

 Early Architecture Exploration with

Kai Richter, Marek Jersak, Rolf Ernst

Institute of Computer and Communication Network Engineering
(Institut für Datentechnik und Kommunikationsnetze, IDA)

Technical University at Braunschweig
Hans-Sommer-Strasse 66
D-38106 Braunschweig

Germany
kai.richter@tu-bs.de

Abstract: With increasingly parallel development of a system's hardware-

software architecture on the one hand, and its functionality on the other hand,

system integration, verification, and test happens ever later in the design process.

In order to ultimately avoid costly re-designs, the system architecture has to more

or less meet all requirements on the first try. In other words, the system architects

face the challenge to make sufficiently good estimates and choices very early in

the design when the implementation is not yet or -in case of re-used or supplied

parts- at most partially available. This paper addresses the major limitations of the

state-of-the-art benchmarking approach and outlines a structured and systematic

architecture evaluation procedure. Based on the SymTA/S tool, the proposed

approach explicitly supports estimated data and thereby enables a variety of

architectural options to be explored and optimized in early design stages.

1 Introduction

Designing an embedded system is a complex task, and designers face a large variety of

serious design challenges. Even before the functions are actually implemented, system

architects have to select an appropriate hardware-software architecture out of the large

number of available embedded controllers and networks, buses and memories, operating

systems and drivers, basic software and libraries, sensors and actuators, etc.. This architecture

has to meet a large variety of requirements. Key questions include: Does the communication

framework provide the necessary bandwidth? How much bandwidth is necessary? Do the

processing units have sufficient computation performance? Can all timing and performance

constraints such as end-to-end deadlines be met? Is the power-consumption sufficiently low?

Can the system be manufactured at a competitive price? And many more...

Selecting the right components is critical. Over-dimensioning the architecture increases the

price and reduces market share. Under-dimensioning the architecture increases the risk of

violating performance constraints, thus compromising product quality, and again reducing

market share. This shows that the early architectural choices have a dominant impact on the

success (or failure) of the project. Essentially, system architects must make sufficiently

"good" choices, otherwise the project will simply fail to reach the expected profit.

1.1 How to Make Good Choices Early?

Let us take a brief look at the related field of performance verification. The ITRS [ITRS03]

names system level performance verification as one of the top-three IC design issues. The

same problem has been recognized by the “AUTOSAR development partnership”

(www.autosar.org), in which large parts of the European automotive industry aim at

establishing an open standard for automotive E/E architectures. The leading German

electronics magazine [Ar04] says “networking and the increasing software complexity pose

key challenges on future automotive system design, and requires re-consideration of

integration practice, and co-operations”.

 Today, satisfaction of performance constraints is checked as a side-effect of functional

verification and test, which requires the system to be (almost) fully implemented.

Consequently, performance verification happens late in the design process. This increases the

risk of late architectural changes, which introduce costly delays and can be project-killing in

the worst case. Therefore, a key question is what system architects can do to explore system

configurations and gather representative data about the quality of alternative choices early,

when the implementation is not yet or -in case of re-used or supplied parts- at most partially

available? The answer is simple: if detailed data is not available, system architects must use

estimations. Later, however, when more detailed about the implementation become available,

it must be possible to seamlessly refine the estimation results.

1.2 Possibilities for Early Estimation

We use an example from the automotive industry. An ECU (embedded control unit) supplier

such as Bosch, SiemensVDO, Magneti Marelli, etc., wants to evaluate new processor

developments from several competitors (e.g. Infineon, Motorola, Texas Instruments, Phillips,

...). Each semiconductor vendor offers a certain core operating at a range of frequencies with a

choice of configurable peripherals and coprocessors. The memory structure including cache is

also open and configurable.

Figure 1 Benchmarking yields timing and memory access patterns of new architecture.

core1 core2

benchmarking: scaling factors
for individual (types of) instructions

(Hennessy/Patterson)

known core time +
address trace

cache misses &
memory access timing

scale:
NEW core timing =
old core timing *
scaling factor *
clock speed factorknown address trace

+
total time (exe + mem + $) &

memory communication

P1

P2

P3

P4
P5

P1

P2

P3

P4
P5

NEW cache misses &
NEW memory access timing

(data sheet)

+
NEW total time (exe + mem + $) &

NEW memory communication

mem1$1 mem2$2

known implementation new architecture

core1 core2

benchmarking: scaling factors
for individual (types of) instructions

(Hennessy/Patterson)

known core time +
address trace

cache misses &
memory access timing

scale:
NEW core timing =
old core timing *
scaling factor *
clock speed factorknown address trace

