524 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

FunState—An Internal Design Representation for
Codesign

Karsten StrehiIMember, IEEE Lothar Thiele Member, IEEE Matthias GriesStudent Member, IEEE
Dirk Ziegenbein Member, IEEEROoIf Ernst Member, IEEEand Jurgen TeiciMember, IEEE

Abstract—In this paper, an internal design model calledFun- structures. Many intermediate possibilities have been developed
State(functions driven by state machines) is presented that enables gver the years.
the representation of different types of system components and Recently, a methodology has been designed to deal with the

scheduling mechanisms using a mixture of functional program- .
ming and state machines. modeling problem of complex embedded systems for the pur-

It is shown how properties relevant for scheduling and verifica- P0se of scheduling [2], [3]. This modelystem property inter-
tion of specification models such as Boolean dataflow, cyclostatic vals(SPI), is a formal design representation internal to a design

dataflow, synchronous dataflow, marked graphs, and communi- system. It combines the representation of communicating pro-
cating state machines as well as Petri nets can be represented |n’[hecesses with correlated operation modes, the representation of

FunState model of computation. Examples of methods suited for det inate behavior. diff t icati hani
FunStateare described, such as scheduling and verification. They nondeterminate behavior, diiferent communication mechanisms

are based on the representation of the model's state transitions in SUch as queues and registers, and scheduling constraints.
the form of a periodic graph. The feasibility of the novel approach This paper is concerned with major refinements of the SPI
is shown with an asynchronous transfer mode switch example. model in order to allow the explicit modeling of mixed control
Index Terms—Formal verification, high-level synthesis, internal ~ and data flow within components. This enables the representa-
specification model, model of computation, symbolic scheduling. tion of scheduling mechanisms as well as efficient methods for
scheduling and verification of system propertieanStatehas
been defined [4] to represent many different well-known models
of computation to support stepwise refinement and hierarchy
NE OF the major sources of complexity in the design afind to be suited to internally represent many different synchro-
embedded systems is related to their heterogeneity. @ization, communication, and scheduling policies. Another ap-
the one hand, the specification of the functional and timingication of a mixed representation is the inclusion of third-party
behavior necessitates a mixture of different basic models @flegacy system parts where control information is incomplete.
computation and communication, which come from transfoFunStatds a preferred representation wherever the control of a
mative or reactive domains. On the other hand, we are fage@cess shall be exposed to a tool or to the user. A good example
with an increasing heterogeneity in the implementation. This a scheduling method demonstrated in this paper.
not only concerns the functional units that may be implementedThe role of such an internal model in a multilanguage setting
in the form of dedicated or programmable hardware, microcoi-shown in Fig. 1. A specification of a system consists of dif-
trollers, domain-specific, or even general-purpose processdgent input formalisms. These different parts may be modeled
In addition, these units communicate with each other via difnd optimized independently. Then the information useful for
ferent media—e.g., buses, memories, and networks—and rhgthods such as allocation of resources, partition of the design,
using many different synchronization mechanisms. scheduling, and verification must be estimated or extracted and
This heterogeneity caused a broad range of scheduling pefiapped to internal representations, which describe properties
cies in hardware and software implementations. Two extreroethe subsystems and their coordination (synchronization and
possibilities are static schedules such as those developedd@mmunication). There may be different internal models for dif-
synchronous datafloySDF) models [1] anekarliest deadline ferent tasks to be performed using system analysis and design.
first (EDF) schedules developed for dynamically changing tagls pointed out already, this is one major stage where the need for
a sound model of computation exists. Methods such as sched-
uling, abstraction, and verification work on these internal rep-
Manuscript received February 11, 2000; revised December 4, 2000. fesentations and eventually refine them by adding components
K. Strehl is with Research and Development, ETAS GmbH, Stuttgart 70468nd reducing nondeterminism.

Germany (e-mail: strehl@computer.org). ; ; ; ;
L. Thiele and M. Gries are with the Computer Engineering and Networks Lab The following new results are described in this paper.

(TIK), Swiss Federal Institute of Technology (ETH), Zurich 8092, Switzerland 1) TheFunStaterepresentation is defined, which serves as

. INTRODUCTION

(e-mail: thiele@tik.ee.ethz.ch; gries@tik.ee.ethz.ch). an internal representation of heterogeneous embedded
D. Ziegenbein and R. Ernst are with the Institute of Computer and Commu- f h f scheduli d ificati
nication Network Engineering (IDA), Technical University of Braunschweig, SYStem.S or the purpose of schedu 'ng.an Ver' ication.
Braunschweig 38106, Germany (e-mail: ziegenbein@ida.ing.tu-bs.de; Extensions are provided that enable hierarchical repre-
ernst@ida.ing.tu-bs.de). sentations and support abstraction mechanisms.

J. Teich is with the Computer Engineering Lab (DATE), University of Pader- ..
born, Paderborn 33098, Germany (e-mail: teich@date.uni-paderborn.de). ~ 2) AS the FunState model explicitly separates control

Publisher Item Identifier S 1063-8210(01)03354-6. and data flow, properties of many different models of

1063-8210/01$10.00 © 2001 IEEE

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 525

specification of
components and
their coordination design representations methods

4) 4)

language 1

language 2 \
P
/

language 3 verification
F ug%l‘ate P allocation
. partitioning
coordination internal model scheduling
model _ Y,

Fig. 1. Role ofFunStatein a design process.

computation can be represented, such as communicatingdels of computation. An overview and classification of dif-
finite-state machines, marked graphs, synchronodsrent models of computation including discrete-event, reactive,
cyclostatic, dynamic dataflow graphs, and Petri netand dataflow models is given in [8].
In contrast to other approaches, constraints and refinedn the SPI model [2], [3], the control information is communi-
ments as occurring in a typical design process can bated using data tokens. Two similar approaches are Huss’ code-
represented directly in the model. Examples are timirgign model [9] and Eles’ conditional process graph [10]. Many
constraints or timing properties and different schedulingther research groups independently proposed models that sepa-
policies such as static scheduling, quasi-static schadte data and control flow. These are, for example, the specifica-
uling, and constant-rate scheduling. tion and description language (SDL) [11], codesign finite-state
3) The methods that will be described in this paper are bas@achines (CFSMs) [12] combining SDF [1] with finite-state
on the representation of a state space in the form of a regachines (FSMs) [13], [6], and program state machines [14].
ular state transition graph, i.e., the state transition graphost of these approaches have limited composability as con-
of aregular state machin€RSM) [5]. These dynamic or trol and data flow cannot be mixed arbitrarily in the hierarchical
periodic graphs are theoretically well investigated. Thievels.
simplicity of the underlying semantics distinguishes the Also in this area, graphical formalisms based on extensions
presented representation from other approaches. of classical FSMs like hierarchical, concurrent FSMs as intro-
Before introducing the basigunStatemodel in Section |1l duced by Harel [15] with many variants [16], [17] have been de-
and model extensions enabling hierarchical specifications gloped. In the implementation of i-Logix Inc., the dataflow as-
Section IV, we give an overview of related other approach&§ct of Statemate is covered in a separate domain called activity
to modeling mixed control and data flow (Section I1). Then, ighart. But similarly to the Stateflow model employed in the
Section V, the semantics of tHunStatemodel are explained Matlab/Simulink environment, the expressiveness of this part of
using regu|ar state machineS, a formal model that useéhﬁ model prOhlbltSthe developmentOfeﬁiCientveriﬁcation and
periodic graph to describe the state transition behavior ofifaplementation methods. For examgteinStatedoes not allow
FunStatemodel. In Section VI, we explain the relationshigdlobal variables, which makes the model modular. The state ma-
betweenFunStateand other models of computations. Finallychine may only interrogate events that are local to the compo-
efficient verification and scheduling methods are described fi¢nt. InFunState the dataflow network is also targeted very
Section VII. This paper concludes with a larger case studjuch to modeling well-known dataflow process networks in-
namely, specification and scheduling of an asynchrono@i!ding synchronous dataflow, cyclostatic dataflow, and others

transfer mode (ATM) switch, in Section VIII. used in many design systems for developing and prototyping
digital signal-processing (DSP) algorithms. Finally, activities in

Statemate have no explicit notion of the consumption of time.
This is not natural since activities once evoked may take longer
In many applications such as embedded systems, the trathen one state machine transition.RonState functions may
formative domain (data processing, stream processing) and ¢xglicitly consume time before finishing. Therefore, the timing
reactive domain (reaction to discrete events, control flow) aneodel is much more natural for computation-intensive activi-
tightly interwoven. Application examples include mode and pdies than the single-step synchronous reactive processing in the
rameter control of dataflow processing systems, system c@emantics of Statemate.
figuration, and initialization, e.g., in packet-based transmissionin *charts [7], [18], unlike statecharts, CFSMs, and other
systems [6], wireless modems [7], etc. concurrent hierarchical FSMs, no model of concurrency is de-
It is not possible to give here an overview of all specificatiofined a priori. Instead, the goal is to show how to embed FSMs
models that have been proposed in this area. Many of them wiithin a variety of concurrency models, i.e., dataflow models,
be covered in later sections when we relateStateto other discrete-event models, and the synchronous/reactive model.

Il. RELATED WORK

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

526 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Whereas these authors favor the systematic combination
of disjoint semantics often combined with abstract graphical
models (block diagrams), e.qg., [7], others seek a consistent se
mantics for specification of the complete system, for example,
the COSYMA system [19] and the OLYMPUS system [20].

While in the unified approach the major problems deal with
the challenge of how to extract portions of a design in order
to be able to apply efficient analysis and synthesis techniques
to portions of the specification, a major problem in the mixed g, #2 4 A g2 3/f1

approach lies in finding clean ways to combine diverse models g #21/f,
of computation at various levels of abstraction. g #=2/f
Complementary to the above approaches, RbaStatein- k 3 3 j

ternal model attempts to reduce the design complexity by repre- - e of & SimplBUNS del
senting only those characteristics of a heterogeneous input speg-> =x@mple of a simpleunstatemodel.

ification that are relevant to certain design methods, in partic- 3
ular, scheduling and verification. Therefore, the primary pur- D >
pose is not to provide a unifying algorithm specification. q

Besides the usual requirements for specification models schi:h
as composability, hierarchical structure, well-defined semaa?’r‘r
tics, and adaptation to the heterogeneity present in the appli-
cation domain, we require four further properties. 3

1) The properties of different specification models (com- >@ -
puter languages, block diagrams) relevant to certain I
design methods should be representable in the interggy, 4. Example of a register of sizen = 3.
model.
2) The internal model must support abstraction mechanisigs
as necessary for the design of complex systems.] o
3) The internal model should support refinement such thatl) Storageunits: For the sake of simplicity, only two sorts

results in the design process can be incorporated into fleStorage elements are introduced here, namely, queues and
model, e.g., scheduling decisions reducing the degreersglsters. The actual access functionality and the available query

nondeterminism or back-annotation of computation timddnctions on storage unit types can be defined individually for
of tasks. each type. Note that only examples are given here.

