
Intervals in Software Execution Cost Analysis

Fabian Wolf, Rolf Ernst
Institut für Datenverarbeitungsanlagen, Technische Universität Braunschweig, Germany

fwol f jernstg@ida.ing.tu-bs.de

Abstract

Timing and power consumption of embedded systems are
state and input data dependent. Formal analysis of such
dependencies leads to intervals rather than single values.
These intervals depend on program properties, execution
paths and states of processes, as well as on the target archi-
tecture. This paper presents an approach to analysis of pro-
cess behavior using intervals. It improves previous work by
exploiting program segments with single paths and by tak-
ing the execution context into account. The example of an
ATM cell handler demonstrates significant improvements in
analysis precision.

1. Introduction

Accurate software running time and power analysis are
key to optimized system synthesis. In general, imprecise es-
timation of software execution costs (such as running time
and power) increases design risk or leads to inefficient de-
signs. Profiling and simulation are the state-of-the-art in in-
dustry, but since exhaustive simulation is impractical, sim-
ulation results can only cover part of the system behavior.
Static analysis is a more complicated but attractive alter-
native. It provides lower and upper bounds reflecting data
dependent control flow as well as data dependent statement
execution cost. In the past, these bounds were wide due
to a lack of efficient control flow analysis and architecture
modeling techniques. Significant progress in both areas has
made formal analysis practical.

Intervals for software execution cost depend to a certain
extend on the process control flow which depends on pro-
cess input data. Execution cost of the software processes
and, hence, of the overall system are context dependent. We
will use an example from wireless communication, where
there are several paths on which different data packets are
routed through a network of software processes. Important
questions of the system architect can be the power con-
sumption for sending a data packet or the time to set up
a connection in a base station. This should take the system

context into account, since for each packet type the pro-
cesses react with a different control flow. Of course, simu-
lation is always possible and statistical execution cost anal-
ysis is feasible, but the first approach is not reliable and the
second is just an approximation of the complex hardware
activities when executing a set of communicating software
processes. We will show with realistic examples that the
static analysis approach provides reliable and narrow inter-
vals for context dependent process execution cost that is au-
tomatically evaluated by the analysis tool.

We explain the influence of data dependent control flow
on software execution cost in section 2. Data dependent
instruction execution is explained in section 3. In section 4
we present an example before we conclude in section 5.

2. Program Path Analysis

For path analysis techniques [7], a program is typically
divided into basic blocks, where abasic block bb is a pro-
gram segment which is only entered at the first statement
and only left at the last statement [1]. Any program can
be partitioned into disjoint basic blocks. Then, the program
structure is represented as a directed program flow graph
with basic blocks as nodes. For each basic block a cost with
respect to each interval is determined. A longest and short-
est path analysis on the program flow graph is used to iden-
tify a global interval. This procedure does not yet provide
sufficient accuracy. For acceptable analysis precision one
must identify feasible paths through a program. Afeasible
program path or trace is a path in this flow graph corre-
sponding to a possible sequence of basic blocks when the
program is executed from the first to the last basic block of
a program. A program segment is a sequence of nodes in
a program flow or syntax graph. This definition implies a
hierarchy of program segments. Not all paths in the graph
represent feasible program paths. Afalse program path is
a path in the graph which cannot be executed under any in-
put condition. False path identification is essential for pro-
grams with loops since loops correspond to cycles in the
graph which lead to an infinite number of potential paths
and resulting infinite cost intervals.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ISSS 2000, Madrid, Spain
© 2000 IEEE 1080-1082/00 $10.00

130

2.1. Previous Work

The approaches by Puschner and Koza [10] and Park
and Shaw [9] require iteration bounds for all loops in
the program which the user must provide by loop annota-
tion. While making formal analysis feasible, loop bounding
alone is not sufficient for accurate path analysis. The ap-
proach by Gong and Gajski [5] can partially consider false
paths because the user can specify the branching probabili-
ties. As a second step in [7] and in [9], the user is asked to
annotate false paths. The number of false paths can be very
large. Instead of enumerating false paths or, conversely,
feasible paths, a language for user annotation with regular
expressions is introduced in [9]. Still, the number of re-
quired path annotations can be extremely large in practice,
as demonstrated with even small examples in [7]. A major
step forward was the introduction of implicit path enumer-
ation [7]. Here, the user provides linear (in)equations to de-
fine false paths. To evaluate these (in)equations, Li and Ma-
lik map the upper and lower bound identification to two ILP
problems, the one optimizing for the lower, the other one
for the upper cost bound. Previous work by Ferdinand in
[4] bases on this kind of interaction while abstract interpre-
tation is used for the static prediction of cache and pipeline
behavior. Abstract interpretation has also been used to re-
duce designer interaction for loop bounding [6].

