
Embedded System Design using the SPI Workbench

Marek Jersak, Dirk Ziegenbein, Fabian Wolf, Kai Richter, Rolf Ernst
Technische Universität Braunschweigfjersakj ziegenbeinjwolf j richter jernstg@ida.ing.tu-bs.de

Frank Cieslok, Jürgen Teich
Universiẗat Paderbornfcieslokj teichg@date.uni-paderborn.de

Karsten Strehl, Lothar Thiele
ETH Z̈urichfstrehlj thieleg@tik.ee.ethz.ch

Abstract

Complex embedded systems typically include
functions from several application domains and
are best specified using different languages with
different underlying models of computation. These
languages are well known to designers, and large
design libraries are available, facilitating design
re-use. An efficient design-flow must be able to
bridge the semantic differences for system-level
analysis and synthesis. Non-functional require-
ments and constraints, in particular timing, which
are typically ignored on the input level, must be
modeled and verified to guarantee correct im-
plementation. A variety of synthesis techniques
should be applicable. The SPI workbench de-
scribed in this paper is an open framework for em-
bedded system analysis and synthesis from hetero-
geneous specifications. It utilizes the SPI model,
a representation that abstracts function into inter-
vals of system properties.

1. Introduction

The design of complex embedded systems typi-
cally requires combining multiple models of com-
putation for different application domains [15].
Two classes of approaches exist to model such
heterogeneous systems. In the first class of ap-
proaches, a single super-language is used. In the
second class of approaches, multiple models of
computation or languages are used, each for a dif-
ferent part of the system. This approach has sev-
eral advantages: the models of computation or
languages are optimized for a specific application
domain, tools and languages are well known to de-
signers, companies have made large investments
in those tools, and many design libraries are avail-
able [7].

However, while each of these models of com-
putation has properties which can be exploited
for analysis and optimized implementation, these
properties are different for each model, thus in-
hibiting system analysis and optimization across
language boundaries. In order to solve this prob-
lem, we propose a design-flow where the multi-
language input specification is translated into a
common representation, the SPI model. SPI
(System Property Intervals) [24, 25, 19] is an
internal high-level representation that facilitates
global system-level analysis, optimization and
synthesis of heterogeneously specified embedded
systems.
Since research in system design automation re-
quires a high effort to build the necessary environ-
ments to obtain results for relevant examples, and
because of the large number of input languages,
possible analysis and synthesis approaches, the
SPI Workbenchis being built as an open research
platform offering opportunities for original con-
tributions, exchange of algorithms and access to
demonstrators.
SPI is based on the model of communicating pro-
cesses, but with process function abstracted into a
set ofpropertiesnecessary for system-level analy-
sis and synthesis. A major contribution to the high
semantic flexibility of the model is the use ofbe-
havioral intervals, e.g. time intervals or data rate
intervals, to capture data-dependent behavior. Be-
havioral intervals also allow to incorporate incom-
plete specifications or legacy code, whose internal
details are only partially known.
Most high-level languages or models of compu-
tation are well suited forfunctionalspecification
and simulation, but typically lack formalisms to
model timing requirements and constraints. As a
result, timing is tested today by simulation late in
the design flow. However, it is practically impos-



sible to test complex systems completely by simu-
lation, and extremely hard to find test patterns that
cover the corner cases. The satisfaction of timing
constraints thus cannot be guaranteed.
Therefore, the current focus of our work is on the
modeling of timing constraints, timing analysis,
and scheduling strategies that satisfy all timing
constraints.
In Sec. 2, the SPI workbench is described in detail,
followed in Sec. 3 by an introduction of the most
important SPI concepts. A modeling example
used throughout the paper is introduced in Sec. 4.
In Sec. 5, a translation from an input specification
into SPI is described using the tool Simulink as an
example. In Sec. 6, a static approach is explained
as an example for process-level timing analysis. In
Sec. 7, a cyclo-static technique is used as an exam-
ple for system-level timing analysis and schedul-
ing, followed by a conclusion.

1.1. Related Work

An outline of the state of the practice and the state
of the art in the area of hardware/software co-
design is given in [7]. There, the insufficient co-
herency of the different languages, methods and
tools is identified as a substantial obstacle on the
way to a higher design productivity and to a reli-
able design process. A comparison of many mod-
els of computation accepted in industrial design
and supported by an extensive set of design tools
can be found in [15].
Ptolemy II [9] is a framework that supports input
specifications with multiple models of computa-
tion. It thus facilitates common simulation and
functional verification at a high level of abstrac-
tion. However, there is no clear path to system
implementation. In particular, behavioral intervals
are not considered which inhibits efficient model-
ing of data-dependent behavior.
Several hardware/software co-design environ-
ments are available from academia. Both PO-
LIS [1] and COSYMA [8] support co-design for
control-dominated systems, but are limited to a
small set of input languages, scheduling and allo-
cation strategies. As with Ptolemy II, behavioral
intervals cannot be represented.
Simulink [18] is used as an example input tool for
SPI in this paper. Its underlying model of compu-
tation is time-driven. The standard software code-
generator Real-Time Workshop [17] can be used
for prototyping or as a basis for production code,
but lacks the ability to guarantee timing. Tim-
ing is also a problem for other Simulink code-
generators, such as TargetLink [11].
In static process timing analysis, a well known ap-
proach is based on implicit path enumeration [16].