4) It should be possible to incorporate design constraints 1) Queueshave first-in first-out (FIFO) behavior and un-
such as required timing properties. bounded length. They store tokens that are added (re-

moved) via incoming (outgoing) edges. The tokens rep-
resent data flowing through the network. The numbers of
tokensg# € Z> in queuesy € S are part of the system
At first, the basic nonhierarchic#funStatemodel is ex- state.q#0 € Zx(denotes the initial number of tokens;
plained. The activation of functions in a network is controlled see Fig. 3. Depending on the abstraction level, we may
by a finite-state machine, similar to the semantics of activity ~ deal with colored tokens, i.e., tokens with values associ-

3. Example of a queug with ¢#0 = 3, i.e., three initial tokens. The
ent number of tokens ig#t = 5.

Elements of the Network

Il. THE BASIC FUNSTATEMODEL

charts in statecharts implementations; see [21]. In contrast to ~ ated. In this case;$1, ¢$2, ..., ¢Sk with £ = ¢# de-
dataflow models of computation, functions (or actors) are not ~ noting the values of the first, second,., kth token in
autonomous. queueg, respectively. The assignment of initial values to
Definition 111.1: The basid=unStatecomponent consists of tokens is not considered here.
a networkV and a finite-state machin&/. The networkV = 2) Registersare linear arrays of limited length of pairs
(F, S, E) itself contains a set of storage unitss S, a set of (address, value) of addresses and values. In contrast to
functions f € F, and a set of directed edgese E, where tokens in a queue, the number of values in a register is
EC (FxS)U(SxF). constant. These value$l, 732, ..., »8n of a register
Data are represented hsalued tokensStorage units and 7 can be replaced via tokens on incoming edges or read
functions form a bipartite graph. In other words, there are no nondestructively via outgoing edges; see Fig. 4. In com-
edges connecting two storage units or two functions. parison with queues, registers do not impose a partial
Fig. 2 shows an example of a simffnStatemodel. The ordering on function evaluations. Registers are used for
upper part represents the netwo¥k containing storage units modeling the flow of information, e.g., in order to esti-
q1, G2, g3, andgy with 1, 2, 0, and 3 tokens, respectively, and mate the necessary communication bandwidth or impose
functions f1, f2, and fs. The lower part contains a finite-state timing constraints. The assignment of initial values to to-

machine, in this example with just one state and three transition ~ kens is not considered here.
edges. Details concerning the behavior of FumStatemodel 2) Functions: The function objectsf € F of a FunState
are described below. model are uniquely named and operate on tokens or values when

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 527

initial state .
transition ¢

/Q (q#23) A (q$2<15)/f1.f

predicate---" "

-0

TT--- action

Fig. 5. Example of a function. Fig. 6. Part of a simple automatdd of some component.

firing. Inputs and outputs of functions have associated variablesrig. 6 shows the example of a simple automaton. The transi-
¢; € Z>o andp; € Zx>o, which denote the number of con-tion ¢ is taken if the automaton is in its initial state, if there are
sumed tokens (read values) and the number of produced tokghkeast three tokens in queygand if the value of the second
(replaced values), respectively. The variables represent expiegen is less than 1.5. At the same time instant, functions named
sions that evaluate to constants or random processes. If requisgdand f, receive an event.
additional constraints—for example, intervals—involving these
variables may restrict the numbers of consumed or produced 8)
kens. Similar functions can be defined that denote the values of
the produced tokens. Until now, we have not described how the state machine and
With each function object, there is associated a latency furtbe network interact. The badiminStatecomponent is executed
tion lat that evaluates to a constant or a random process adatiowing the steps described below:
the case of the number of consumed and produced tokens.

Operational Semantics of the Flat Model

1) Initialization. The current state of the state machine is

A function object is in one of the statéélc or run. Initially,
the state of a function object igle. In addition, the state of a
function object comprises a value> 0, which denotes the re-
maining execution time. If a function object receives an event 5
(this process is described later in this paper), it changes state
from idle to run, consumes tokens (reads values) from its input
storage units, and initializes= lat. As described in the oper-
ational semantics section, the state of a function object changes
from run to idle, and changes are made in the output storage
units when the function object finishes execution, i.e., the re-
maining execution time is = 0.

When receiving an event, the functigrshown in Fig. 5 con-
sumes: tokens from queue; and reads three values from reg-
isterr,. After the latency has expired, adds tog; some non-
deterministically chosen number of tokens in the intefval]
and replaceg values inrs.

More general models of function objects are possible, e.g.,
having more states and understanding named events such as
start, kill, stop, andremove. This way, different kinds of in-
terrupts can easily be specified.

3)

B. State Machine

There are many different possibilities to specify the finite-
state machiné/ that controls the activation of embedded com-
ponents (see hierarchical model) or functions. In order to facil-
itate analysis, scheduling, and the concept of hierarchy, a syn-
chronous/reactive model is chosen. In particular, the model is
similar to ARGOS [16] developed at IMAG (Grenoble). It re-
sembles the statecharts formalism by Harel [15], [21] but re-
solves circular dependencies using fixed-point semantics.

Transitions are labeled with conditions and actions. Condi-
tions are predicates on storage unitscs S in the network.
These predicates very often only concern the number of tokens4)
in a queue, e.gq# > v for some integer variable. Again,
this variable may represent a deterministic value or a random
process, possibly constrained. A transition is enabled if the cor-
responding predicate i8ze. The action consists of a set of
names of function objects. Events are sent to these functions
when the transition is taken.

set to its initial state. All function objects are in staiige

and have the remaining execution time= 0. Global
time 7 is set toZ’ = 0.

Check for progresdf from the current state there are no
more enabled state machine transition conditions (the cor-
responding conditions on the states of the storage units
have the valudulse) and there are no function objects
that are in stateun, the execution is stopped. If there are
enabled state machine transition conditions originating in
the current state, the execution continues $tite ma-
chine reactiofi[step 4)]. If there are no enabled state ma-
chine transition conditions but some function objects are
still in staterun, the execution continues gttinction ob-

ject terminatiori [step 3)].

Function object terminatiorGlobal time7” is progressed

to the point in time7” when the function objects with
the least remaining execution timewill finish their pro-
cessing. The remaining execution timesf all function
objects in state-un will be diminished byZ” — 7. All
function objects in stateun and with+ = 0 finish pro-
cessing at the new time instdfit. They write/add the to-
kens produced by the computational process of a function
object to their output storage units and enter stdte.

If two function objects add tokens to the same queue at
the same instant, the resulting token order is nondeter-
ministic, but tokens from one function do not interleave
with those from other functions. If two function objects
write to the same register at the same instant, a nonde-
terministic decision is made about which write action de-
fines the final state. Again, the writing of one function is
atomic. The execution continues &Heck for progres's
[step 2)].

State machine reactiorfhe state machind/ makes at
most one transition. A transition can be taken if it orig-
inates in the current state and the value of the corre-
sponding condition evaluates toue. At the same time,
the function objects whose names are in the action of the
taken transition receive an event. If they are in sidte,

they enter stateun, consume tokens (read values), and

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

528 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

model. In addition/N can also contain embedded components
and ports representing interfaces through which a component
exchanges tokens with its father component. A hierarchical
FunStatemodel has exactly one top-level component. This
top-level component has no interfaces.

Definition IV.1: The networkV = (F, S, C, I, O, E) ofa
hierarchicaFunStatecomponent contains a set of functiafis
a set of storage unit$, input portsl, output port€0, embedded
component€ with input and output porthc andO¢, respec-
tively, and directed edgés C ((FU O¢) x (OUS)) U ((Tu
S) x (F U Ig)). There is at most one edge entering an input
port of an embedded component and at most one edge leaving
an output port of an embedded component.

This basically means thatfunStatecomponent can be re-
garded as a refinement of a function. A simple example of a
hierarchical component is shown in Fig. 8.

Several extensions of the above-described simple state rg?g;?r:igé? ttr\:\;c; mg:teggeéigfa?r?ggemmg the hierarciiicat

chine lead to a model similar to ARGOS [16]. In particular, w))
1) The state machine of a component may only access in-

make use of the following concepts. | :]
1) Hierarchy.States can be hierarchical, i.e., they may con- ternal storage units or storage units that are d_|rectly con-
nected to input ports—via the names of these input ports.

tain other automata. In case of &oRrR composition, the E le. the stat hine in Fia. 8 tai
father state is interpreted as being in one of its child states or exampie, the S "?‘ € machinein =g. o may contain a
predicate of the form; # > 1, i.e., the queue connected

(comparable to a conventional state machine). If the father .) .
to inputi; must contain at least one token.

is refined usingh\ND composition, itis interpreted as being)
in all of its child states at the same time (concurrency). In 2) The state mach!ne can send events to g_mbedded. compo-
figures, the child states are separated by dashed lines in nents. If the action set of a taken transition contains the
the follé)wing name of a component, then the state machine of this com-
Events.Events can be part of predicates and action sets. pqnent can make a transition, i.e., itis activated. Ifit con-
An event has the valug-ue if it is in the action set of a ta_|tr;]s the n?The' of an tiegbed.?ﬁ.d t(;]ompotr;eg(tj a(;ngented
taken transition angulse otherwise. Events are not vis- with a évent, this event sue within the embedded com-
ponent. For example, an action set of the state machine in

ible outside a component.) :
Note that events are used for communication inside compo- Fig. 8 may look likeC’, Cs.b. Then components) and
C, are activated, i.e., the state machines may perform a

nents only and reflect the control-oriented aspect of a system’s : L .
behavior. They do not carry specific data but only existor notat "€action. In additionp is true in C;.
a given point in time. Tokens, on the other hand, represent thel he detailed semantics of the hierarchical model can be de-
data-oriented part, may have (almost arbitrary) values and [igeribed best by constructing an equivalent flat model. Before
times greater than zero, and are allowed to cross componef@ng this, some characteristics of the hierarchical model will
boundaries in either direction. be summarized.

A state machine involvingAND and XoR composition can 1) The hierarchy can be nested arbitrarily deep.
easily be flattened, i.e., transformed into a simple state machine2) Each component contains a state machine as well as a
consisting of states and transitions labeled with conditions and network of functions, embedded components, and storage
actions. units.

These straightforward extensions are explained with the ex-3) Communication between embedded components is per-
ample of a simple exception handler in Fig. 7. Statds re- formed via the explicit exchange of tokens, i.e., not syn-

~

,Tl T T
pl/si pz/t::w\[/u sfv
| |
B ® | O

Fig. 7. Example of a state automaton withD andxoR states.

initialize = = lat. Execution continues atCheck for
progress [step 2)].

IV. MODEL EXTENTIONS

A. Extensions of the State Machine Description

2)

fined usingAND decomposition into three child states. If one
of the predicatep; andp, in X is true, then X is left and
one of the state¥” and Z is entered to manage the exception.

chronous.

4) The father component explicitly activates its childrenin a

synchronous way, i.e., enables them to make a transition.

The right-hand child state resolves simultaneous exceptions visb) Flattening a hierarchic&lunStatemodel is quite simple.

some priority rule. The communication uses the events s,
andt. In particular, if onlyp; or both predicates argue, then
stateZ is entered. If onlyps is true, then a transition to stabé
occurs. All this happens within the same time instant.

In particular, hierarchy does not extend the computational
model of the basi€unStatemodel.

C. Removing Hierarchy

The operational semantics BfinStates defined in terms of

B. Hierarchical FunState Network

the basic model. To this end, the flattening of a hierarchical-

The basic element of the hierarchical network of then- Statemodel will be explained. The flattening transformation in-
Stateformalism is the component. Each component containslves several steps. Let us suppose that compdarieaintains
a network N and a state machin&/ as defined for the basic the embedded componeft, which will be flattened.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 529

function- - - - - h ' --- network N

embedded | ...teczzziic
component

"~ component C

__simple finite state

machine M
Fig. 8. Example of a hierarchical component.
- T A
OZndlf ®
—J
I anplf
_ I

Fig. 9. Part of a hierarchic&lunStatemodel and its unfolding.