2.2. Execution Cost

The execution time model in [7] is established as a stan-
dard model for static approaches which is called the sum-of-
basic-blocks model in [13] for timing. It can be extended to
power consumption [11] and data rates, abstracting the tim-
ing to the execution costc of a program segment in general.
Let a program consist ofN basic blocks withxi execution
count of basic blockbbi andci execution cost. Then, the
sum-of-basic-blocks model defines for the program execu-
tion cost interval:

C =

N

∑
i

ci� xi

For the execution count interval[xi;min;xi;max], the designer
provides an implicit description of the possible paths by
means of linear equations for execution counts. The struc-
tural constraints define another set of equations: The exe-
cution count inflowd of a basic block equals its execution
countx and its execution count outflowd.

∑
bb

din f low = xi;bb =∑
bb

dout f low

These (in)equations for the upper and the lower execu-
tion count bound are mapped to two ILP problems which
can be solved to derive the widest execution count interval
[xi;min;xi;max] for each basic block or program segment.

It is assumed that all executions of one basic block have
the same cost. However, data dependent instruction execu-
tion and super scalar or super pipelined architectures with
overlapped basic block execution as well as cache behavior
lead to widely varying local path cost with respect to latency
time and power consumption. This has a substantial effect
on the cost interval. For these architectures, the sum-of-
basic-blocks model cannot provide close bounds, but must
be pessimistic to be correct. For higher accuracy, basic
block sequences in program segments must be considered.
This shall be called thesum-of-program-segments model
containing basic block sequences which is a major improve-
ment compared to the state-of-the-art.

2.3. Path Classification

Program properties can be exploited to simplify path
analysis for the determination of the execution cost through
basic block sequences [13]. Large parts of typical embed-
ded system programs have a single program path only. An
FIR filter is a simple example and a Fast Fourier Transform
is a more complex one. There is only one path executed for
any input pattern, even though this path may wrap around
many loops, conditional statements and even function calls
which are used for program structuring and compacting. A
program segment has aSingle Feasible Path SFP, when
paths through this segment are not depending on input data.
A program segment with an SFP is anSFP-segment.

Previous analysis approaches give more than one exe-
cution path for SFP programs because they do not distin-
guish between input data dependent control flow and pro-
gram structuring aids. In the best case, they may be accurate
but require much designer interaction for SFP program seg-
ments and still do not deliver the path segment costs such
as [7]. In case of SFP, execution would choose the one cor-
rect path and sequence for any input pattern without further
designer interaction. Most practical systems also contain
non-SFP parts. These have multiple feasible paths MFP. A
program segment hasMultiple Feasible Paths MFP, when
paths through the program segment are depending on input
data. A program segment with MFP is anMFP-segment.
Isolation of SFP and MFP parts can help to exploit SFP.

In [13], SFP are exploited by finding SFP and MFP
nodes in the control flow graph. Embedded MFP are cut
out and analyzed separately using the ILP approach while
SFP are analyzed by simulating the timing of the only path.
Costs for cutting out the MFP and the MFP cost interval de-
livered by the ILP solver are added. This leads to tighter
cost bounds compared to [7]. In this paper, we present ma-
jor improvements. The approach in [13] can only deal with
one level of embedded MFP. If several levels of hierarchy
with SFP and embedded MFP are present, they have to be
analyzed separately, so dependencies across the hierarchi-

131

cal levels are lost leading to overly pessimistic cost bounds
in case of complex programs. We extend this approach to
a global cost interval calculation for all levels which pro-
vides higher analysis precision. The syntax graph instead
of the control flow graph is chosen because it can directly
cover the hierarchy of control structures and rewriting the
program to generate a control flow graph is not necessary.

2.4. Identification of Program Properties

Syntax Graph For the identification of SFP and MFP
segments, the input program is mapped to asyntax graph.