The user provides linear (in)equations to define
false paths. To evaluate these (in)equations, the
upper and lower bound identification is mapped to
two ILP (integer linear program) problems. How-
ever, estimated bounds are wide because auto-
matic path analysis is not supported as in [22, 21],
which is the approach used in this paper.
For heterogeneous hardware-software systems,
typically neither purely static scheduling policies
such as those for synchronous data-flow (SDF)
[14], nor purely dynamic scheduling policies such
as EDF (earliest deadline first) are appropriate. In-
stead, combinations of static and dynamic poli-
cies, as shown e.g. in [5], usually provide a rea-
sonable compromise.
A related technique called quasi-static scheduling
has been developed for specification models such
as dynamic data flow graphs [2] or actors with
data-dependent execution times [10]. In [20], we
have proposed a symbolic scheduling approach
for a mixed data-flow and control-flow specifica-
tions to generate uniprocessor schedules consist-
ing of statically scheduled blocks called dynami-
cally at run-time.
Here, we present a complementary analysis tech-
nique that checks timing constraints in the pres-
ence of latency intervals, and if possible returns a
cyclo-static multiprocessor schedule.

2. The SPI Workbench

In this section, the concepts, structure and imple-
mentation of the SPI (SystemPropertyIntervals)
workbench are presented. Fig. 1 shows the work-
bench structure. Input is a system with its system
function captured in domain-specificinput lan-
guages or toolswith different underlying models
of computation (Data-flow, StateCharts, ...), and
coupling information between the domains. There
are several advantages of such a multi-language
representation compared to using a uniform sys-
tem specification language: each model of com-
putation or language is optimized for a specific ap-
plication domain, languages and design tools are
well known to designers, companies have made
large investments in those tools, and large design
libraries are available [7].
Domain-specific optimizations, e.g. transforma-
tions of signal flow graphs or composition and de-
composition of state-based descriptions are best
performed in these input languages. Simula-
tion andfunctional verificationcan be performed
on combinations of differently described system
parts, independent of the SPI representation, us-
ing existing tools and co-simulation approaches
[7]. However, the modeling of timing, in particu-



Input

Language 2

Subsystem 2

Input

Language 1

Subsystem 3

System-level

Analysis &

Optimization {Behavioral Intervals + Function} {...} {...}

{...}{...}

SPI+Host languages

Synthesis

(HW, SW, Interfaces)

IP, legacy

code

Constraints

Subsystem 1

{...}

Architecture Library

Functional

specification,

Co-simulation,

Domain-specific

optimization

Clustering,

Mapping

User

Interface

Visualization

Figure 1: SPI Workbench Structure

lar with behavioral intervals and across input lan-
guages, as well as the specification of timing con-
straints are not possible.

To enable system-level analysis beyond function,
in particular of timing, input languages as well
as IP and legacy blocks are transformed into a
SPI representation. In this process,system struc-
ture (functional elements, states, channels, inter-
faces) as well as theirexternally visible proper-
ties (data rates, execution rates, activation func-
tions) are captured, while functional details are
abstracted. After the transformation to SPI, the
heterogeneously specified subsystems have been
merged into a uniform representation that facil-
itatescombined global analysis and system syn-
thesis. SPI thus serves as a systemcoordination
language.

The input languages also have to be translated into
host languages(C/C++, HDLs, ...) that are well
suited for implementation, to capture the func-
tion of the abstract models used by the input lan-
guages. The high level of detail which is com-
mon to the host languages makes them suitable for
model execution andprocess-levelanalysis of be-
havioral intervals, in particular architecture- and
data-dependent timing. Code-generators available
for the various modeling tools typically generate
output in these host languages and can be re-used
in the SPI workbench, potentially with slight mod-
ifications.

Clustering is important to control the granularity
of the generated processes. It should be indepen-

dent of the hierarchy often used in block diagram
oriented tools, since this is typically a structuring
concept to facilitate comprehension and naviga-
tion of the design. However, this kind of structur-
ing usually does not yield the best clustering for
implementation.