1) The function objects, embedded components, and storag®ath constraints as defined by the following rules enable a
units and the edges of the netwdyk are moved fron€; constructive method to check whether a certain execution trace
toC. satisfies a given path constraint, as described in Section VII-D.
2) The sources of edges starting from an input po€t'oére A path constraint is defined by a labeled path in the network
moved to the storage unit ifi having an edge pointing to of a component. A path is of the form
that input port, and the input port is removed.
3) The targets of edges ending in an output por€ofare
moved to the storage unit i@ having an edge coming
from that output port, and the output port is removed. jhyolving 7 storage unitsp—1 function objects, and /2-2
4) Each occurrence df} in the actions of any transition in ggges. The first and last storage units may be input and output
the state machine @ is replaced by a new event namep o ts, respectively. Then they refer to the storage units that are
The condition of each transition in the state machin€of gjrectly connected to them outside the component. In order to
is extended with this new event name using conjunctiopecify deadlines properly, we are interested in two comple-
5) The state machine @, is added ta”’ USINGAND-COM- mentary properties, namely, the first and the last reaction in
position. storage unity, as a result of a token’s arriving in unjt.
6) The remaining parts of the embedded component are re|g this end, the path is labeled with two predicatés) and
moved. _ _ u(o) that involve a free variable, for example\(¢) = (o >
In the above proce_dure, a suitable naming scheme rr_lustgt;e)\ (o < 7) andu(c) = (¢ = 5). The free variabler denotes
used in order to avoid multiple occurrences and to uniquelife time period that a token takes to travel along the specified
identify elements. _ _ ~path. In particular, the measurement for the time period starts
In Fig. 9, part of a hierarchic&unStatenodel and its equiv- \hen the token enters the first storage wniand ends when it
alent flat model are shown. If predicaign Fig. 9 istrue, the gnters the last ong,. The predicates of a path constraint must

state machine of’ makes a transition. It also activates the CoMme 4. for any token traveling along the specified path and for
ponents”; andC». The conditior: for the transition of the state 4 possible executions of the system.

machine ofC; is alsotrue, resulting in a reaction of the state
machine ofC; in the same execution cyclejifis satisfied too.

€1 €1 €n—1 én_1
G170 facl —

1) The path constraint with respect to the first predicédte)
is said to be satisfied if the predicatér) is true for the
traveling time of thdirst token, which arrives iry,, and
has been initiated by a token arrivalgn for all possible
The purpose of timing constraints is to guide the specification ~ execution sequences.
or design process of a system by specifying certain deadlines2) The path constraint with respect to the second predicate
Checking a timing constraint shows whether all executionsofa (o) is said to be satisfied if the predicatéo) is true
system satisfy the constraint. for the traveling time of théast token, which arrives in

D. Timing Constraints

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

530 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

g» and has been initiated by a token arrivalinfor all
possible execution sequences.

To clarify the meaning of traveling times, let us suppose that ,
a given system has two different execution traces only; see trace 1: . . : :
Fig. 10. In the first trace, two tokens namedandwv, enter the (7
first queueq; of a path constraint; in the second trace, there SRR S : :
is only one tokervs. The upward arrows in Fig. 10 represent ~ trace2: @ | l : : :
the corresponding arrival time§v;), ¢(v2), and¢(vs). The ooty ot
downward arrows represent the causally dependent tokens that
arrive in the last queug, of the path. Obviously, the first token Fi9- 10- Lower and upper path constraints.
arrives in queue,, after time periodd. = {2, 4} and the last
token arrives after time periode = {4, 5, 6}. As mentioned andz = (v, I) € X denotes a state for all € V and] € L.

trace 1. T L L e
7 L S B S

above, a method for automatically determining these setsTie statex, = (vo, Ip) is the initial state. The edge®
traveling timesL and M is presented in Section VII-D. are called transitions of the dynamic state diagram. There

is an edget = (z1, z2) € T with z; = (v, I;) € X and

V. REGULAR STATE MACHINES 22 = (v2, [r) € Xiff a= (v1, v2) € A, I — I} = d(v1, v2),

. L . andP(a, I1) = true.
The purpose of this section is to introdugenStatés under A given FunStatemodel can be transformed into a static

lying computational model called regular state machine (RSM}aph by a simple syntactic operation. In particular, the nodes of

[5]. It serves as the basis for the methods derived in this PAaPEL & ite-state machine in tHeunStatanodel are the noded
i.e., verification and scheduling. Because of the simplicity Q ’

i :) T :) e transitions are the edgAs the predicates on the transitions
this model and its thorough investigation in combinatorial math- - g : T
. - are P, and the initial state isg. The dimensiom is the number
ematics, many further results can be expected in the future. . . .
> Lo . of queues in thé&unStatemodel, I is a vector containing the
The model is introduced in its simplest form. It can easily bé . -
numbers of initial tokens, and(a) denotes the change in the

extended to more general settings. In particular, we start from - .
. number of tokens caused by the transition corresponding to
the following class ofFunStatemodels.

.)) The state transition diagram ofanStatemodel is given by
1) The conditions in th&unStatemodel do not contain data js gynamic state transition diagram. Therefore, FumState

dependencies, i.e., .the free variables in predicates denQigqel is in statero = (vo, Io) initially. A state transition via
humbers of tokens in queues only. some edge = (v1, v») € E with sourcev; and target, may
2) We suppose that the hierarchy of components has begn,nen jff the state machine is in a state= (v, I,) for some
upfoldeq usmg.the techmque; described above. In ggey point!; and P(a, I;) = true. After the transition, the
dition, hierarchical state machines have to be flattengq, \siatemodel is in staters = (vs, I, + d(a))

using con_\/entlonal techniques for unfqldmg. . InFig. 11, the edges of the static state transition diagram are
3) The functions have constant consumption and productigfpajed in the formp(a, 1)/d(a). If the predicate igrue for all
ratesc andp, respectively. index pointsI € Z™ or if d(a) = 0, we simply write the label
4) Timing is neglected. d(a) or p(a, I), respectively. The dynamic state transition dia-
An example of the relationship betweerFanStatemodel gram in Fig. 11 only shows a part of the index space. At each
and its computational model is given in Fig. 11. The numbers pfdex point/ € Z™, there exist two states corresponding to the
tokens in queueg, correspond to the respective vector elemenig o states of the static state transition diagram. The initial state
ix, as introduced below. is shaded gray. The index poifit= (0, 0)7 is shown in the
Definition V.1: A static state diagram is a directed edge-laspper left corner. Each transition within the dynamic state tran-
beled graptz = (V, A, D, P, v, Io) with a set of node¥’; sition diagram corresponds to one of the static diagram’s transi-
a set of directed edges, wherea = (v, v2) denotes an edge tions. By means of the variablésandi,, the dynamic diagram
with sourcev; € V andtarget; € V;afunctionD: A — Z™, glso represents the queue contentg Gfndg. in addition to the
which associates with each edge= (v1, v2) € A aninteger nternal finite state of the state machine.
distance vectoti(a) = d(vi, v2) € Z™ of dimensionm; a The modelis similar to that of vector addition systems or Petri
predicate function”: A x Z™ — {true, false}; and a node nets. Butin our case, there are several nodes for each index point
vg € V and avector with nonnegative elemefifss Z™, which 1 Moreover, many results from combinatorial mathematics are

are called the initial state. known for the class of periodic graphs considered here, e.g.,
The static state diagram as defined above is a shorthand pp]—[24].

tation for the (infinite) state transition diagram of a regular state

machine, denoted as a dynamic state transition diagram.
Definition V.2: The dynamic state diagram

Gy = (X,T, z) of a given static state diagram As theFunStatemodel serves as an internal representation,

G = (V,A, D, P v, Ip) is an infinite directed graph properties relevant to scheduling and verification of different

defined as follows. The nodeX are called the states ofinput specifications should be easily representable.

the regular state machine. We ha% = V x I, where The modeling power ofFunStatds coming neither from the

I = ZZT, denotes the index set of the regular state machimencept of hierarchical or parallel automata (as they can be

VI. RELATIONSHIP TO OTHER MODELS

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 531

(]
©
q1 1
. 0 _
#2111 f H "121/{01}

g #21/f

)]

N

Fig. 11. A basid~unStatemodel, its equivalent static state transition graph, and its dynamic state transition diagram.

/Cq c g #24nq#23/F
Y /s . (D

Fig. 13. Example of a synchronous dataflow graph and its representatidrusSgatemodel with local control. Only embedded compon€htis shown.

transformed to simple automata without events) nor from tmeodel. All FSMs operate asynchronously, heké, and M-.
concept of embedded components (as they can be flattenddijey communicate via single element buffers, e;gWhen an
Instead, the partition into a purely reactive part (state machirfe€$M A, writes into this buffer, the old value is replaced by a
without computations and a passive functional part is the maiew one. Reading from the buffer is nondestructive. This com-
source for this capability. munication model can be represented as shown in Fig. 12. It cor-

As will be seen, the combination of embedded componentesponds to the communication via a POLIS data signal. Other
refinement, and abstraction mechanisms leads to a new apmmunication mechanisms such as general signals and control
proach to solving complex problems such as efficient analysigynals (involving also events) can be modeled easily as well.
and scheduling.

The following comparison may lead to useful application- d8. Marked Graphs and Synchronous Dataflow Graphs

domain-specific restrictions of tfeunStatemodel. This is one \marked graphs [25] and SDF graphs [26], [1] are labeled di-

internal model. and edges denoting the communication and the corresponding
L - . FIFO queues between the actors. Two functioasdp denote
A. Communicating Finite-State Machines the numbers of tokens removed from the queue if the actor at its

Basic concepts of statechart-like [15] specifications and sytarget fires and the number of tokens added to the queue if the
chronous parallel state machines like ARGOS [16] are directhetor at its source fires, respectively. An actor may fire if in its
included as thé~unStatemodel supportanD and XOR sub- input queueg there are at leagt¢) tokens. For marked graphs,
states. As a further example, the communication mechanisms havec(e) = p(e) = 1 for all edgese.
of the POLIS [12] model for specification and design of em- A FunStatenodel that behaves like an SDF graph can be con-
bedded systems is described in some detail. structed easily. Fig. 2 showdrainStatenodel corresponding to

The POLIS model [12] has been invented for designing cothiie SDF graph shown in the left-hand part of Fig. 13. This model
trol-dominated embedded systems. Here, we will show how tleeconstructed as above and is an example glohal control
communication mechanism can be represented ifrtinState strategy An example of a model with lcal control strategy

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

532 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

1 f114>(01
. 1
(1,3 i 1
—(¢
Q2.4 1t~ 02
¢ 1
C3/f1
\ c) \ cy/fr)
Fig. 14. A cyclostatic dataflow node.
SELECT SWITCH
. . . Fig. 16. SELECT and SWITCH nodes in tRenStatemodel.

—={ SELECT > SWITCH

0¢ 01¢ #02

Fig. 15. SELECT and SWITCH nodes in Boolean dataflow graphs.

i#21/f

L#21/f,

. . . Fig. 17. MERGE node in thBunStatemodel.
is shown in Fig. 13. The terms “local” and “global” here refer 9

to whether the “intelligence” of the scheduling strategy and its

- . As an example of a n fined in dynami flow
control are distributed over the entire system or not. s an example of a node type defined in dynamic dataflo

graphs, Fig. 17 shows a nondeterministic merge node and its

equivalentFunStatemodel. A MERGE node is enabled for

firing if at least one input edge contains at least one token. The
In cyclostatic dataflow [27], [28], production and consumprode selects nondeterministically which token is transferred to

tion rates of actors change periodically. Fig. 14 shows a cyclire output.

static actor and the correspondifignStatecomponent. The dif-

ferent communication behaviors of the cyclostatic actor are rep- Petri Nets

resented by separate functions in thenStatecomponent. The At a first glance, theFunStatemodel seems to be almost

state machine of thieunStatecomponent cycles through all pos-equivalent to colored Petri nets (CPNs) [29]. But there are sev-

sible consumption and production rates by cyclically activatingral major differences that as well tune the Petri net model to

the corresponding functions. TiinStatecomponents repre- the application domain of theunStatemodel and at the same

senting the actors are connected as in Fig. 13. time generalize it. The following differences can be noted.

