 1996. He is
currently pursuing the Ph.D. degree at the Swiss Fed-
eral Institute of Technology (ETH), Zurich.

His research project deals with algorithm-architec-
ture design tradeoffs of network processors with the
aim of preserving the quality of service by feasible
packet scheduling and policing. His interests also in-
clude queue management for access network devices
as well as memory controller design.

Dirk Ziegenbein (M’01) received the M.S. degree in
electrical engineering from Virginia Polytechnic Uni-
versity, Blacksburg, in 1996.

Since 1997, he has been with the Institute of Com-
puter and Communication Network Engineering
(IDA), Technical University of Braunschweig,
Germany, where he is working on the development
of the SPI Workbench, an approach to multilanguage
embedded system design. His research interests
include modeling, analysis, and optimization of
complex embedded systems, in particular systems

specified using several languages or models of computation.

Rolf Ernst (M’89) received the diploma in computer
science and the Ph.D. degree in electrical engi-
neering from the University of Erlangen-Nuremberg,
Germany, in 1981 and 1988, respectively.

From 1988 to 1989, he was a Member of Tech-
nical Staff at Bell Labs, Allentown, PA. Since 1990,
he has been a Full Professor at the Technical Uni-
versity of Braunschweig, Germany, where he heads
the Institute of Computer and Communication Net-
work Engineering (IDA). He was a main author of
one of the first hardware/software cosynthesis sys-

tems, COSYMA. His main research interests are in embedded system design
and embedded system design automation.

Jürgen Teich (S’89–M’95) received the Dipl.-Ing.
degree (with honors) from the University of Kaiser-
slautern, Germany, in 1989 and the Ph.D. degree
(summa cum laude)from Saarland University in
1993.

In 1994, he joined the DSP design group at the
University of California at Berkeley, where he was
working in the Ptolemy project. From 1995 to 1998,
he was with TIK at ETH Zurich, finishing his ha-
bilitation thesis in 1996. Since 1998, he has been a
Full Professor in the Electrical Engineering and In-

formation Technology Department, University of Paderborn, Germany, holding
a Chair in Computer Engineering. He is author of a textbook on hardware/soft-
ware codesign edited by Springer in 1997. His special interests are massive par-
allelism, embedded systems, hardware/software codesign, and computer archi-
tecture.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