The coupling information between input lan-
guages must be modeled in SPI with sufficient de-
tail to allow process scheduling as well as mem-
ory sizing. The typical message passing approach
used between different input languages is a close
match with the SPI model and is supported by
most code generators. Because of the compatibil-
ity of the subsystems in SPI, this step is substan-
tially simpler than the coupling for co-simulation
where the interface must provide the transition be-
tween different semantics.

Timing analysis is necessary to guarantee correct
implementation of embedded real-time systems.
On the SPI level,timing constraints(sensor to out-
put latency, deadlines, execution rate jitter, ...) can
be specified exactly as needed, also across input
language boundaries. The result is a formal de-
sign space description that captures both function
and constraints, and allows to apply a variety of
analysis and synthesis techniques.

Estimation and analysis of target architectures are
necessary to obtain execution times (as well as
other information relevant to synthesis, e.g. power
dissipation). However, this as well as synthesis is
not part of the core workbench but part of addi-
tional tools and environments to account for the



large number of target architectures and possible
analysis and synthesis approaches. Therefore, the
SPI workbench is open, and we only provide in-
terfaces to read the SPI representation of a design
and to back-annotate results into a SPI graph.
For process-level timing analysis, profiling and
simulation with selected test patterns are the state-
of-the-art in industry, but since exhaustive simu-
lation is impractical, simulation results can only
cover part of the system behavior, often with un-
known coverage of critical corner cases. Static
analysis is a more complicated but attractive alter-
native. It provides lower and upper bounds reflect-
ing data-dependent control flow as well as data-
dependent statement execution timing.
For system-level scheduling and allocation, a sys-
tem architecture model is necessary. We are cur-
rently working on a set of architecture parame-
ters that present a suitable architecture abstrac-
tion for our purposes. System-level timing anal-
ysis can then be performed using the set of system
parameters and the system structure captured in
SPI, timing constraints, process-level timing esti-
mation and the architecture model.
Visualization shall be used for SPI graph manip-
ulation and synthesis control. It offers additional
possibilities for debugging of the workbench func-
tion itself as well as of the implemented synthesis
techniques.
Two implementations of the SPI data structures
with transformations between each other are avail-
able. The first is in C++ and is used for efficient
navigation and manipulation of the SPI represen-
tation of a design. The second is in XML [12] and
is used for easy, textual interfacing between vari-
ous tools and the SPI workbench. The correctness
of a SPI graph can be validated by aSPI.DTD(a
grammar file used to define XML-tags and their
properties).
The specification of clustering and timing con-
straints is also done in XML to facilitate easy in-
tegration with the SPI representation of a system.

3. The SPI Model

In this section, the main concepts of the SPI
(SystemPropertyIntervals) model are introduced
to the extent necessary for the understanding of
the presented methodology. A formal definition
of the SPI model can be found in [24, 25].
In the SPI model, a system is represented as a
set of concurrent processes which communicate
tokens via unidirectional channels that are either
FIFO queues (destructive read) or registers (de-
structive write). Processes as well as channels are
not characterized by their exact internal function-

ality but by their abstract external behavior. This
behavior is captured by a set of parameters that
enable the adaptation to different input languages
or models of computation.
These parameters includedata ratesdenoting the
number of tokens consumed or produced by a pro-
cess per execution on a certain channel,latency
timesdenoting the time between start and com-
pletion of a process, andactivation functionsde-
termining based on the tokens on incoming chan-
nels whether a process is ready for execution. For
example, processP1 in Figure 2 consumes 1 data
token and produces 2 data tokens per execution
with a latency time of 1ms. Since no activation
function is explicitely specified forP1, it is as-
sumed by default thatP1 is activated, i. e. ready
for execution, if there are enough tokens available
for one execution (in the example at least one) on
its incoming channel.

1ms 3ms[3ms,5ms]

1

2P1 P2 P3C1 C2
[1,3]

[2,5]

4

3

Figure 2: SPI Example

ProcessP1 is completely determinate and all pa-
rameters are fixed in value. This is not necessarily
the case for all processes, since the process behav-
ior may depend on incoming data or an internal
state. Thus, the SPI parameters may be specified
as behavioral intervals, e.g. latency time inter-
vals and data rate intervals. Among other things,
this enables the integration of processes whose in-
ternal functional details are only partially known,
particularly ”legacy code”.
An example is processP2 that consumes at least
1 and at most 3 tokens from channelC1 and pro-
duces at least 2 and at most 5 tokens on channelC2, respectively. Its latency time is between 3ms
and 5ms.
Due to the use of behavioral intervals, the corre-
lation between process parameters and the causal
coupling of process activations is lost. This may
lead to worst-case estimations that are not based
on the desired system behavior and may cause
false rejection or inefficient implementation of the
system. Thus, the concept ofprocess modes[25]
was introduced that enables the explicit modeling
of different execution paths within a process. For
this purpose, a set of modes is associated to each
process, where a mode is a tupel of data rates and
latency time describing one or a subset of execu-
tion paths. For example, it might be the case that
processP2 may be represented as having two al-