+
total time (exe + mem + $) &

memory communication

P1

P2

P1

P2

P3

P4
P5

P3

P4
P5

P1

P2

P1

P2

P3

P4
P5

P3

P4
P5

NEW cache misses &
NEW memory access timing

(data sheet)

+
NEW total time (exe + mem + $) &

NEW memory communication

mem1$1 mem2$2

known implementation new architecture

Experienced system architects can project the performance of a known implementation from a

previous project to an unknown processor core and new memory configuration. Figure 1

shows how benchmarking helps considerably to derive scaling factors for individual types of

instructions or basic functions that allow predicting the timing on the new hardware. In

addition, known memory access traces can be re-used and analyzed with new cache hit/miss

models to predict the new memory timing.

1.3 Limitations

Unfortunately, benchmarking as described in the previous paragraph is practically limited to

simple architectures such as 8 to 16 bit CISC microcontrollers with simple memories. But

automotive ECUs are far from simple. For instance, the popular Infineon TriCore and the

Motorola MPC555 (see Figure 2) incorporate multiple bridged buses that connect pipelined

32-bit RISC cores to co-processors, caches, partially independent peripherals, and several

external memories. Multi-processor ECUs are about to entering the markets. Each ECU,

however, forms only one node in today's distributed automotive networks. With such

increasing system complexity, the mutual influences due to caching, scheduling, peripherals,

bus contention etc. result in ever less reliable estimations and benchmarking is eventually

replaced by "guesstimation".

External Bus UnitExternal Bus Unit

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

FPI Bus

CAN Bus
Interface (2)
CAN Bus

Interface (2)
System

Timer
System
Timer

Data SRAM
(40 KB)

Data SRAM
(40 KB)

Peripheral
Core

Processor

Peripheral
Core

Processor

PortsPorts

RAM
(4 KB)
RAM
(4 KB)

Code
RAM

(16 KB)

Code
RAM

(16 KB)

Bus InterfaceBus InterfaceASC(2)ASC(2)

SSC(2)SSC(2)

ADC(2)ADC(2)

GPTA(1)GPTA(1)

Tricore

External Bus UnitExternal Bus Unit

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

FPI Bus

CAN Bus
Interface (2)
CAN Bus

Interface (2)
System

Timer
System
Timer

Data SRAM
(40 KB)

Data SRAM
(40 KB)

Peripheral
Core

Processor

Peripheral
Core

Processor

PortsPorts

RAM
(4 KB)
RAM
(4 KB)

Code
RAM

(16 KB)

Code
RAM

(16 KB)

Bus InterfaceBus InterfaceASC(2)ASC(2)

SSC(2)SSC(2)

ADC(2)ADC(2)

GPTA(1)GPTA(1)

Tricore

TriCore 1775 (automotive)

Flash
RAM

(448 KB)
SRAM
(26 KB)

burst
interface

U-bus

Power
PC

(RCPU)

system
control

E-bus

bus
interface

bus
interface

Inter Module Bus

CAN
bus

interface
(2)

CAN
bus

interface
(2)

serial
multi-

channel
module

serial
multi-

channel
module

peripheral
channels
(PWM...)

bus
interface

bus
interface

ADC
(2x16)

ADC
(2x16)

time
processing

unit (2)

time
processing

unit (2)

MPC 555 (automotive)

External Bus UnitExternal Bus Unit

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

FPI Bus

CAN Bus
Interface (2)
CAN Bus

Interface (2)
System

Timer
System
Timer

Data SRAM
(40 KB)

Data SRAM
(40 KB)

Peripheral
Core

Processor

Peripheral
Core

Processor

PortsPorts

RAM
(4 KB)
RAM
(4 KB)

Code
RAM

(16 KB)

Code
RAM

(16 KB)

Bus InterfaceBus InterfaceASC(2)ASC(2)

SSC(2)SSC(2)

ADC(2)ADC(2)

GPTA(1)GPTA(1)

Tricore

External Bus UnitExternal Bus Unit

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

FPI Bus

CAN Bus
Interface (2)
CAN Bus

Interface (2)
System

Timer
System
Timer

Data SRAM
(40 KB)

Data SRAM
(40 KB)

Peripheral
Core

Processor

Peripheral
Core

Processor

PortsPorts

RAM
(4 KB)
RAM
(4 KB)

Code
RAM

(16 KB)

Code
RAM

(16 KB)

Bus InterfaceBus InterfaceASC(2)ASC(2)

SSC(2)SSC(2)

ADC(2)ADC(2)