] 1) The queues can be related to places in Petri nets. But

D. Boolean and Dynamic Dataflow Graphs queues in theFunStatemodel have a FIFO behavior,

Boolean and dynamic dataflow graphs extend the previously =~ whereas this is not the case in CPN. This restriction
described SDF model by introducing data-dependent dataflow. ~matches the modeling power necessary for embedded
In particular, in the Boolean dataflow (BDF) model, two addi- systems and simplifies the operational semantics to a
tional types of nodes called SELECT and SWITCH are defined; great extent.
see Fig. 15. SWITCH is enabled if the data input edgad the 2) Usually, there are no registers defined in CPN. In order
control input edge: contain at least one token. Once enabled, to model the usual mechanism of passing values through
the node decides based on the valbie € {true, false} of the writing and reading of variables, this capability has been
first token to which outpub; or oo the first token on the data added.
input edge is transferred. The SELECT node acts similarly, i.e., 3) The activation and firing conditions are more general than

C. Cyclostatic Dataflow Graphs

a token on either inpul; or inputis is transferred to output
if there is a token om with valuec$l = true or ¢$1 = false,
respectively.

Fig. 16 shows the correspondiRginStatemodels. The con-
ditions are defined as

crity#F>=1 A c#>=1 A 81 = true
CotlaFt>=1 N c# >=1 A 81 = false
3 i#E>S=1 A c#tE>=1 A 81 = true

cet#H>=1 N cF >=1 A 31 = false.

in CPN as arbitrary predicates on the queues in the preset
of a function can be used. Moreover, in tRenState
model, these predicates can be different from the number
of tokens removed while firing, e.g., it is possible that a
function is activated if there are at least four tokens in an
input queue, but at the time of firing, only two of them are
removed.

In a CPN, the transitions are continuously ready for being
activated. In therunStatemodel, this can be controlled
by the finite-state machine. This capability enables the
simple consideration of limited resources and scheduling
policies.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 533

iy o, [Cp U l
\ M:{ml, mg} |1 1 m1 01
m1=<1120> ;

iz/, Q2 ma=<1,1,02> e 10 0,

A={a1—my, ag—ma}

ar: (i # > DA Ga# > D) A(11$1="a") re

az: (i1 # > DA (4 > DA(GS$14£7a”) admC@Q ap/m;
- J/

Fig. 18. Translation of a SPI process inté-anStatecomponent.

F. System Property Intervals of the rules mapping to the respective mode. A potential uncer-

In contrast toFunState SPI does not explicitly separate pelainty in the mode selection of an SPI process resulting in a set

tween control and data flow. Although SPI processes may hRfPossible modes is equivalent to the possible nondeterminism

internal data and thus an internal state [2], this state is not expfi¢.th€ state machine offunStatecomponent. This analogy is

itly represented and thus not visible. Differences in the externaloWn for an example in Fig. 18 whek is the set of modes}
behavior of a SPI process due to state dependencies are mpif€ activation function for proceds, andC'p is theFunState
eled by uncertainty intervals. Even the refinement of proce§8MmPonent representing process

behavior using process modes [3] does not have a notion of statE®" the translation of &unStatecomponent into a SPI

since the execution mode of a process is determined only baBEgCesS, there are two different strategies. One approach is to
on the contents of incoming channels and is “forgotten” at coriPStract thé&unStatecomponent such that it complies with the

pletion of execution. Thus, with the existing set of constract£OMpPonent template as in Fig. 18 that can be easily translated

the state of a SPI model is only composed of the channel cdf© @ SPI process. In the general case, this abstraction of the
tents (amounts of tokens and mode tags)nStaterefines the FunStatecomponent m_volyes loss of information due to_the
SPI model by adding the capability of explicitly modeling statBecessary state reduct_lon in the component’s state machlne._
information and control flow separately from dataflow. In the The other approach is to model the ;tate—dependept behavior
following, we show how both models correspond, and transigf the FunStatecomponent in SPI. This can be achieved by
tion rules are given and explained by means of simple examplb§ing virtual feedback channels for the SPI process that shall
Timing is ignored in this context. represent_ 5unSta_te:omponent. So th_e SPI process can change
The most important difference betweEanStateand SPI is the state information as well as use it for adapting its behavior

the control strategy. While SPI processes are autonomous [&ordingly. _
actors in dataflow models of computatidhunStatefunctions 1 he State of &unStatecomponent is composed of the state

and (embedded) components are controlled by a state machftfd!S Staté machine and the contents of its internal storage el-
Due to the top-level state machinefinnStateit is not generally €Ments. Due to the unbounded FIFO queues, this results in an
possible to represent eveRunStatemodel with SPE On the infinite state space that cannot be visualized using a single feed-
other hand, the representation of SPI modeinStatds gen- back channel since there is only a finite mode tag set to encode

erally possible and equivalent to the representation of dataflif)f State. Thus, one virtual channel is used for encoding the
models using a local control strategy (see Fig. 13). states of thd=unStatecomponent’s state machine using mode

Straightforward correspondences exist for the directly equifAdS- Additionally, for each internal storage element that is con-
alent storage elements FunStateand SPI. Also,FunState tained in a predicate of the component’s state machine, a virtual

functions and SPI processes without modes and hieraréPﬁdbaCk channel is added to the corresponding SPI process.
en, each transition in thEunStatecomponent’s state ma-

directly correspond. In the following, we show how an spl :
process can be represented biyumStatecomponent and vice chine can be represented by a mode of the SPI process. The be-
versa. havior and activation rules of this mode can be directly derived

An SPI process can be directly represented HyuaState from the triggered actions and the predicates, respectively.

component having a state machine with a single state and sev-

eral loop transitions that all start and end in this state. The ac-

tions of these transitions trigger functions in the dataflow net- The purpose of this section is to show the versatility of the

work representing the modes of the corresponding SPI processnStatemodel by application examples. Again, we would like

The condition of each transition can be extracted from the aciy-emphasize th&&unStateessentially is used as an internal rep-

vation function of the SPI process by combining the conditionesentation model during the design phase, e.g., for HW/SW
codesign.

VII. APPLICABLE METHODS

1Excluding function variants and configurations as proposed in [30]. A. Formal Verification

2t is possible to explicitly model the state machine by a process that (:ontrols_l_h diff t £ | ificati f
the execution of each element of the dataflow network. But the synchronous ' €€ aré many ditrerent purposes ortormail veritication oran

semantics is lost by this. internal design representation. Instead of dealing directly with

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

534 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

~ S ! :
/t2 /£,
/f3,u t
J«—0
/f3

Fig. 19. Two possibilities for static periodic scheduling.

the system specification, properties can be checked of a réipiencies of traditional approaches and often provides advan-
resentation that is the basis for design steps like schedulitages with regard to computation time and memory resources
binding, and allocation. Itis possible to verify certain propertig86]. These results can be extended directly from simple process
of a partially completed design. For example, one may want networks toward the more compléxnStatenodel containing
prove that a chosen schedule results in a deadlock-free imgeth finite-state control components and infinite-state dataflow
mentation or necessitates only a bounded amount of memorgueues. Even the timéeinStatenodel can be verified by com-

The proposed verification strategy féunStatemodels is bining process networks and timed automata [37]. The verifica-
based on their representation in the form of regular state mion procedure foFunStatanodels has been implemented, and
chines (see Section V). Of course, during the verification, this efficiency in comparison to other state set representations has
state space is not enumerated explicitly. Instegdhbolic model been shown [33]-[35], [37], [38].
checking[31] techniques are used for efficiency [5].

The verification goal is formulated by means of@emputa- -
tion tree logic(CTL) formula. Consider the examplanState B. Representing Schedules
model of Fig. 2. To show that, may never contain more than Besides formal verificationf-unStatehas been designed to
four tokens, the CTL formulaG(g.# < 4) can be checked. As support diverse aspects of scheduling. First, we describe the
this formula evaluates ttrue, it is proven that the memory re- use ofFunStateas a representation model for several classes
quired forgs is bounded by four. Another simple example is thef scheduling policies. Afterwards, a methodology is sketched
formula AGEF(¢;# > 1), which means that it is always pos-how to determine a partially static schedule &imStatenodel.
sible to reach a system state that allgfy$o be executed. Thus, In a hierarchical approach to solving complex scheduling
such formulas can be used to prove the absence of deadlocksoblems, it is necessary that the results of partially scheduling

In summary, the above symbolic model-checking strategy esemponents can be represented in the same model. On the
ables the efficient verification of certain temporal properties @ine hand, this enables the analysis of the entire scheduled
state-controlled process networks, where the explicit construmedel, such as formal verification. On the other hand, with
tion of an entire state transition graph is avoided by implicitlthis information further scheduling steps can be performed.
depicting it using symbolic representations. Thus, ustag- This stepwise refinement corresponds to the stepwise reduction
Stateto internally model a mixed hardware/software system enf the nondeterminism in the model. This section contains
ables its formal verification, comprising the whole well-knowrsome examples of different scheduling mechanisms. Further
area of symbolic model checking concerning the detection mfechanisms that may be represented-bmStatemodels are
errors in specification and implementation. shown in [39].

Apart from this, formal verification may assist during the de- 1) Static Scheduling:As a first example, we consider a
velopment of scheduling policies. The system model can be @urely static periodic schedule of the synchronous dataflow
tended to describe a scheduling policy as well, of which the bgraph shown on the left-hand side of Fig. 13 for a uniprocessor
havior then is verified together with the system model. Thusystem. Methods to construct such a schedule are well known
common properties such as the correctness of a schedule raagl will not be repeated here.
be affirmed by proving the boundedness of the required memoryThe chosen schedule executes the functifinsf., and fs
and the absence of artificial deadlocks, as described above. iteratively in the following order{ fz, f3, fi, f2, f3, f3). In

Many formal verification methods such as conventional syncomparison with Fig. 2, only the state machine of the com-
bolic model checking try to reduce the state explosion problgmonentC must be changed in order to represent the schedule.
by implicit construction of the state space. The major limitingig. 19 shows two different possibilities, both reflecting the pe-
factor is the size of the symbolic representation, mostly storeddic schedule described above. The second possibility takes
in hugebinary decision diagram@DDs) [32]. The traditional into account that the subsequerige, f3) occurs twice in the
BDD-based methods of automated verification suffer from ttechedule and uses th&D composition facility of parallel state
drawback that a binary representation of the system model andchines.
its state is required. As an alternative to BDD#erval dia- 2) Scheduling with Static Prioritiesin real-time systems,
gram techniguesave been shown to be convenient for formabsks can usually be suspended for the purpose of scheduling.
verification of, e.g., process networks [33], Petri nets [34], ansh example is the theory of rate-monotonic scheduling [40],
timed automata [35]. This new approach remedies some déiere mathematical conditions are provided for checking the

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN

H :
— n
—f) Q. O 2
L] 1'2
i 1711
3o—wif, O G
] I’3
conc1/Cy c3/\32/\?1/C3i cy/fy ce/fs
k C]/C] ICs/f2 /

Fig. 20. Example for fixed priority scheduling with preemption.

schedulability of a set of periodic tasks. The rate-monotonic
scheduling algorithm simply assigns priorities to the tasks in the
order of their rates.