Figure 1. Hierarchical syntax graph

The syntax graph of a bubble sort algorithm is shown in
figure 1. In this syntax graph, every control structure, such
asi f and f or, is a hierarchical node. The basic blocks are
the leaf nodes with the according basic block cost. Every
control structure has edges with different meanings. The
”control” edge that decides which of the paths is executed
and the ”successor” edge that leads to the next node are part
of every control structure while the ”then” and the ”else”
edge are specific for thei f=else program segment. The
same restrictions to use structured programs are assumed
as in [7]. Control flow enters and leaves ani f=else program
segment exactly twice for the given hierarchy level, once
for the control structure and once for either the ”then” or
the ”else” edge like in figure 2.

Feasible Paths in the Syntax Graph A Program Seg-
mentPrS in the syntax graph is a sequence of syntax nodes
with exactly one first and one last basic block. This fol-
lows the definition of basic blocks in [1]. A Program Path
SegmentPaS is a path through a program segment PrS. A
Single Feasible Path Program SegmentSFP-PrS is a hier-
archical PrS with exactly one PaS through the PrS of the
syntax graph while a Multiple Feasible Path Program Seg-
mentMFP-PrS is a hierarchical PrS which is no SFP-PrS.

A Maximum Program SegmentMPrS is a PrS with all SFP-
PrS and MFP-PrS on the same level of hierarchy. A Max-
imum Single Feasible Path Program SegmentMSPrS is a
maximum sequence of consecutive SFP-PrS on the same
level of hierarchy. It has exactly one PaS for execution.

A depth first search algorithm on the syntax graph can be
used to determine input data dependencies of conditions us-
ing symbolic simulation of basic blocks [13]. Every control
structure which does not contain an input data dependent
condition must be SFP. Leaf nodes are SFP by definition. If
conditions contain input data, or symbolic execution is not
successful due to the complexity of symbolic expansions,
the syntax graph nodes are classified as MFP. This leads to
wider cost intervals. This algorithm classifies each hierar-
chical node. PrS with MFP child nodes are classified as
MFP because the multiple paths also enter and leave this
hierarchical node even when their control structure is inde-
pendent of input data. Thef or-PrS in figure 2 which shows
the inner loop of figure 1 potentially has 2iterations paths be-
cause control flow splits in thei f -PrS.

Figure 2. Execution paths in the graph

To treat such situations, we introduce a pseudo SFP-PrS.
A pseudo SFP-PrS is an SFP-PrS with a single PaS on
one level of hierarchy while lower levels may have multi-
ple paths as in figure 3. On this level of control hierarchy, it
can be treated like an SFP-PrS as we prove in [12].

Program Segment Cost Cost determination requires a
Program Segment ExecutionPsE. It is an execution of a
PaS through the complete PrS. Details can be found in [13]
and in section 3. There can be a minimum and a maximum
cost for a single PaS through the PrS because of data depen-
dent instruction execution. ThePrScost is the cost for the
execution of a PrS. PrScost is determined according to its
PrS classification.

PrScost(PrSi) =

8<
:

MSPrScost(PrSi) PrSi is MSPrS
MFP-PrScost PrSi is MFP-PrS
undefined else

132

The SFP-PrScost is the cost for the execution of an SFP-
PrS. SFP-PrScost is determined by PsE. In practice, all
consecutive SFP-PrS and pseudo SFP-PrS are joined in
MSPrS, so MSPrScost is computed by PsE covering the
SFP-PrScost. TheMSPrScost is the cost for the execution
of an MSPrS. Let PrSi be MSPrS:

MSPrScost(PrSj) is determined byPsE

for the cost of the one executed path. ThePaScost is
the cost for the execution of a PaS. The path may cover
MSPrS and MFP-PrS. It can contain a lower hierarchical
level MFP-PrS requiring a descend in the recursive cost
analysis approach until we get to a PaScost without MFP-
PrS, i.e. only containing MSPrScost delivered by PsE as
above. TheMFP-PrScost is the cost of an MFP-PrS.