ternative modes:m1 = (3ms; 1; 2)m2 = (5ms; 3; 5)
In modem1 for example processP2’s latency
is 3ms, it consumes 1 token and produces 2 to-
kens. However, without specifying when pro-
cessP2 shows a behavior described by one of the
modes, the behavior ofP2 is still uncertain.
Examples show that in many systems, there
are distinct execution paths also across process
boundaries, e. g. an MPEG2-Encoder, where the
behaviors of its functional blocks depends on the
coding type of the currently processed image [23].
To capture these dependencies,mode tagsare at-
tached to tokens. These mode tags represent the
relevant correlation information already inherent
in the communicated data but not captured by the
abstract SPI tokens.
To utilize this correlation information, the activa-
tion function is enhanced by the possibility to se-
lect a mode based on the numbers of available data
tokens and the values of their attached mode tags.
The activation function may be formulated as a set
of rules that map input token predicates to modes.
For processP2, these rules may be:a1 : (
1:num � 1) ^ (‘a’ 2 
1:tag) 7! m1a2 : (
1:num � 3) ^ (‘b’ 2 
1:tag) 7! m2
Assuming that processP1 attaches either tag ‘a’
or ‘b’ to all produced tokens, the behavior ofP2
is completely determinate. If there is at least 1
available token on channelC1 and if the tag ‘a’ is
included in the tag set of this token, processP2 is
activated in modem1. Analogously, if there are at
least 3 tokens available onC1 and the first one has
‘b’ in its tag set,P2 is activated in modem2.
For the implementation of embedded systems, not
only the system itself but also its environment has
to be considered. To enable the representation of
system and environment in a single model,vir-
tual processes and channels are introduced that
have the same semantics as non-virtual model el-
ements [24]. Since they are not part of the sys-
tem function, they do not have to be implemented,
rather they provide additional information for syn-
thesis. Besides the representation of the envi-
ronment, these virtual model elements allow the
modeling of different activation principles not di-
rectly covered by SPI’s activation by data avail-
ability [24].
The environment also imposes constraints that the
implementation of the system has to fulfill. Of
particular importance are timing constraints which
are modeled in SPI usinglatency path constraints.

Latency path constraints limit for all causal chains
of data tokens on a certain path the time between
their production on the first channel of the path
and their consumption from the last channel of
the path [25]. Other timing constraints, e. g. rate
constraints, can be modeled by latency constraints
over virtual channels [24].
As an example, consider the pathpath =(C1; C2) in Fig. 2. A latency path constraintLCpath = [0; 6ms℄ limits the time between the
production of a tokent on channelC1 and the re-
moval from channelC2 of each token that is pro-
duced by that execution ofP2 that consumest to
at most 6ms.
In addition to the presented concepts, SPI supports
the specification of function variants [19]. Be-
sides the modeling of production variants which
allow the representation of different system con-
figurations, this enables the modeling of dynamic
reconfigurable systems.

4. Example

The example used throughout this paper is a sys-
tem for evaluating codebooks for a Code Excited
Linear Prediction (CELP) algorithm. An incom-
ing speech signal is filtered by a Linear Prediction
Coding (LPC) analysis filter to produce a noise-
like residual. After determining the filter coef-
ficients on a frame of 80 speech samples, these
samples are filtered one by one. Blocks of 40 fil-
ter outputs are compared with a codebook of 1024
reference blocks.
The number of the best-matching codebook entry
is sent serially through the channel. At the receiv-
ing side, the speech signal is reconstructed from
the appropriate vector out of the codebook and
from the corresponding filter-coefficients which
are also transmitted to the receiver.
A SPI representation of the system is shown in
Fig. 3. The number of tokens consumed by pro-
cessLPC anal. (a)and byLPC synth. (s)on their
upper input channels is not a constant but equals
oneeach 80th firing (filter coefficients update) and
zero otherwise. To model this kind of behavior,
processa andb both have two modes (ma;1;ma;2
andms;1;ms;2, respectively.) Mode-tags sent via
virtual feedback channelsCaa andCss are used
to switch between the two modes as shown in the
mode-tag production rules in Fig. 3.

5. Input Specification in Simulink

Simulink [18] is a time-driven industry standard
tool for simulating mixed reactive/transformative
dynamic systems. It supports continuous-time,
discrete-time (also multi-rate) or a hybrid of the



dup LPC coeff.

LPC anal. Code match channel

Code

lookup LPC synth.

C1 C3

C2

Caa

C4 C5 C6 C7

Cbb

C8

1
1801

1

1

1 1

1

40 10 1 1 4010

1

1 1Caa:tag = 1 7! Caa:tag = 2;ma;2 Css:tag = 1 7! Css:tag = 2;ms;2Caa:tag = 2 7! Caa:tag = 3;ma;2 Css:tag = 2 7! Css:tag = 3;ms;2
...