In the example shown in Fig. 20, there are three ta5ks™>,
andCjs. The request for executing a task is signaled by puttilwg
a token into the corresponding input queue of the component,
i.e., into queues connected tp, i2, Or i3, respectively. This

.21,

535

Exampld-unStatemodel with conflict and schedule specification.

could be done in an enclosing component by some sort of clod&sign of embedded systems. Constraints imposed by other al-
generator. A task puts a token into its output queue when it Hg&dy implemented components are respected. The scheduling
finished computation. The two state machines are responsiBproach avoids the explicit enumeration of execution paths by
for detecting the end of a task and for priority scheduling, rétsing symbolic techniques. It guarantees to find a deadlock-free
spectively. The following conditions are used: i;# > 1, and bounded schedule if one exists. The generated schedule
CottoFt > 1, eatia# > 1, cum# = 1, ¢5:m0# = 1, and consists of statically scheduled blocks that are dynamically
ce:raFt = 1. called at run time.

Applying conflict-dependent scheduling té-anStatemodel
may be regarded as an example of a refinement step Esiing

C. Conflict-Dependent Scheduling 0 _ 4 G
Stateas an internal design representation. The specification as

To overcome drawbacks of either puredtatic or dynamic
scheduling approaches and to combine their advantages,
proposed a technique callequasi-static scheduling [41].

well as the result of the scheduling procedure are represented as
‘EﬁﬁStatemodels. The scheduling method proceeds as follows.

Similarly to static scheduling, most of the scheduling decisions 1) The basis is @&unStatemodel that specifies all pos-

are made during the design process, providing little run-time
overhead and partial predictability. Only data-dependent

choices—depending on the value of the data or resulting from?2

a reactive, control-oriented behavior—have to be postponed
until run time. Techniques related to quasi-static scheduling
have been developed using, e.g., constraint graphs [42], [43],
dynamic dataflow graphs [44], actors with data-dependent
execution times [45], free-choice Petri nets [46], &uwhState
models [47]. In the following, the latter approachcanflict-de-
pendent schedulingf FunStatemodels is sketched.
Problems that are typical for the design of complex em-

bedded systems are, e.g., different kinds of nondeterminism3

such as partially unknown specification (to be resolved at
design time), data-dependent control flow (to be resolved
at run time), unknown scheduling policy (to be resolved at

sible schedules by means of nondeterminate transition
behavior—representing all design alternatives.

) By symbolic exploration of the resulting regular state ma-

chine, the state space is traversed to search for cycles rep-
resenting valid schedules. This is motivated by the fact
that after having traversed a cycle in the dynamic state
transition diagram, an already visited state is reached for
which the scheduling behavior is known. Thus, by finding
all necessary cycles, nondeterminism is reduced as far
as possible. Hence, design alternatives are removed by
taking decisions.

) The extracted schedule consisting of paths in the dynamic

state transition diagram is transformed into a finite-state
machine, which then is compacted using state minimiza-
tion techniques.

compile time), and dependencies between design decisioné) Finally, the result is embedded in the origifainState
for different system components. These properties necessitate M0del by replacing the schedule specification part. Fur-
new scheduling approaches as the number of execution paths hermore, it may be transformed into program code.

to be considered grows exponentially with increasing degreesl) Conflicts and AlternativesThe scheduling methodology
of nondeterminism. Moreover, the complexity of the models @ introduced intuitively with the following example. Quege

computation and communication greatly increases the dangeFig. 21 is a multireader queue that may contain tokens, which
of system deadlocks or queue overflows; see, e.g., [48]. only one of the queue’s readefisand f3 consumes (depending,
Conflict-dependent scheduling [47] is able to deal witk.g., on the token data) but the other one does not. The state
mixed data/control flow specifications and takes into accountachine describes a specification of possible schedules for this
different mechanisms of nondeterminism as occurring in tlm®emponent (item 1 of the above methodology description).

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

536 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

i E i TABLE |
CONTROLLER PROGRAM CODE OF EXAMPLE MODEL

a: f1;
if p then
J2;
. if go# =0 then goto a;
else f;
Fig. 22. Resulting controller automaton of example model. f4;
goto a;

If the predicates of all state machine transitions leaving a cer-
tain state are mutually disjoint, then the state is catletermi-
nate; otherwise, it isnondeterminateWe distinguish between
two different kinds of nondeterminism, which leads to a class
fication of nondeterminate states as follows.

1) Conflict. Nondeterminate states are involved in a conflic
concerning its outgoing transitions if the nondeterminisr
can be resolved only at run time. Hence, no design de«
sion is possible. Conflicts occur, for instance, when dec
sions depending on the value of data are made or wh
environmental circumstances have to be taken into a
count. The transitions involved in a conflict are callec
conflicting

2) Alternative.If among several transitions leaving a statt
any transition can be chosen, this fact represents an alt
native. Like this, for instance, different scheduling poli-
cies—i.e., different orderings of actor executions—can k
modeled. Such decisions do not directly depend on ti
value of data but describe design alternatives that mi
even be fixed at compile time. Furthermore, different al
ternative algorithms can be modeled, of which one ¢
some can be selected during the design phase.

This way, we can identify different sources of nondeterminisfri®- 2%
and use this information for methods such as scheduling or
formal verification. approach has been applied to perform conflict-dependent sched-
In the following, conflicts are represented by light-shadedling for a molecular dynamics simulation system [47]. In Sec-
conflict stateswhile alternatives are depicted by dark-shadeiibn VIII, conflict-dependent scheduling is applied to an ATM
alternative statesin Fig. 21, the data dependency regarding switch model.
represents a conflict that is modeled using a conflict state. In2) Performing Conflict-Dependent Schedulinghe aim
contrast, all transitions starting in the alternative state represeftthe scheduling process described here is to sequentialize
design alternatives that may be chosen during schedule dewesitor executions specified as concurrent while preserving all
opment. In the following, white states denote determinate statggen conflict alternatives. The resulting schedule has to be
that either have only one outgoing transition or of which all trardeadlock-free and bounded.
sitions have disjoint predicates. In the following, the scheduling procedure is explained based
Intuitively, conflict-dependent scheduling, as proposed o Fig. 23. First, the dynamic state transition graph of the corre-
[47] and sketched in Section VII-C2, replaces dark-shadsgonding regular state machine is searched for the shortest paths
states by white states—taking decisions and thus removing ffem the initial state to itself or any state already visited during
sign alternatives (item 2). The result is thehedule controller the search. One of these (possibly multiple) shortest paths—rep-
automatonshown in Fig. 22 (item 3), which may replace theesenting or at least containing a cycle—is selected as the basis
automaton in Fig. 21 for analysis or synthesis purposes (iterfithe following scheduling procedure®: in this example.
4). It consists of three static cycles and a conflict state switchingAll conflict states of the selected path need further investi-
between them. The predicatadentifies the run-time decision gation, as no conflict decision may be taken during schedule de-
associated with the conflict node. sign. Hence, beginning with the successor states of the conflict
The controller automaton can easily be transformed into pretate marked witlf’;, again the dynamic state transition graph
gram code as shown in Table | as pseudocode. The introdugedearched until reaching any state visited already—resulting in

Paths in dynamic state transition graph describing schedule.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 537

the paths”, and FP5. Additional conflict states traversed during
this search are also treated as described above. Thus, the c,
flict marked withC, causes the patR,. Finally, C3 causes’. 14,/

The schedule is complete when each successor state of e¢
visited conflict state has been considered. Thus, it is guarante:
that any conflict alternative during run time may be treated by
providing a determinate schedule until the next conflict to be
resolved.

If no schedule has been found while traversing one of the cor
flict paths, another shortest path is selected to repeat the sche i#>4/f

.) 1 _4/ 1
uling procedure. If all shortest paths have been checked witho k
finding a complete schedule, longer paths are selected. By intr:
ducing a bounding box on the state space, consisting of bounds

. . . Fig.

on state variable values, the search space may be restrictedif

necessary. Thus, the termination of the algorithm is guaranteed.

Furthermore, if a deadlock-free and bounded schedule existiNd mostly is performed on theegister-transfer leveRTL),
the above procedure will find it. which is located below the abstraction levels to whiaimn-

The length of the paths as the optimization objective is %tateis dedicated. BDDs are well suited to represent RTL-based

24. Example of a path constraint.

heuristic criterion to minimize the number of actor executior@OdelS'
and run-time decisions. This objective can be combined or s-
placed by criteria such as the least number of conflicts involved
and their extent, or the shortest execution time along a path!n Section IV-D, path constraints have been introduced as
In addition, the size of the bounding box on the state spacedigneans of specifying timing constraints on a model. In the
closely related to the amount of memory needed to store dfgfowing, a constructive path-constraint-based method for
of the schedule@unStatemodel. Therefore, restrictions on thechecking the satisfaction of timing and performance properties
run time as well as on the required memory can be includedifpresented.
the scheduling procedure. For a given path constraint, let us define sbtand M that
Unfortunately, graph traversal tasks such as the mentiorfe@tain as elements all time periods of possible first and last
search for paths in the dynamic state transition graph often suféausal dependencies, respectively. In other words, the predicates
from the “state explosion” problem for real-world applications?(¢) andu (o) as defined in Section IV-D must bieue for all
This means that the possibly exponential blowup of the numi#pe periodss € L ando € M, i.e., for all tokens entering,
of states to be considered severely restricts the feasibility of si@td for all possible execution traces of the system.
techniques. To avoid this, a symbolic approach to the schedl-€t us now construct these setsand M in principle. As
uling problem [47], [49] has been introduced that uses symbofi8oWn in Section IV-D, we have to consider all possible exe-
model checking principles in order to avoid the explicit enumefHtion traces of the system—for each trace, all tokens that are
ation of execution paths. written/added toy , the first storage unit in the path. For each
In order to perform conflict-dependent scheduling, thef these execution-token pairs, we do the following steps.
dynamic state transition graph is traversed symbolically 1) Let us suppose that a tokenis added/written taz; at
without constructing it explicitly. This way, shortest paths are ~ some timet(v). Then, the token is marked.
determined by symbolic breadth-first searches. To achieve2) Letus suppose that a marked token is either read through
this, sets of states reachable from another set of states are an edgec; or removed viae; by function objectf;
considered—and computed in a single operation—instead of for somel < i < n — 1. Then the tokens that are
traversing the state transition graph path after path, state by —added/written tay;; by that instance of function unf
state. For more details on conflict-dependent scheduling, the are also marked.
reader is referred to [47], [49], [37], and [5]. 3) If a marked token enters storage upjt(the last storage
Hence, in addition to formal verification, as described above, unitin the path) at some timgthen the mark is removed
symbolic methods may be used not only for analyzing but even from the token. If the token was the first marked one that
for developing scheduling policies feunStatemodels. Due to entersy,,, then add the time periad- ¢(v) to L; if it was
similar transition behaviors, the above advantages of symbolic ~ the last one, add the time period (v) to M. In the case
approaches based on interval diagram techniques as an alterna- that marked tokens are coming for an infinitely long time
tive to BDDs may be transferred to the area of symbolic sched- period, addx to M.
uling. Symbolic scheduling methods turned out to often ouddl path constraints in the system must be checked indepen-
perform both integer linear programming and heuristic methodently.
while yielding exact results. There exist some BDD-based sym-The meaning of the path constraints should be obvious from
bolic approaches to control/data path scheduling in high-lestle above construction. The second rule takes into account that
synthesis. BDDs are used for describing scheduling constraints are interested in causality chains only, i.e., the value of the
and solution sets either directly [50] or encapsulated in finitéeken ing,, may depend on the value of the marked tokegin
state machine descriptions [51]-[53]. Control/data path schednly the dependency via the path is taken into account.

Performance Analysis

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

538 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

~

Context UtopOutBuf

— HeaderStruct

Sl

switching
information g

VPIVCI PayloadAddrQueue 53

OutBuf
OutEv

output
processing

storage

UtopInEv management
UtopOutEv
InEv Payload fair service
InBuf processing | TrigStore | calculation
ConContext
UtopInBuf

g
!