GPTA(1)GPTA(1)

Tricore

TriCore 1775 (automotive)

External Bus UnitExternal Bus Unit

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

FPI Bus

CAN Bus
Interface (2)
CAN Bus

Interface (2)
System

Timer
System
Timer

Data SRAM
(40 KB)

Data SRAM
(40 KB)

Peripheral
Core

Processor

Peripheral
Core

Processor

PortsPorts

RAM
(4 KB)
RAM
(4 KB)

Code
RAM

(16 KB)

Code
RAM

(16 KB)

Bus InterfaceBus InterfaceASC(2)ASC(2)

SSC(2)SSC(2)

ADC(2)ADC(2)

GPTA(1)GPTA(1)

Tricore

External Bus UnitExternal Bus Unit

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

SRAM (32 KB)
I-Cache (1 KB)

ROM (4 KB)

FPI Bus

CAN Bus
Interface (2)
CAN Bus

Interface (2)
System

Timer
System
Timer

Data SRAM
(40 KB)

Data SRAM
(40 KB)

Peripheral
Core

Processor

Peripheral
Core

Processor

PortsPorts

RAM
(4 KB)
RAM
(4 KB)

Code
RAM

(16 KB)

Code
RAM

(16 KB)

Bus InterfaceBus InterfaceASC(2)ASC(2)

SSC(2)SSC(2)

ADC(2)ADC(2)

GPTA(1)GPTA(1)

Tricore

TriCore 1775 (automotive)

Flash
RAM

(448 KB)
SRAM
(26 KB)

burst
interface

U-bus

Power
PC

(RCPU)

system
control

E-bus

bus
interface

bus
interface

Inter Module Bus

CAN
bus

interface
(2)

CAN
bus

interface
(2)

serial
multi-

channel
module

serial
multi-

channel
module

peripheral
channels
(PWM...)

bus
interface

bus
interface

ADC
(2x16)

ADC
(2x16)

time
processing

unit (2)

time
processing

unit (2)

MPC 555 (automotive)

Flash
RAM

(448 KB)
SRAM
(26 KB)

burst
interface

U-bus

Power
PC

(RCPU)

system
control

E-bus

bus
interface

bus
interface

Inter Module Bus

CAN
bus

interface
(2)

CAN
bus

interface
(2)

serial
multi-

channel
module

serial
multi-

channel
module

peripheral
channels
(PWM...)

bus
interface

bus
interface

ADC
(2x16)

ADC
(2x16)

time
processing

unit (2)

time
processing

unit (2)

MPC 555 (automotive)

Figure 2 Two complex controllers popularly used in automotive systems.

The problem is in fact a lot worse for automotive OEMs who need to integrate the resulting

car platform of heterogeneous ECUs from several competing suppliers, distributed

applications with functions partitioned onto several ECUs, and multiple bridged networks

running variety of protocols (CAN, LIN, MOST, TTP, Flexray). Furthermore, each car

platform has several versions and configurable variants. Is it obvious that benchmarking is not

applicable anymore, and even experienced designers can at most roughly guess about the

system performance, simply because the variety of dependencies can not be fully overseen by

anyone in a design team. Figure 3 illustrates the partitioning or distribution of functions such

as automatic cruise control, electronic stability program, and others.

If we look at verification, we can observe similar challenges, even if the entire car platform is

fully specified and implemented. Performance simulation and/or test suffer from increasing

corner-case coverage problems. The large number of complex perfor-mance dependencies

leads to corner cases and bottlenecks that are extremely difficult to find and debug, and it is

even more difficult to find test patterns to cover them all. In other words, today system-level

performance verification has become a second design bottleneck.

ACC

ABS
ESP ASR

engine
control powertrain

control

X-by-wire

ACC

ABS
ESP ASR

engine
control powertrain

control

X-by-wire

Figure 3 Automotive platforms are heterogeneous, highly integrated, multi-vendor systems.

2 What Else can We Do?

We have seen that the individual pieces of a complex system are manageable in the small, and

that platform and system integration is the major source of complexity. This indicates an

urgent need for a systematic, structured procedure to handle system performance estimation.

We have thoroughly researched this area for several years with a particular focus on

practically useful approaches. We recognized that the real-time systems community has

developed a variety of formal (i.e. systematic) techniques to structure the entire problem, and

concluded that a layered approach is the most promising solution.

Figure 4 shows four architectural levels of complexity. The mentioned benchmarking and

projection strategies can be adequately applied at the bottom level where individual task

timing and communication is separated from the complex architectural influences.