...Caa:tag = 80 7! Caa:tag = 1;ma;1 Css:tag = 80 7! Css:tag = 1;ms;1
Figure 3: SPI graph for CELP algorithm

two. The basic execution model is extended by
additional semantics, such as enabled subsystems.
Several C-code generators are available ([17],
[11]). Their main weakness is their inability to
guarantee timing.

5.1. Simulink Model of Computation

In Simulink, values are communicated between
blocks over directed edges that haveregister se-
mantics. Consequently, in multi-rate designs a
value on an edge can be read multiple times, or
it can be overwritten before having been read.
A Simulink system is executed at certain points in
time depending on the solver selected. Block ex-
ecution and communication happeninfinitely fast
at exact points in simulated time. All values on
edges are constant in between time steps.

5.2. Translation to SPI

While the Simulink model of time is suitable for
simulation, it obviously cannot be implemented
in an embedded system, explaining the prob-
lems current code generators have with timing.
Our goal is to relax the restrictive Simulink tim-
ing without violating the functional semantics of
Simulink. It then becomes possible to specify crit-
ical timing constraints as needed. This results in
a larger design-space for exploration and imple-
mentation [13].

1. Each Simulink block (or cluster of Simulink
blocks) is mapped into one SPI process.

2. Each Simulink edge is mapped into one SPI
register channel to maintain Simulink de-
structive write, non-destructive read seman-
tics. One token is written (read) on each

register channel per activation of the writing
(reading) process.

3. A pair of virtual FIFO-queues is generated
between every two processes that communi-
cate over a register channel. Activation of
the generated SPI processes is enabled by
availability of tokens on those virtual FIFO-
queues. The time-driven Simulink model of
computation is thus transformed into a data-
driven model which is supported by SPI.

4. Relative execution rates and partial ordering
between Simulink blocks are maintained by
writing (reading) the appropriate number of
tokens to (from) each virtual queue, and by
the number of initial tokens on each virtual
queue, as specified in the following equa-
tions. rvirt(Pi) = ts(Bi)nCj(Pwr!Prd) = rvirt(Prd)� 1nCj(Prd!Pwr) = rvirt(Pwr)rvirt(Pi) is the number of tokens written and
read by process(Pi) per execution on each
of its virtual channels.ts(Bi) is the sample
time of block i. nCj is the number of ini-
tial tokens on virtual queueCj . The direction
of queueCj is indicated by indicesPwr andPrd, which refer to the writing and reading
processes of the corresponding register chan-
nel.

A simple Simulink design and its translation to
SPI can be seen in Figs. 4 and 5.



B1

ts =1

B4

ts=4

B3

ts =3

B2

ts =2

i1 o2

o1

Figure 4: A simple Simulink design

c1

c2

P1

P4

P2P3

1

1111

1

c4

c5

c6

c3

1

1

3

3 3

3 2

2

3

12

1

1
1

4

4

3

1

Po2

Po1

Pi1 1
1

Figure 5: Generated SPI graph

5.3. (Re)introducing timing constraints

Once the design has been translated to SPI, tim-
ing constraints can be specified exactly as needed,
also across input language boundaries. For ex-
ample, an exact latency constraint on a virtual
feedback-channel of a process (e.g. processP1 in
Fig. 5) forces an exact periodic activation of this
process. This automatically produces the maxi-
mum possible execution time intervals forall pro-
cessescoupled to this process through pairs of vir-
tual queues [13].

2

Caa_out

1

C4

NOT

invert

In1

In2
Out1

Mode 2
coefficient update + LPC analysis

In1 Out1

Mode 1
LPC analyis

Merge

Merge

3

Caa_in

2

C3

1

C1

Figure 6: Simulink design of LPCanal. with two
modes

Fig. 6 shows a Simulink system that can be
mapped into the processLPC anal. in Fig. 3.
It consists of two subsystems that model the two
possible modes of processLPC anal., and are en-
abled alternatively by the signalCaa;in. The de-
signer has to provide additional information to
obtain the mode-tag production rules shown in
Fig. 3.
FIFOs are modeled in Simulink as blocks, since
Simulink channels have register semantics. This

results in a register channel followed by a FIFO
block, followed by another register channel. To
achieve the more efficient SPI representation in
Fig. 3, an additional optimization stage is neces-
sary to combine the redundant channels.

6. Process-level Timing Analysis

For system-level timing analysis, conservative la-
tency time intervals for all possible sets of input
data are needed for each process. We assume pro-
cesses that have a set of unpredictable input data,
a compilable source code and potentially differ-
ent execution modes that abstract common pro-
cess behavior for a subset of input data.