\ /P /8l /1SM /
Fig. 25. Hierarchical ATM switch model.
Itis possible to extend the above definitions to the case where /FSC CaleVi
a path constraint involves an embedded component. Let us sup- SCFQ 1024]

pose that the path enters an embedded compdarieat input
porti and leaves it at output past Corresponding to our hierar-

chical approach, the path need not be specified withirThen, StoreVIotA:

all possible paths i@, from to o are considered. In particular, TrigStore Vol UpgateVio
the second rule holds for all queues, functions, and edges in the &9 | I*Soncontext

embedded component;.

As an example, consider the component shown in Fig. 24. It
models aniterative algorithm (functigh) with latencylat, = 1.
The algorithm needs four coefficients, which can be put into ConContext#>0/UpdateViot
the system via input pott In the example, this happens in any \ TrigStore#>0/StoreVtotAi /
execution trace at times 1, 2, 3, and 4. Function objeatith
latencylat; = 2transmitsthe coefficientstoregistgt Thepath Fig. 26. Self-clocked fair queuing component performing fair service
constraint is drawn as a dotted arrow from the input port (queggiculation.
connectedtd)tothe output port(queue connected}o

Wehavel, = {3, 4, 5, 6}andM = {~}.Forexample, the the UTOPIA [55] specification using the octet-level handshake
predicate\(¢) = (o < 6)istrue,asthefirstcausally dependenimode.

tokenarrivesinthe queue connectedo laterthansixtimeunits ~ All input and output buffers are realized in a single memory
afteracoefficientarrivesinthe queue connectedto bIOCk, which is shared by all pOI‘tS. This block is subdivided into

segments that are large enough to store the information of an
ATM cell. Usually, payload data and scheduling information for
VIII. ATM SWITCH EXAMPLE the output ports are stored separately. The 48-byte data field can

This section treats a model of a shared memory ATM swit(91e stored at arbitrary addresses in the shared memory since the

mapping ATM connections arriving at four input ports onto corfj—lddress of t.his field is s.tored inan FlFO organizgd queue of.the
nections leaving on four output ports. SevéfahStatefeatures corresponding connection together with scheduling information
and applications are explained with this model and the cellheader. Another FIFO queue keepstrack of addresses

of free memory segments for storing payload fields. For each
. outputport, thereisaschedulerthatmustdecide which connection
A. The ATM Switch Model willbe allowed nexttotransferacellifacellslotbecomesavailable
Fig. 25 shows the structure of the ATM switch model considn the output port. Recently, variants of theighted fair queuing

ered. The model is composed of several components workingd WFQ) [56] scheduling algorithm have been used for this task.
parallel. The model imitates the tasks in the ATM user plane éf survey of scheduling algorithms including WFQ for packet
the ATM layer [54] that are necessary for the switching of ATMind cell switching networks can be found in [57]. The basic idea
cells. The interface to the physical layer is modeled accordingdbWFQ is to calculate a priority tag for each incoming ATM cell

ViotAi#>0AContext#>0Apermissible(Context$1)/CalcVi

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 539

according to the reserved and currently used bandwidth of tingplementation, e.g., by means of separate functional blocks in
corresponding connection. Then, the cellwiththe highest priorihardware. As an example, we pick one of the components to
tagis chosen by the scheduler for transmission. WFQ assumegie a more detailed insight into the ATM switch. Component
ideal fluid server for the calculation of the priority tags in order t&'SC' in Fig. 26 performing fair service calculation shows an im-
achieve a fair service of connections with a schedule close to fflementation that uses a WFQ approximation as cell scheduling
order in which the cells would have finished their transmissiona@igorithm.Self-clocked fair queuin@CFQ) [58] simplifies the

the scheduler had served multiple connections simultaneouslgaiculation of priority tags by estimating the virtual service mea-
proportionoftheirreservedrates. sure by the priority tag of the cell currently in service. SCFQ’s

This functionality is modeled as follows. Incoming ATM cellsf@ir service calculations component thus only needs temporary
are processed byte by byte by the UTOPIA interface. For eak@gisters for storing the current virtual time measure per output
byte, the interface generates an evéifpInEv) and produces Port Viot and the priority tag of the preceding cell per connec-
atoken carrying one byte of informatiofifopInBuf). The first tion Vil. The functions within this component are scheduled
five bytes of the cell contain the cell header. When the beginnisgquentially by the state machine, which reflects a software im-
byte of a cellis signaled by the input processing compordt (plementation of the component. As mentioned above, function
the switch starts several tasks. In order to find a free memo@ulc Vi must not be executed on impermissible cells in queue
segment for the storage of the cell payload, the address quélgitext. This is ensured by using the predicatemissible in
PayloadAddrQueue isread outbythe storage managementcorghe respective state machine transition.
ponent 6M). Ifno memory segmentis available, the whole ATM
cell and all assoqiat_ed temporary information_ will be_ droppe%._ Taking Advantage of FunState
Furthermore, apriority talfi mustbe calculatedinthefairservice
calculation component{SC') with the help of a virtual service ~ The above implementation of SCFQ requires little computing
measuretotAs at the arrival time of the cell. The priority tag isresources. However, SCFQ is not able to guarantee as sharp
used later to schedule cells of different connections sharing ttielay bounds for cell transmissions as WFQ does. Therefore,
same output port. After the whole header has been transferoe@ may be interested in modeling a fair service calculations
from the interface to componeh? and stored alfeaderStruct, component for WFQ. Within thEunStatemodel in Fig. 25, the
connection information can be extracted from the header BCFQ component in Fig. 26 can be replaced by the WFQ com-
Component[P and transferred vidZ7PIVCI to the SWitChing ponent shown in F|g 27. This is achieved by S|mp|y p|ugg|ng
information component{/), whereitis used to map the cell ontoanother component into the model in Fig. 25. Obviously, hier-
anoutput port accordingto connection mapping data stored iN&Rhy and modularity are well supported BynState
internallookuptable. The lookup additionally reveals connection The additional temporary registers are needed in order to keep

contextinformationthatis neededby comporfesit’ and passed track of the state of the emulated ideal fluid server such as the set

through Contest. The header can now be stored in one of the, backlogged connections and the level of the emulated header
output port queuedlcaderQueunes,each of which is sorted by

rising priority. The sorting is performed in componéidf . The queues. In addition, the WFQ component needs a t|mer com-
payload is stored independently in the FIFO organized queue,o&‘nent n order to m0(_:lel the appearance of cell _transmlssllons
the corresponding connectidPuyloadQueues at the address N the fluid system, Whlch trigger upda.tes of the virtual service
determined beforeltayload Addr). For this task, componefip Mmeasure. Moreover, the timer must'b'e'lnterruptable atthe arrival
passes the payload field uyload to the storage management©f new cells since a cell arrival may initiate updates of all tempo-
However, ifthe lookupin componeSf determinesanimpermis- rary registers in the WFQ component. Analogously to Fig. 26,
sible cell, e.g., ifthe cell belongs to a nonexisting connection, tkee functions in Fig. 27 are scheduled sequentially. The transi-
cellandallitsassociated temporaryinformationwillbe droppedtion labels indicated by{7}" and “...” are omitted for clarity.

The readout of cells via the output ports is triggered by tHa parallel to.func_tion exeCl_Jtior_l, the timer is scheduled. This
corresponding output UTOPIA interface, again byte by byte. fomponentlimer is shown in Fig. 28. _
generates eventd/fop OutEv) for each free byte in the output Function/nit initializes the timer delay with the value of an
buffer of the interface. If sufficient free byte slots are availabl#)coming token. The current remaining delay is stored in queue
the cell content is reconstructed in the output processing compgzre. FunctionDecr with a latency of one time unit repeatedly
nent (OP) by concatenating header and payload and then tragecreases the value of the tokerflime until it has reached zero.
ferred to the corresponding output port bufféftép OutBuf). Then functionZiig outputs a token triggering the superordinate
However, if there is no cell stored in the switch for transmissionpmponent. The peculiarity of this timer is that if another token
the event tokens generated Byop OutEv will be dropped. Fi- arrives at its input port during timer execution, the timer has to
nally, each cell transmission may trigger an update of the virtualstartimmediately without producing any output. This behavior
service measure througfionContext. This measure is used caneasily be modeled usiRgnStateas shownin Fig. 28.
within componentF'SC' for priority tag calculations. Note that
the priority tag calculation used in WFQ does not depend on tfti§
trigger since updates of the virtual service measure are initiated
by an emulated ideal fluid server within compon&$tC . How- In this section, conflict-dependent scheduling is applied to the
ever, most approximations of WFQ use cell transmissions a&\BM switch model. Scheduling is performed after removing the
trigger for an update or a recalibration of internal variables. hierarchy of the SCFQ model using the techniques described in

The state machine of tHaunStatenodel in Fig. 25 schedules Section IV. This results in the model shown in Fig. 29, which has
the components in a parallel manner. This is suited to a paralbelen extended by a schedule specification. Obviously, the data

Conflict-Dependent Scheduling

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

540 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

Tnext CalcTnext TrigFluid SortVirtHeader CellArrival Vi1 \
M I i

1024 (%)
UpdateVtot VtotAilnt CalcVvi
M
—/ L

UpdateSumRi

CellTransmission

CheckSumRi 1024 <=

] Hrocs
TrigStore | IForward DropOutputContext ConContext

|

|
_ {1} I
|

Fig. 27. Weighted fair queuing component emulating ideal fluid server within fair service calculation.

Gmer

/Timer /

TheNewHeader conflictdiffersfrombothth&onteat andthe
Addr conflictin that the transition predicates of both conflicting
functionsOutHeader and EmptyQueue are equal. Hence, the
conflict model represents the fact that if one of the transitions is
enabled, the otherone isenabled aswell. Then, based onthe value

Trext#=0Time#>0ATime$1>0/Decr ofthe token inNew Header, the conflict can be resolved directly
Trext#>0/init by executing eithe®ut Header or EmptyQueue.

Thelatteris notthe case for tli®ntezt conflict (and thedddr
conflict as well). If Calc Vi is enabled, thedmpermit is also
\'I’ime#>OATime$1=O/Tl'ig , , enabled and can be executed, but not vice versa. If the execution

Tnext#>0ATime#>0/Init

predicate ofCalc Vi is satisfied, the conflict is resolved based

on the token inContext: Either Calc Vi is executed directly or
Fig. 28. Timer component within weighted fair queuing scheduling. Impermit hastobe executed—which possibly cannotbe done due

) o o to its unsatisfied predicate. To avoid the necessity of repeatedly
dependency mentioned above regarding impermissible cellssipyjuating the conflict decision or of delaying the execution of
queueContezt has been abstracted by a conflict since it caryjc Vi, the result of the conflict resolution is stored by changing
only be resolved at run time. Software scheduling for a unipréheinternal state ofthe conflictmodeland thus binding the conflict
cessor is performed; hence the implementation is sequentiatdnmpermit by settingConteztConfi = Imperm.Lateron,
contrast to the parallel model used above. The partial state maly the remaining execution predicatedoafpermit have to be
chinesInSequ and OutSequ ensure that the correct order of inchecked, which results in less dynamic decision overhead than
coming and outgoing ATM cell fields is guaranteed. otherwise. Thevalugee representsanunresolved conflict, while

Table Il shows the transition labels corresponding to the trathe valuedmperm andDroplt denote that a conflictis bound to
sitions abbreviated by{!}” and “...” in Fig. 29, each starting the respectivetransition.
and ending in the dark-shaded state. For the sake of clearness, transitions resulting from the asyn-

In addition to the explicit evenfRead, function calls in chronous behavior of the interfaces to the environment are
the FSM part are also used as events for communication lggsregarded here. Techniques for the automatic generation of a
tween concurrent state machines. For the sake of clearngsmStatenodel representing the conflict behavior from a given
two state variableContestConfl € {free, Imperm} PetrinetmodelasshowninFig. 29 have beendescribedin[49]and
and AddrConfl € {free, DropIt}—both initialized with [37].

free—have been introduced, which could be replaced by furtherBaseol on th&unStatemodel in Fig. 29, the conflict-depen-

concurrentstate machines, each with two states. Anin-state opgr- . . .
atorM in s has beenintroduced. whichtisie iff state machiné/ dent scheduling procedure introduced above has been applied.

isinits state. The dynamic state transition graph of the schedule has been

The queues involved in conflicts are marked by shading }Hansfgrmed into th_e contr_ollerautomaton.shown in Fig. 30. The
Fig. 29. All three conflicts have in common that usually onEeSult is @ scheduling policy that may be implemented, e.g., as
of their conflicting functions Cale Vi, Store, OutHeader) is @ SOftware controller on a uniprocessor.