MFP-PrScost(PrSj) = ∑
PaSi

xi PaScost(PaSi)+Tp=e;Pj

MFP-PrScost is computed as an ILP problem using the ap-
proach of [7], delivering the execution count xi of the dis-
tinct PaSi plus the transition costs. MFP-PrScost has a min-
imum and a maximum. TheTransition Cost T p=e;Pj

is the
cost representing overlapping PrScost for the prologuep
and the epiloguee in figure 2. These transition costs must
be conservative. If no MFP-PrS in the PaS on lower levels
of hierarchy is present, the recursive descent stops. The ex-
ecution count xi of a PaS is solved according to section 2.2
after the equations for the embedded MFP-PrS including
execution count xi have been propagated to the top level.

Figure 3. Pseudo SFP-PrS with MFP-PrS

In the previous approach in [13], embedded MFP cost
and ”cut point” cost were separately analyzed and added to
the simulated SFP for every MFP on different levels of hier-
archy. We do not lose the dependencies across several levels
of hierarchy because the MFP-PrScost equations including
the execution count xi and transition costs are propagated
to the top level of the syntax graph instead of adding values
in the control flow graph. This generalizes the approach in
[13]. As MFP-PrScost is based on PaS, single paths PaS
through the MFP-PrS can be analyzed.

Global Cost Calculation For the bubble sort example in
figure 3, the recursive cost calculation with the propaga-
tion of equations works the following way: We start on the
top level of the process. For its execution cost we need the
cost of PrS1 and of the lower levels of hierarchy PrS2 and
PrS3. After checking the twof or loops, the recursive de-
scend finds PrS3, thei f=else MFP-PrS. It only contains leaf
nodes. The MFP-PrScosti f=else of PrS3 is composed by the
cost of the paths PaSi;3 across ”control” and ”then” or ”con-
trol” and ”else” each of which is delivered by PsE. xi is their
execution count andTp=e;P3

the transition cost. Then we can
calculate the cost of PrS2, the innerf or loop shown in figure
2. It is composed by the cost equation of thei f=else MFP-
PrS, and the MSPrScost of the ”j++”-PrS and ”control”-PrS
as these are leaf nodes. The cost equation for PrS1, the outer
f or loop, can be given which adds the MSPrScost of the
” i++”-PrS and ”control”-PrS to the cost of PrS2 and PrS3.

Execution Cost= ∑
PaSi;3

xi PaScost(PaSi;3) + Tp=e;P3

+ MSPrScost(PrS2) + MSPrScost(PrS1)

Even with one level of hierarchy between PrS1 and PrS2,
their MSPrScost can be delivered by the same PsE be-
cause the control flow is given by the program properties.
PrScost equations for PrS3 have been propagated to the top
level where the designer can provide functional constraints
bounding the xi of PrS3 instead of basic blocks according to
section 2.2. This finally delivers the execution cost bounds.

There is a one-to-one correspondence between the basic
blocks of the syntax graph and the nodes of the hierarchical
control flow graph HCFG the syntax graph can be trans-
formed to. For the following examples the HCFG is used to
allow an easier modeling of control flow.

2.5. Context Dependent Control Flow

The path analysis approach presented up to this point is
based on the identification of input data independent con-
trol flow. This improves the estimation accuracy compared
to the approach in [7] and the first preliminary SFP analy-
sis approach in [13]. Even MFP segments with input data
dependent paths are analyzed with narrower bounds than in
the previous basic block based approaches, as long as some
segments on the lower levels of hierarchy are SFP-PrS.

In the introduction, we have argued that the designer
is often interested in a context dependent process behav-
ior. Here, context is defined to be a subset of input data
and/or a subset of possible process states, often called pro-
cess modes. In each context, only a subset of paths through
a program segment can be executed. This potentially means
reduced cost bounds which could be exploited for analy-
sis. Global process representation models [14] can support

133

process modes, such that the distinguishable contexts are
known for cost analysis. A simple example for context de-
pendent control flow in an ATM switch component is given.