6.1. Static Timing Analysis

The latency time model in [16] is established as
a standard model for static approaches, which is
called thesum-of-basic-blocksmodel in [22, 21].
Let a process consist ofN basic blocks withxi
the execution count of basic blockbbi and
i its
latency time for a given architecture model. Then,
the process latency time is the sum of all basic
block execution countsxi multiplied with their la-
tency times
i. Both xi and
i are intervals with
respect to the best case and worst case bounds.

To determine the execution count intervalsxi, the
designer has to provide an implicit description of
the possible paths by means of linear equations.
These functional constraints relate the execution
countsxi of the basic block nodes in the control
flow graph [16] to each other. The structural con-
straints define another set of equations: The exe-
cution count inflowd of a basic block node equals
its execution countx and its execution count out-
flow.

These (in)equations are mapped to two ILP prob-
lems, one for the upper and one for the lower
execution count bound. Both can be solved to
derive the conservative execution count interval
for each basic block. It is assumed that all ex-
ecutions of one basic block have the same cost
i. However, data dependent instruction execution
and super-scalar or super-pipelined architectures
with overlapping basic block execution, as well as
unpredictable cache behavior lead to widely vary-
ing local path cost with respect to latency time.
For these architectures, the sum-of-basic-blocks
model cannot provide close bounds, but must be
pessimistic to be correct. For higher accuracy,ba-
sic block sequencesin process segments must be
considered.



6.2. Single Feasible Paths

Program properties can be exploited to simplify
path analysis for the determination of the latency
time along basic block sequences [22, 21]. Large
parts of typical embedded system processes have a
single path independent of input data, even though
this path may wrap around many loops, condi-
tional statements and even function calls which
are used for source code structuring and compact-
ing. Examples are an FIR filter, an FFT and also
the LPC analysis and LPC synthesis processes in
Fig. 3. A process segment has aSingle Feasible
Path (SFP), when paths through this segment are
not depending on input data.
The key to finding SFP segments is to distinguish
between input data dependent control flow and
source code structuring aids. In the approach in
[16], path analysis may be accurate but requires
much designer interaction for SFP process seg-
ments and still does not deliver the path segment
latency time with overlapping basic block execu-
tion. After the classification of a process seg-
ment as SFP, an execution of this segment with
any off-the-shelf processor simulator automati-
cally chooses the one correct path and exploits the
basic block sequence without designer interaction.

6.3. Multiple Feasible Paths

Most practical systems also contain non-SFP
parts. A process segment hasMultiple Feasible
Paths (MFP), when paths through the process seg-
ment depend on input data. SFP are exploited by
isolating SFP from MFP nodes in the control flow
graph. Embedded MFP are cut out and analyzed
separately using the basic approach from 6.1 while
SFP are analyzed as in 6.2. The ILP approach in
6.1 handles SFP segment latency times in the same
form as basic block latency times for the
i. For
the LPC analysis and LPC synthesis processes in
figure 3, only the control structures selecting be-
tween filtering and coefficient update lead to an
MFP. The filtering code and the coefficient update
code are both SFP segments. The process latency
time is an interval bound by the lower and upper
latency times
 given by the two SFP multiplied
with their execution countsx according to 6.1.

6.4. Context Dependent Paths

We have said before that processes often have con-
text dependent behavior, referred to as process
modes. In each context, only a subset of paths
through a process segment can be executed. This
potentially means reduced latency time bounds
which could be exploited for process analysis. For
a given context, control structures depending on

the input data defined by the context have a sin-
gle path only. In other words, the contexts corre-
sponding to certain modes turn an MFP segment
into a segment with a single path. We call such
a segment aContext Dependent Path (CDP)pro-
cess segment. For further analysis of the given
context, it is treated like an SFP-segment. For
different mode sets, SFP segments and functional
constraints for the remaining MFP segments stay
the same, while a different set of CDP can be ex-
tracted from the MFP segment.
In our example, the filter mode and the coefficient
update mode for the processes LPC analysis and
LPC synthesis both turn the MFP from 6.3 into a
CDP. It is clustered with the SFP of the according
mode. The result is a single path per context, re-
ducing the latency time interval to a single value
per mode. Therefore, no MFP analysis is neces-
sary and each latency time can be delivered by
simulation.