Trig

executed and the other ongrpermit, Drop, EmptyQueue) Conflict decisions remaining in the resulting schedule again
is only in case of an irregular operation, which depends on thee represented by conflict states in Fig. 30. Besides conflict de-
value of the token in the respective queue. cisions—which cannot be resolved during compile time—only

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN 541

TABLE I
TRANSITION LABELS ABBREVIATED BY “{I}" IN FIG. 29

OutSequ in HeaderNext A OutEv# > 5 |/ Pop
OutSequ in PayloadNext N OutEv# > 48 | TransPayl
InSequ in StartNext A InEv# > O A InBuf# >0 / Read
InSequ in HeaderNext A InEv# > 4 A InBuf# >4 / Read
InSequ in PayloadNext A InEv# > 48 A InBuf# > 48 / Read
ContextConfl = Imperm A PayloadAddr# > 0 | Impermit, ContextConfl = free
AddrConfl = Droplt A VPIVCI# > 0 A VtotAi#t >0 / Drop, AddrConfl = free
TrigAddr# > 0 / RdAddrQueue
TrigStoredt >0 / StoreViotAi
VPIVCI# > 0N Tag# >0 / Lookup
ConContext# > 0 / UpdateViot
PayloadAddr# > 0N Vi# >0 |/ SortHeader

Pyt anrd i i
'““E wint PR]th::ltﬂ.ll'
qlml | | ¥
WHIHE‘. D
| Ot 53
i -
e] o .
p Hemdsribrerd Ganlaal Emigty Dbt | pipn-lancier | Ot
—— _I—I £ mpsirei D—EK
— L o
L WP 'F.Imaw E !
1 -
SorttSander L Tnnlﬂq:li:j.
Trighadr | T:I:i’ iy E:ftlril'-\'_'nm 25 Cslfw
¥ I:l - I:_I 4 L i
L] A '_|]
T P FanaTes | Sre] Payicardad s [
i . = 3
1 .|".+. . | [ERGET =Y
L] - — o
[1Y ™ O { J=io A
el IRWUSERRRET | B0 =20 UL RN U BEREE L) R
']:r': E""‘
! Frei* il i P
AT
g A
i
[T ==
AdPagnaz Parg a2
I£ nSagqu O Sepui
LR o .,_i‘
L i atar et
; :Tr.-mnl (F——Pow
, * .
HManzdeng)

Emplylommi —

TramRaad T pa

I'_‘_._Jl-’ml.l.'luf

t_‘_._.:l.l-'.hnud'uﬂ A on B DhoEn

T

|

|

|

[

|

|

FnssCaltSinrt I
o |
mr{ 1
flis AFyioad = |
I

[

|

|

i ik it s I
[

|

|

I

o

Fig. 29. ATM switch model with schedule specification.

three decisions had to be postponed until run time. Hence, theced in comparison to the origiralinStatenodel. The sched-
overhead by such dynamic decisions has been drastically uéng process has been performed mainly using the symbolic

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from |IEEE Xplore. Restrictions apply.

542

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

TEmplyCusus

O EH s

{ItpdateVbot

. DutEvE=4RTransPayl
FSortHeader

Calchi

L5

Fig. 30. Resulting controller automaton of ATM switch model.

model checking toosMV of Carnegie-Mellon University. The
computation took 11.1 s on a Sun Ultra 60 with 360 MHz.
For an implementation, the state machine representing the

TABLE Il

PROGRAM CODE REPRESENTINGSCHEDULE OFATM SwITCH MODEL

schedule may be transformed easily into program code, as

shown in Table Ill as pseudocode. The predicateglentify a:

run-time decisions associated with the respective conflicts and
depending on token values. For instance, predigatgiex: iS
equivalent to-permissible(Context$1).

In the preceding example, several ATM cells are allowed
to be in a preprocessing state within the ATM switch, i.e.,
waiting for lookups or tag calculations. Thus, an outgoing
link may be idle although there are cells in the system for
this link. We can introduce a timing constraint so as to
bound the preprocessing time, as sketched in Fig. 29. In
the worst case, demanding that the switch should work at
wire speed, we could constrain the preprocessing delay by
Ao) = plo) (0 £ SizeOfATMCell/ LinkBandwidth).

In this way, only a single cell is allowed to be in a preprocessing
state—virtually bounding the corresponding FIFO queues to the
lengthone.

if QuiFv# > 5 then
if PNewHeader then
EmptyQueue; goto a;
QutHeader; UpdateViot,
while OutEv# < 48 nop;
TransPayl;
else if InEv# > 0A InBuf# >0 then
CellStart; StoreVtotAi; RdHeader:
RdPayload; RdAddrQueue;
if pager then
Drop; goto a;
Store; Lookup,
if pcontersr then
Impermit; goto a;
Calc Vi, SortHeader;
goto a;

IX. CONCLUDING REMARKS
As has been explained in this paper, thenStatemodel en-

ables the internal representation of complex system behavior. InThe whole approach can be interpreted as a stepwise reduc-
order to cope with the design complexity, the following hieration of the nondeterminism in a system specification. It has been
chical step-by-step approach is advertised and supported byshewn that thé-unStatemodel supports the first item, as it can

FunStatemodel

represent different important elementary models of computa-

1) Restriction in some portions of the system, i.e., contion. The major property required for the second item is abstrac-
ponents, to well-known and simple models of computaion. It has been shown in this paper thatBumStatenodel can
tion. Within these subsystems, specialized and adapiggbresent the result of a (partial) schedule.

methods can be applied.

2)

_ : _ - _ ~ Anapproach to symbolic scheduling of mixed hardware/soft-
Making use of the hierarchical composition to design hivare systems has been presented. It is based BanState
erarchical methods. To this end, it should be possible fgodel of the system and the scheduling constraints. The result

restrict the scope of, e.g., scheduling, code generatigfq scheduling policy that may be implemented, e.g., as a soft-
or verification to one component. Consequently, its are controller on a uniprocessor.

vironment as well as its embedded components must be
simplified without sacrificing the quality or correctness
of the overall result. This simplification should take into
account the results of, e.g., previous scheduling or veri-
fication results for parts of the environment or embedded The authors wish to thank the anonymous reviewers for their
components. constructive comments and helpful suggestions.

ACKNOWLEDGMENT

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from |IEEE Xplore. Restrictions apply.

STREHLet al: FunState—-AN INTERNAL DESIGN REPRESENTATION FOR CODESIGN

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

REFERENCES

E. A. Lee and D. G. Messerschmitt, “Synchronous datafloRbc.
IEEE, vol. 75, pp. 1235-1245, 1987.

D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele, “Combining
multiple models of computation for scheduling and allocationPiac.

6th Int. Workshop Hardware/Software Codesign (Codes/CASHE '98)
Seattle, WA, Mar. 1998, pp. 9-13.

D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, “Represen-[zs]
tation of process mode correlation for scheduling,Pioc. IEEE/ACM

Int. Conf. Computer-Aided Design (ICCAD-9&an Jose, CA, Nov.
1998.

L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teichuti-
State—An internal design representation for codesign,” Broc.
IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD-98an Jose,
CA, Nov. 1999.

L. Thiele, J. Teich, and K. Strehl, “Regular state machindsParall.

Alg. Applicat. (Special Issue on Advanced Regular Array Desigi)

15, pp. 265-300, 2000.

T. Grotker, R. Schoenen, and H. Meyr, “PCC: A modeling technique for
mixed control/data flow systems,” iRroc. Eur. Design and Test Conf. 31]
(ED&TC 97), 1997.

W.-T. Chang, A. Kalavade, and E. A. Lee, “Effective heterogeneous de-[32]
sign and co-simulation,” ifProc. NATO/ASI Workshop Hardware/Soft-
ware Codesign1995, pp. 187-212. [33]
E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,l[EEE Trans. Comput.-Aided Desigwol. 17,

pp. 1217-1229, 1998.

W. BoRung, S. A. Huss, and S. Klaus, “High-level embedded system[34]
specifications based on process activation conditiohsYLSI Signal
Processingvol. 21, no. 3, pp. 277-291, July 1999.

P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of 35]
conditional process graphs for the synthesis of embedded systems,” i[n
Proc. Design, Automation and Test in Europe Conf. (DATE2898,

pp. 132-138.

R. Saracco, J. R. W. Smith, and R. Re&lecommunications Systems [36]
Engineering Using SDL Amsterdam, The Netherlands: Elsevier,
1989.

F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, 37]
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, an&

B. TabbaraHardware—Software Co-Design of Embedded Systems: The
Polis Approach Norwell, MA: Kluwer, 1997. [38]
M. Pankert, O. Mauss, S. Ritz, and H. Meyr, “Dynamic data flow and
control flow in high level DSP code synthesis,”fmoc. 1994 IEEE Int.
Conf. Acoustics, Speech, and Signal Processing 2, Apr. 1994, pp.
449-452.

F. Vahid, S. Narayan, and D. D. Gajski, “SpecCharts: A VHDL frontend
for embedded systemdEEE Trans. Computer-Aided Desigvol. 14,

no. 6, pp. 694-706, 1995.

D. Harel, “Statecharts: A visual formalism for complex systen8xl.
Comput. Program.vol. 8, 1987.

F. Maraninchi, “Argonaute: Graphical description, semantics, and verI41]
ification of reactive systems by using a process algebraProt. Int.
Workshop Automatic Verification Methods for Finite State Systhies
York, 1989.

M. von der Beeck, “A comparison of statecharts variants,’Phoc.
Formal Techniques in Real Time and Fault Tolerant SysteoisLNCS
863, New York, 1994, pp. 128-148.

A. Girault, B. Lee, and E. A. Lee, “A preliminary study of hierarchical [43]
finite state machines with multiple concurrency models,” Electronics
Research Laboratory, College of Engineering, Univ. of California at
Berkeley, Tech. Rep. UCB/ERL M97/57, 1997.

R. Ernst, J. Henkel, and T. Benner, “Hardware—software cosynthesis fo[*44]
microcontrollers,"EEE Design Test Compupp. 6475, Dec. 1993.

G. De Micheli, D. Ku, F. Mailhot, and T. Truong, “The Olympus syn-
thesis system,lEEE Design Test ComputL990.

D. Harel and A. Naamad, “The STATEMATE semantics of statecharts,”
ACM Trans. Software Eng. Methvol. 5, no. 4, Oct. 1996.

W. Backes, U. Schwiegelshohn, and L. Thiele, “Analysis of free
schedule in periodic graphs,” iaroc. 4th Annu. ACM Symp. Parallel
Algorithms and Architecture$an Diego, CA, June 1992, pp. 333-342.
S. R. Kosaraju and G. F. Sullivan, “Detecting cycles in dynamic graphs
in polynomial time (preliminary version),” ifProc. 20th Annu. ACM [47]
Symp. Theory of Computing988, pp. 398-406.