Figure 4. Path selection of the OAM mode

An ATM switch identifies some of the cells in the data
cell stream as so called operation and maintenance cells,
OAM, which control the ATM connection [3]. These cells
do not carry user data so they are irrelevant for data trans-
mission. Figure 4 shows a typical code segment to handle
the OAM component of the switch. The control flow graph
is shown in figure 5. In this ”OAM mode”, the shadedelse
program segment in figure 4 cannot be reached. It should
not be included in further analysis of the OAM mode while
in the ”USER mode” only thiselse path is executed. For

Figure 5. PrS in the ATM switch component

a given context, the ”if” node bb2 has a single path only.
In other words, the contexts ”VCI = 3” corresponding to
the OAM mode, and ”not (VCI = 3)” corresponding to the
USER mode turn an MFP-PrS into a PrS with a single path.
We will call such a PrS aContext Dependent Path pro-
gram segmentCDP-PrS. For analysis of the given context,
it is treated like an SFP-PrS. Where this approach is not ap-

plicable, the reduced path set of a given context can further
be exploited via additional structural and functional con-
straints [7]. In both cases, context dependent behavior can
be analyzed using the same techniques as described before.
The same discussion for the gain in accuracy as in [13] ap-
plies because longer sequences are achieved than with SFP
identification alone. At the transitions between SFP and
CDP segments, MSPrS containing both SFP-PrS and CDP-
PrS can be defined.

For different modes, SFP-PrS and functional constraints
for the remaining MFP-PrS stay the same, while a different
block of CDP-PrS can be extracted from the MFP-PrS. This
way, average cases given as artifical modes can tighten the
wide intervals. Stochastic or probabilistic distribution of in-
put data could be considered using according cost functions
and convolutions for the PrS-cost.

3. Architecture Modeling

A program segment execution PsE for the cost determi-
nation of a PrS uses one of the following two techniques:

Instruction Cost Addition ICA The instruction or
statement execution costs in a basic block or PrS are added.
We do not need input data. Host tracing is used while execu-
tion costs are taken from a table. This is a very computation
time efficient approach. Instruction execution costc i can be
dependent on input data. A popular example is a shift-and-
add implementation of a multiplication in a processor deliv-
ering an interval forci. So in the tables, minimum and max-
imum instruction execution cost can be considered leading
to an interval for the PrS cost delivered by ICA.

Program Segment Simulation PSS The basic block or
PrS is simulated using known input data and a cycle true
processor model [2] which can exactly deliver processor
timing or power consumption. This can be any well es-
tablished, off-the-shelf processor simulator provided by the
processor vendor. Processor evaluation kits implemented in
hardware have been successfully used for timing or power
measurement with a logic state analyzer and automatic re-
sult back annotation. As an example for PSS that delivers
the execution cost of the PrS, a StrongARM simulator core
is combined with the DINERO III cache simulator deliver-
ing both instruction and data cache behavior. Source codes
have been recompiled to one simulator. Architecture mod-
eling regarding timing and the energy dissipation model is
derived from [8] and [11]. Data rates are derived from the
amount of data produced or consumed on a path and its ex-
ecution count from section 2.2.

The major improvement to the architecture modeling of
the first SFP analysis approach in [13] is the possibility to
integrate off-the-shelf processor simulators and emulators.
This enables us to determine execution cost intervals for
several target architectures.

134

4. Experiment

Packet Receiver The approach is applied to a process that
reads a packet and loads a picture as presented below. If the
picture is addressed to the component, it performs a filter.
A pseudo code description is given below.

89: header = receive(INPUT, HEADER_SIZE);
for all pixels /* Size mode */

picture[y][x] = receive(INPUT, 1);
122:if(address == MY_ADDRESS) { /* Ann. address */
124: for all pixels {

for a 3*3 pixel window {
143: if(without_center) /* Ann. center */

average = sum/8;
else average = sum/9;

151: if(abs(picture[y][x]-average)>threshold)
send(OUTPUT, average, 1);

else send(OUTPUT, picture[y][x], 1);
} } }

In table 1, execution cost intervals with respect to latency
time, power consumption and data rates without picture size
or address match mode are given. The intervals as well as
the path classification are given for every PrS that is refer-
enced by the line number it is starting with. Due to the loop
bounds for each context given by the packet size bounds in
the received header, we know the minimum and maximum
number of pixels leading to a CDP in line 124. SFP seg-
ments and CDP segments are merged into MSPrS, so they
may not be visible in the results. The results for the com-
plete process are given in the last line.