7. Global Timing Analysis and
Scheduling

In [3], we presented necessary and sufficient con-
ditions for detecting whether a SPI model graph
has cyclo-static behavior or not. Cyclo-static be-
havior [6] means that the consumption and pro-
duction rates of the processes in the SPI graph
are such that the system returns to the same ini-
tial buffer state within a finite number of actor fir-
ings of each process and subsequently repeats this
behavior forever.
The global analysis technique described here al-
lows to check latency path constraints for all legal
execution sequences of SPI models with cyclo-
static behavior. First, a given SPI graph is con-
verted into an equivalent marked graph1 [4] by un-
folding each actor as many times as is necessary in
order to develop a periodic (cyclo-static) behavior.
For the example of the CELP algorithm in Fig. 3,
process LPCcoef. has to appear once, processes
dup, LPCanal. and LPCsynth. each 80 times,
codematch, codelookup two times, and channel
has to be activated 20 times within a cyclo-static
execution period, see also Table 1.
In order to 1) check latency path constraints, 2) de-
rive a multiprocessor schedule, and 3) minimize
some objective, for instance the latency (period)
of such a periodic activation, we formulate and
solve an ILP based on the unfolded equivalent
marked graph.
A periodic schedule(with periodP ) of a marked
graphG = (V;A; s) is a functiont : V ! N0, as-

1In a marked graph, each actor appears only once in a peri-
odic schedule.



signing a start time�(vi; k) = t(vi)+ k �P;8k 2N0 to each vertexvi 2 V , so that for all edges(vi; vj) 2 A : t(vj) � t(vi) � wi � sij � P
where �(vi; k) = 0 for all k < 0. �(vi; k)
is the start time of thekth iteration of vertexvi
and s : A ! N0 assigns the number of ini-
tial tokenssi;j to each edge(vi; vj) 2 A. wi is
the execution latency of vertexvi. Now, given
a marked graphG = (V;A; s) and a functionfw : V ! N0;8v 2 V denoting the latency ofv,
the minimum possible periodPmin may be found
by solving the optimization problemPmin = minfP j (~t; P ) �� �C~s � � ~wg
in which �C is theincidence matrixof G of dimen-
sion jV j � jAj. For fulfilling a number of given
latency path constraintsfLC1; : : : ; LCpg, the fol-
lowing inequalities must be satisfied:tlat;min;n � tpath;n � tlat;max;n; n = 1; : : : ; p
In [3], we have shown that this can be achieved by
adding for each latency path constraintLCn the
two following inequalities to the linear program:tend;n � tstart;n + Xei2 pathn si � P �tlat;min;n + wstart;n � wend;ntstart;n � tend;n � Xei2 pathn si � P ��tlat;max;n � wstart;n + wend;n
Here,tend;n (tstart;n) denote the start time of the
last (first) node in the path of constraintLCn.
Finally, the latencies of each actor are intervals for
general SPI graphs. So, the element of the vector~w become variables, too, bounded by~wmin � ~w � ~wmax
based on the interval descriptions of each process.
In [3], we also propose a number of variants of
this linear program, e.g. to minimize implementa-
tion cost or to satisfy resource constraints (here, it
is assumed that each process is implemented on a
dedicated resource).
For the CELP algorithm, the process execution
times per activation are given in Table 1. Note
the intervalsLat = [5; 6℄ specified for the latency
of processes LPCcoef. and LPCanal., depending
on whether existing coefficients are processed or
new coefficients first have to be loaded.
In order to show how the accuracy of la-
tency time analysis can affect the results when
checking the satisfiability of latency path con-
straints, we assume a latency path constraint

LCpath = [0; 1400℄ for any token traveling on
path(
1; 
4; 
5; 
6; 
7). Using only SFP and MFP
analysis (Secs. 6.2 and 6.3) this latency path con-
straint cannot be guaranteed, since both LPCcoef.
and LPCanal. might require the maximum latency
time for each activation. However, using context-
dependent path (CDP) analysis (Sec. 6.4), the two
modes of LPCcoef. and LPCanal. can be detected,
and using our cyclo-static scheduling approach we
find that LPCcoef. and LPCanal. need 6 time units
only once every 80 activations, and 5 time units
for the remaining 79 activations.
With this combined knowledge, satisfaction of
the latency path constraint is guaranteed. Fig. 7
shows as the output of our cyclo-static scheduling
tool the resulting multiprocessor schedule for the
CELP algorithm.

Process LatencyLat Activations
min max per period

dup 1 1 80
LPCcoef. 200 200 1
LPCanal. 5 6 80
codematch 150 150 2
channel 20 20 20
codelookup 75 75 2
LPCsynth. 5 6 80

Table 1: Execution times of CELP processes in
time units

8. Conclusion

We have described the open SPI workbench and
the underlying SPI model of computation that en-
able efficient embedded system analysis and syn-
thesis from heterogeneous system specifications.
System function is abstracted into intervals of sys-
tem properties, as shown using Simulink as an ex-
ample, which allows a global common representa-
tion of differently described system parts. Timing
constraints can then be specified, also across in-
put language boundaries. With the static approach
presented, process-level timing analysis results in
narrow latency time intervals for individual pro-
cesses. Using the concept of modes, context-
dependent path analysis produces even more ac-
curate results. Satisfaction of system-level timing
constraints can then be verified, and the system
can be scheduled, as shown here using a cyclo-
static scheduler as an example.