J. Orlin, “Some problems in dynamic and periodic graphsPiiogress
in Combinatorial OptimizationW. R. Pulleyblank, Ed. Orlando, FL:
Academic, 1984, pp. 215-225.

[25]

(26]

(27]

[29]

(30]

(39]

[40]

[42]

[45]

[46]

543

F. Commoner and A. W. Holt, “Marked directed graph3,"Comput.
Syst. Scj.vol. 5, pp. 511-523, 1971.

E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processintEEE Trans. Comput.

vol. C-36, no. 1, pp. 24-35, 1987.

G. Bilsen, P. Wauters, M. Engels, R. Lauwereins, and J. Peperstraete,
“Development of a static load balancing tool,” Rroc. 4th Workshop
Parallel and Distributed Processin&ofia, Bulgaria, 1993, pp. 179-194.
M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete, “Cyclo-static
data flow: Model and implementation,” iRroc. 28th Asilomar Conf.
Signals, Systems, and ComputeRacific Grove, CA, 1994, pp.
503-507.

K. Jensen, “Colored Petri nets: A high level language for system de-
sign and analysis,” ildvances in Petri Nets 1996er. Lecture Notes
Comput. Sci., LNCS 483, G. Rozenberg, Ed. New York: Springer-
Verlag, 1990.

K. Richter, D. Ziegenbein, R. Ernst, J. Teich, and L. Thiele, “Represen-
tation of function variants for embedded system optimization and syn-
thesis,” inProc. 36th Design Automation Conf. (DAC '98)ew Orleans,

LA, June 1999.

K. L. McMillan, Symbolic Model Checking Norwell, MA: Kluwer
Academic, 1993.

R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computvol. C-35, pp. 677—691, Aug. 1986.

K. Strehl and L. Thiele, “Symbolic model checking of process networks
using interval diagram techniques,” iroc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD-98pan Jose, CA, Nov. 1998, pp.
686—692.

—, “Interval diagram techniques for symbolic model checking of Petri
nets,” inProc. Design, Automation, and Test in Europe Conf. (DATE99)
Munich, Germany, Mar. 1999, pp. 756-757.

K. Strehl, “Interval diagrams: Increasing efficiency of symbolic
real-time verification,” inProc. 6th Int. Conf. Real-Time Computing
Systems and Applications (RTCSA '39png Kong, Dec. 13-15, 1999,
pp. 488-491.

K. Strehl and L. Thiele, “Interval diagram techniques and their applica-
tions,” in Proc. 8th Int. Workshop Post-Binary ULSI Systefm®iburg

im Breisgau, Germany, May 19, 1999, pp. 23-24.

K. Strehl, Symbolic Methods Applied to Formal Verification and
Synthesis in Embedded Systems Desigkachen, Germany:
Springer-Verlag, 2000.

K. Strehl and L. Thiele, “Interval diagrams for efficient symbolic veri-
fication of process networks|EEE Trans. Comput.-Aided Desigvol.

19, pp. 939-956, Aug. 2000.

L. Thiele, J. Teich, M. Naedele, K. Strehl, and D. Ziegenbekyn-
State—Functions driven by state machines,” Computer Engineering
and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH),
Zurich, Tech. Rep.TIK-33, Jan. 1998.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environmeng,"”ACM vol. 20, no. 1, pp. 46-61,
1973.

E. A. Lee, “Recurrences, iteration, and conditionals in statically sched-
uled block diagram languages,” MLSI Signal Processing IIIR. W.
Brodersen and H. S. Moscovitz, Eds. New York: IEEE Press, 1988,
pp. 330-340.

D. C. Ku and G. De Micheli, “Relative scheduling under timing con-
straints: Algorithms for high-level synthesis of digital circuitédEEE
Trans. Comput.-Aided Desigwol. 11, pp. 696—718, June 1992.

M. Cornero, F. Thoen, G. Goossens, and F. Curatelli, “Software
synthesis for real-time information processing systems,”Code
Generation for Embedded Processofs Marwedel and G. Goossens,
Eds. Norwell, MA: Kluwer, 1995, pp. 260-279.

J. T. Buck, “Scheduling dynamic dataflow graphs with bounded memory
using the token flow model,” Ph.D. dissertation, Dept. EECS, Univ. Cal-
ifornia, Berkeley, 1993.

S.HaandE. A. Lee, “Compile-time scheduling of dynamic constructs in
dataflow program graphs|EEE Trans. Computvol. 46, pp. 768-778,
July 1997.

M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-Vincentelli,
“Quasistatic scheduling of embedded software using free-choice Petri
nets,” inProc. Workshop Hardware Design and Petri Nets (HPWN,'98)
1998.

K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Teich, “Sched-
uling hardware/software systems using symbolic techniques?tac.

7th Int. Workshop Hardware/Software Codesign (CODES'&®me,
Italy, May 3-5, 1999, pp. 173-177.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from |IEEE Xplore. Restrictions apply.

544 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 4, AUGUST 2001

[48] E. A. Lee and T. M. Parks, “Dataflow process networkBbc. IEEE

vol. 83, no. 5, pp. 773-799, 1995.

K. Strehl, L. Thiele, D. Ziegenbein, and R. Ernst, “Scheduling

hardware/software systems using symbolic techniques,” Compu

Engineering and Networks Lab (TIK), Swiss Federal Institute o

Technology (ETH) Zurich, Gloriastrasse 35, CH-8092, Zurich, Teck

Rep. TIK-67, Jan. 1999.

I. Radivojevicand F. Brewer, “Ensemble representation and techniqus

for exact control-dependent scheduling,”Rroc. 7th Int. Symp. High-

Level Synthesjs1994, pp. 60-65.

C. N. Coelho Jr. and G. De Micheli, “Dynamic scheduling and syn-

chronization synthesis of concurrent digital systems under system-level

constraints,” inProc. IEEE/ACM Int. Conf. Computer-Aided Design

(ICCAD-94) 1994, pp. 175-181.

S. Haynal and F. Brewer, “Efficient encoding for exact symbolic

automata-based scheduling,” Broc. IEEE/ACO Int. Conf. Com-

puter-Aided Design (ICCAD-98)1998.

[53] ——, “A model for scheduling protocol-constrained components and
environments,” irProc. 36th Design Automation Conf. (DAC '99999.

[54] The ATM Forum Technical Committee, “ATM User—Network
Interface Specification, Version 3.1,”, ftp:/ftp.atmforum.com/pub/ap
proved-spdcs/af-uni-0010.002.pdf.tar.Z, Sept. 1994.

[55] The ATM Forum Technical Committee, “UTOPIA, An ATM-PHY
Interface Specification, Level 2, Version 1.0, ftp://ftp.atm-
forum.com/pub/approved-specs/af-phy-0039.000.pdf, June 1995.

[56] A. K. Parekh and R. G. Gallager, “A generalized processor sharing &

proach to flow control in integrated services networks: The single-noc

case,"IEEE/ACM Trans. Networkingrol. 1, pp. 344-357, June 1993.

H. Zhang, “Service disciplines for guaranteed performance service

packet-switching networksProc. IEEE vol. 83, pp. 1374-1396, Oct.

1995.

S. J. Golestani, “A self-clocked fair queueing scheme for broadband

applications,” inProc. IEEE INFOCOM '94 vol. 2, June 1994, pp.

636—-646.

(49]

(50]

(51]

(52]

[57]

(58]

Karsten Strehl (S'97-M’00) received the Diploma
degree (with distinction) in electrical engineering
from the University of Karlsruhe, Germany, in 1997
and the Doctor of Technical Sciences degree fror
the Swiss Federal Institute of Technology (ETH),
Zurich, in 2000.

In 1997, he joined the Computer Engineering
and Networks Lab (TIK) at ETH Zurich. Since June
2000, he has been with ETAS GmbH, Stuttgart
Germany. His research interests include desig
automation methods and tools for specification
analysis, and synthesis of embedded hardware/software systems, in parti

Matthias Gries (S'97) received the Dipl.-Ing. degree
in electrical engineering from the Technical Univer-
sity of Hamburg-Harburg, Germany, in 1996. He is
currently pursuing the Ph.D. degree at the Swiss Fed-
eral Institute of Technology (ETH), Zurich.

His research project deals with algorithm-architec-
ture design tradeoffs of network processors with the
aim of preserving the quality of service by feasible
packet scheduling and policing. His interests also in-
clude queue management for access network devices
as well as memory controller design.

Dirk Ziegenbein (M'01) received the M.S. degree in
electrical engineering from Virginia Polytechnic Uni-
versity, Blacksburg, in 1996.

Since 1997, he has been with the Institute of Com-
puter and Communication Network Engineering
(IDA), Technical University of Braunschweig,
Germany, where he is working on the development
of the SPI Workbench, an approach to multilanguage
embedded system design. His research interests
include modeling, analysis, and optimization of
complex embedded systems, in particular systems

specified using several languages or models of computation.

Rolf Ernst (M’89) received the diploma in computer
science and the Ph.D. degree in electrical engi-
neering from the University of Erlangen-Nuremberg,
Germany, in 1981 and 1988, respectively.

From 1988 to 1989, he was a Member of Tech-
nical Staff at Bell Labs, Allentown, PA. Since 1990,
he has been a Full Professor at the Technical Uni-
versity of Braunschweig, Germany, where he heads
the Institute of Computer and Communication Net-
work Engineering (IDA). He was a main author of
one of the first hardware/software cosynthesis sys-

high-level system design approaches, formal methods, and automated progiéiers, COSYMA. His main research interests are in embedded system design

tion code generation.

Dr. Strehl received the 1997 Award of the Faculty of Electrical Engineering
at Karlsruhe University, the 1997 Siemens Information and Communication
Award, and the ETH Medal for his Ph.D. dissertation.

Lothar Thiele (S’83—M'85) received the Dipl.-Ing.
and Dr.-Ing. degrees in electrical engineering from
the Technical University of Munich, Germany, in
1981 and 1985, respectively.

In 1981, he joined the Institute of Network Theory
and Circuit Design, Technical University of Munich,
as a Research Associate. After finishing his habil
itation thesis, he joined the Information System
Laboratory, Stanford University, Stanford, CA, in
1987. In 1988, he became Chair of Microelectronics
in the Faculty of Engineering, Saarland University,
Saarbriicken, Germany. He joined ETH Zurich, Switzerland, as a Full Profes
in Computer Engineering in 1994. His research interests include models,
methods, and software tools for the design of embedded systems.

and embedded system design automation.

Jirgen Teich (S'89-M'95) received the Dipl.-Ing.
degree (with honors) from the University of Kaiser-
slautern, Germany, in 1989 and the Ph.D. degree
(summa cum laudejrom Saarland University in
1993.

In 1994, he joined the DSP design group at the
University of California at Berkeley, where he was
working in the Ptolemy project. From 1995 to 1998,
he was with TIK at ETH Zurich, finishing his ha-
bilitation thesis in 1996. Since 1998, he has been a
Full Professor in the Electrical Engineering and In-

formation Technology Department, University of Paderborn, Germany, holding

Dr. Thiele received the Award of the Technical University of Munich for hisa Chair in Computer Engineering. He is author of a textbook on hardware/soft-
Ph.D. dissertation in 1986. He received the 1987 Outstanding Young Authmare codesign edited by Springer in 1997. His special interests are massive par-
Award from the IEEE Circuits and Systems Society. In 1988, he received thelism, embedded systems, hardware/software codesign, and computer archi-

1988 Browder J. Thompson Memorial Prize from the IEEE. tecture.

Authorized licensed use limited to: TECHNISCHE UNIVERSITAT BRAUNSCHWEIG. Downloaded on February 23, 2009 at 05:44 from |IEEE Xplore. Restrictions apply.