Alternatively, formal WCET (worst-case execution time) analysis can be applied, as proposed

by Wolf [Wo02]. AbsInt provides the "aiT" WCET analyzer tool

(http://www.absint.com/wcet.htm), that combines abstract interpretation and detailed

pipelines models.

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.
=> core execution + memory time

P1

P1

activation MEM

M P M P

bus

CPU

P2

process
execution model

• resource sharing strategy
• process activation
• component state (caches, pipeline)
=> load and response times

component &
communication
execution model

subsystem
model

(single supplier)

• communication pattern
• shared memory access
• environment model
=> component input/output behavior

system
model

(multiple suppliers)

• network dimensioning
• supply chain communication

(black boxes)

• execution path – data dependent
• path execution – arch. dependent
• communication – data & arch. dep.
=> core execution + memory time

P1

P1

activation MEM

M P M P

bus

CPU

P2

process
execution model

• resource sharing strategy
• process activation
• component state (caches, pipeline)
=> load and response times

component &
communication
execution model

subsystem
model

(single supplier)

• communication pattern
• shared memory access
• environment model
=> component input/output behavior

system
model

(multiple suppliers)

• network dimensioning
• supply chain communication

(black boxes)

P1

P1

activation MEM

M P M PM P M P

bus

CPU

P2

process
execution model

• resource sharing strategy
• process activation
• component state (caches, pipeline)
=> load and response times

component &
communication
execution model

subsystem
model

(single supplier)

• communication pattern
• shared memory access
• environment model
=> component input/output behavior

system
model

(multiple suppliers)

• network dimensioning
• supply chain communication

(black boxes)

Figure 4 Four structured levels of architecture performance estimation

The next level (component & communication) already includes mutual dependencies between

several tasks including scheduling by an operating system, cache dependencies, and shared-

peripheral access. This makes benchmarking less appropriate. Instead, there exist promising

approaches, some of them already known for some decades [LL73, JLT85], that use abstract

task and activation models and formal analysis methods to determine processor and bus load,

task and communication response times, frequencies and jitter, and sometimes the remaining

component flexibility. Figure 5 shows the scheduling diagram of a system with three tasks

that are scheduled periodically. Scheduling is preemptive and follows static priorities. The

highest-priority process P1 preempts P2 and P3, resulting in a complex execution scenario

exhibiting jitter and burst process outputs.

Detailed operating system models are starting to become available, and a few real-time

analysis tools have already been established, especially in the automotive area. Examples

include the Real-Time Architect tool family from LiveDevices (an ETAS Company:

http://en.etasgroup.com/products/rta/index.shtml) and Vectors CANalyzer

(http://www.vector-cantech.com/products/canalyzer.html). As an additional benefit, these

techniques do not require the system to be fully implemented but can also use estimated data,

e.g. early estimations of task execution times. This considerably supports system architects

during architecture exploration.

T1

T2

T2

T2 T2

P3

P1

P2

priority

ECU

P1
P3

P2

RTOS

periodic

sporadic

output burst

T1

T2

T2

T2 T2

P3

P1

P2

priority

ECU

P1
P3

P2

RTOS

periodic

sporadic

output burst

Figure 5 Scheduling diagrams visualize the influence of operating systems on task timing,

For a long time, there was no support for the two remaining, most complex levels in Figure 4,

namely subsystem-integration with multiple processors, and system-level integration along

the supply-chain. Overseeing the impact of multi-ECU or multi-processor integration that

access other peripherals has been a practically unsolved problem requiring detailed I/O

patterns to be known to detect overload situations and resolve so-called scheduling anomalies

(shown in Figure 6), identify bottlenecks and dimension networks and buffers. The problem is

even worse at the system level, where only little internal component details are known due to

IP protection. Because of the corner-case coverage problem, neither simulation, nor

prototyping, nor test provide sufficient estimation and verification support.

Figure 6 illustrates a so called scheduling anomaly which illustrates the complexity of the

overall task of performance analysis and estimation. Recall the P3 bursts from Figure 5 and

consider that P3's execution time can vary from one execution to the next. There are two

corner cases: the minimum execution time for P3 corresponds to the maximum transient bus

load, slowing down other components’ communication, and vice versa.