References

[1] Felice Balarin et al. Hardware-Software Co-Design of
Embedded Systems. The POLIS Approach. Kluwer Aca-



Figure 7: Gant-chart of a cyclo-static schedule for the CELPalgorithm (one period)

demic Publishers, 1997.

[2] J. T. Buck. Scheduling dynamic dataflow graphs with
bounded memory using the Token Flow Model. Techni-
cal Report UCB/ERL 93/69, Ph.D dissertation, Dept. of
EECS, UC Berkeley, Berkeley, CA 94720, U.S.A., 1993.

[3] F. Cieslok and J. Teich. Timing analysis and scheduling
of process graphs with uncertain execution times. Tech-
nical report, TR No. 1/00, Computer Engineering Labo-
ratory, University of Paderborn, March 2000.

[4] F. Commoner and A.W. Holt. Marked directed graphs.
Journal of Computer and System Sciences, 5:511–523,
1971.

[5] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli.
Software synthesis for real-time information processing
systems. In P. Marwedel and G. Goossens, editors,Code
Generation for Embedded Processors, pages 260–279.
Kluwer Academic Publishers, 1995.

[6] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete.
Cyclo-Static Data Flow: Model and implementation.
In Proc. 28th Asilomar Conf. on Signals, Systems, and
Computers, pages 503–507, Pacific Grove, CA, 1994.

[7] R. Ernst. Codesign of embedded systems: Status and
trends.IEEE Design & Test of Computers, April 1998.

[8] R. Ernst, J. Henkel, and Th. Benner. Hardware-software
cosynthesis for microcontrollers.IEEE Design & Test of
Computers, December 1993.

[9] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite
state machines with multiple concurrency models.IEEE
Trans. CAD, June 1999.

[10] S. Ha and E. A. Lee. Compile-time scheduling of dy-
namic constructs in dataflow program graphs.IEEE
Trans. on Computers, 46(7):768–778, July 1997.

[11] H. Hanselmann, U. Kiffmeier, L. Köster, and M. Meyer.
Automatic generation of production quality code for
ECUs. Technical report, dSPACE GmbH, March 1999.
Distributed during Embedded Intelligence, Nürnberg,
Germany.

[12] E. R. Harold.XML Bible. IDG Books Worldwide, 1999.

[13] Marek Jersak, Ying Cai, Dirk Ziegenbein, and Rolf
Ernst. A transformational approach to constraint relax-
ation of a time-driven simulation model. InProceed-
ings 13th International Symposium on System Synthesis,
Madrid, Spain, September 2000.

[14] E. A. Lee and D. G. Messerschmitt. Synchronous
dataflow. Proceedings of the IEEE, 75(9):1235–1245,
1987.

[15] E. A. Lee and A. Sangiovanni-Vincentelli. A frame-
work for comparing models of computation.IEEE Trans.
CAD, December 1998.

[16] Y. S. Li and S. Malik. Performance Analysis of Real-
Time Embedded Software. Kluwer Academic Publishers,
1999.

[17] The MathWorks, Inc.Real-Time Workshop User’s Guide,
Version 3, January 1999.

[18] The MathWorks, Inc.Using Simulink, Version 3, January
1999.

[19] K. Richter, D. Ziegenbein, R. Ernst, J. Teich, and
L. Thiele. Representation of function variants for embed-
ded system optimization and synthesis. InProceedings
36th Design Automation Conference (DAC ’99), New Or-
leans, USA, June 1999.

[20] K. Strehl, L. Thiele, D. Ziegenbein, R. Ernst, and J. Te-
ich. Scheduling hardware/software systems using sym-
bolic techniques. InProc. CODES’99, the 7th Int. Work-
shop on Hardware/Software Co-Design, pages 173–177,
Rome, Italy, May 1999.

[21] F. Wolf and R. Ernst. Intervals in software execution cost
analysis. InProceedings 13th International Symposium
on System Synthesis, Madrid, Spain, September 2000.

[22] W. Ye and R. Ernst. Embedded program timing analysis
based on path clustering and architecture classification.
In Proceedings ICCAD ’97, San Jose, USA, 1997.

[23] Minhua Zhou. Optimization of MPEG-2 Video Encod-
ing. PhD thesis, Technical University of Braunschweig,
Germany, 1997.

[24] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and
L. Thiele. Combining multiple models of computation
for scheduling and allocation. InProceedings Sixth In-
ternational Workshop on Hardware/Software Co-Design
(Codes/CASHE ’98), Seattle, USA, March 1998.

[25] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and
L. Thiele. Representation of process mode correlation for
scheduling. InProceedings International Conference on
Computer-Aided Design (ICCAD ’98), San Jose, USA,
November 1998.