Line+ PrS type Latency ms Energy mWs Sent bytesReceived bytes

89 SFP [4.92,38.0] [2.0,8.5] [0,0] [6197,25045]
122 MFP [413ns,2475ns][50nWs,178nWs] [0,0] [0,0]
124 CDP [39.5,329] [17.5,72.6] [0,0] [0,0]
143 MFP [1.54,131] [0.65,14.7] [0,0] [0,0]
151 MFP [16.7,182] [2.85,20.4] [0,24393] [0,0]

∑cost - [4.955,680.847] [2.099,116.211] [0,24393] [6197,25045]

Table 1. Cost [ci;min;ci;max] without modes

In table 2, different modes are explored. In the first three
lines, picture sizes are derived from process modes. Ad-
dress and luminance calculation modes follow. Table 1 can
be found in line 3. We notice that known process modes
lead to tighter, but context dependent cost intervals for the
process that can be used for formal process representation
supporting process modes on higher levels [14].

Modes/Context Latency ms Energy mWs Sent bytes Received bytes

Small Picture [4.955,66.71] [2.099,24.61] [0,5865] [6197,6197]
Large Picture [19.24,680.8] [8.474,116.2] [0,24393] [25045,25045]
No Size [4.955,680.8] [2.099,116.2] [0,24393] [6197,25045]

Small+Address [38.49,63.62] [21.03,23.61] [5865,5865] [6197,6197]
Large+Address [264.6,572.0] [97.3,106.5] [24393,24393] [25045,25045]
No Size+Address[38.49,572.0] [21.03,106.5] [5865,24393] [6197,25045]

Table 2. Cost [ci;min;ci;max] with modes

5. Conclusion

Process timing and power consumption can be highly
context dependent. Process modes are introduced to dis-
tinguish contexts with significantly different execution cost.
An existing symbolic analysis approach is extended to cal-
culate global program cost intervals and capture context de-
pendent cost intervals of single processes. Major improve-
ments to path analysis and architecture modeling techniques
are presented. The results demonstrate a significant im-
provement in execution cost analysis precision.

References

[1] A. V. Aho, R. Sethi, and J. Ullman.Compilers: Principles,
Techniques and Tools. Addison-Wesley, Reading, GB, 1988.

[2] T. M. Conte and C. E. Gimarc.Fast Simulation of Computer
Architectures. Kluwer Academic Publishers, 1995.

[3] A. Doboli, J. Hallberg, and P. Eles. A simulation model for
the OAM functionality in ATM switches. Technical report,
Linköping, 1995.

[4] C. Ferdinand and R. Wilhelm. On predicting data cache be-
havior for real-time systems. InProceedings of Language,
Compilers and Tools for Embedded Systems, 1998.

[5] J. Gong, D. Gajski, and S. Narayan. Software execution
from executable specification.The Journal of Computer and
Software Engineering, pages 239–258, 1994.

[6] J. Gustafsson and A. Ermedahl. Automatic derivation of
path and loop annotations in object-oriented real-time pro-
grams.Journal of Parallel and Distributed Computing Prac-
tices, 1998.

[7] Y.-T. S. Li and S. Malik.Performance Analysis of Real-Time
Embedded Software. Kluwer Academic Publishers, 1999.

[8] J. Montanaro. A 160-MHz, 32-b, 0.5W CMOS RISC mi-
croprocessor.IEEE Journal of Solid State Circuits, pages
1703–1714, Nov. 1996.

[9] C. Y. Park and A. C. Shaw. Experiments with a program tim-
ing tool based on source-level timing scheme. InProceed-
ings of Real-Time System Symposium, pages 72–81, 1990.

[10] P. Puschner and C. Koza. Calculating the maximum exe-
cution time of real-time programs.Journal of Real-Time
Systems, 1(2):160–176, 1989.

[11] V. Tiwari, S. Malik, and A. Wolfe. Instruction level power
analysis and optimisation of software.VLSI Signal Process-
ing, pages 1–18, 1996.

[12] F. Wolf and R. Ernst. Execution cost interval refinement in
static software analysis. Technical report, Technical Univer-
sity of Braunschweig, 2000.

[13] W. Ye and R. Ernst. Embedded program timing analysis
based on path clustering and architecture classification. In
Proceedings International Conference on Computer-Aided
Design (ICCAD ’97), pages 598–604, San Jose, USA, 1997.

[14] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele.
Combining multiple models of computation for scheduling
and allocation. InSixth International Workshop on Hard-
ware/Software Co-Design, pages 9–13, Seattle, 1998.

135