3 SymTA/S - A New Technology

We have recently developed a technology and a tool called SymTA/S (http://www.symta.org)

that brings approaches from real-time analysis theory to the system level by an intuitive

global event flow modeling and analysis technique. SymTA/S does not require fully detailed

system specifications but can use estimated data such as task execution times or

communication volume. Alternatively, bench-marking, simulation and WCET-analysis can

provide more accurate numbers (bottom level in our figure).

minimum
bus load

maximum
response time

M1

P2

CPU

comm. buscomm. bus

HW

M2IP2M3 DSPIP1

Sens

minimum
response time

maximum
bus load

minimum
bus load

maximum
response time

maximum
response time

M1

P2

CPU

comm. buscomm. bus

HWM1

P2

CPU

comm. buscomm. bus

M1

P2

CPUM1

P2

CPU

comm. buscomm. bus

HW

M2IP2M3 DSPIP1

Sens

minimum
response time

minimum
response time

maximum
bus load

Figure 6 Scheduling anomalies can result from system integration.

At the next (component) level, SymTA/S uses approaches from real-time analysis theory to

consider scheduling and arbitration dependencies. Only a small number of parameters such as

priorities or time slots are sufficient to provide meaningful information about resource

utilization, bandwidth and response times. We have mentioned that tools are available at this

level (level 2), but SymTA/S goes much further. It extracts key information from a given

schedule and determines the production of system workload, e.g. packets, interrupts, and

communication patterns. These influence the global inter-actions between the components at

the system-level (levels 3 and 4), and must essentially be analyzed in order to

comprehensively capture the system-level dependencies.

In order to keep track of these dependencies which can usually not be fully overseen by

anyone in a design team, SymTA/S uses intuitive workload models or "event stream models"

[RE02] that can be used for both scheduling analysis and network analysis. These models

capture abstract interaction timing properties such as periods, jitters, and bursts, and provide

an adequate understanding of the dynamic system behavior without requiring internal details.

Hence the approach is also applicable to black-box integration analysis (level 4).

Figure 7 illustrates the application of event stream models to capture the interaction timing

between components in the system, processes P and channels C in the example. We define

two classes of models, periodic and sporadic, with three models in each class: strict, with

jitter, and with burst. This six-class model set is an efficient compromise between model

simplicity and completeness, since these models are sufficient to cover a wide range of

systems in practice.

CPU 1

RTOS 1

P2

P1

CPU 2

RTOS 2

P4

P3

bus

C2

C1

CPU 1

RTOS 1

P2

P1

CPU 2

RTOS 2

P4

P3

bus

C2

C1

strictly periodic T

periodic with jitter T, J < T

periodic with bursts T, J ≥ T

sporadic t

sporadic with jitter t, J < t

sporadic with bursts t, J ≥ t

strictly periodic T

periodic with jitter T, J < T

periodic with bursts T, J ≥ T

sporadic t

sporadic with jitter t, J < t

sporadic with bursts t, J ≥ t

strictly periodic T

periodic with jitter T, J < T

periodic with bursts T, J ≥ T

sporadic t

sporadic with jitter t, J < t

sporadic with bursts t, J ≥ t

strictly periodic T

periodic with jitter T, J < T

periodic with bursts T, J ≥ T

sporadic t

sporadic with jitter t, J < t

sporadic with bursts t, J ≥ t

Figure 7 The use of event stream models and their classification.

Controlling the properties of these streams when integrating several tasks and subsystems is

key, since they allow system-level performance corner-cases to be found, and bottlenecks to

be identified, e.g. overload situations and constraint violations. Based on "event streams",

SymTA/S identifies buffer overflows and missed deadlines as a result of transient overload.

The influences on other components are automatically detected and propagated further [Ri02].

System architects directly benefit from the ability to use estimations in several places such as

task execution times, amount of communicated data, communication patterns, etc... These

parameters need not be fixed, since SymTA/S uses interval notations with upper and lower

bounds from which the system-level corner cases are systematically derived and analyzed.

Furthermore, SymTA/S explicitly supports the exploration process because it is very flexible

with respect to the amount of architectural details. System architects can focus only on their

upfront design issues while ignoring unnecessary details such as the pipelining effects or the

final bus width. Quite to the contrary, system parameters as well as resource configurations

including priorities and mapping of tasks to resources can be changed freely. Since SymTA/S

runs extremely fast, it allows evaluating a large number of different architectural choices.

SymTA/S supports optimization through a variety of methods that automatically search the

design-space for promising solutions based on hard constraints and optimization criteria. The

design-space can be freely configured by the user to focus on certain aspects, or to omit

certain alternatives because parts of the system have already been fixed. An overview on

SymTA/S can be found in [Ha04].

4 The SymTA/S Tool - A Short Overview

An easy-to-use GUI allows to configure the analysis in SymTA/S. Figure 8 shows a

screenshot of the tool. The user tasks and communications are edited and connected in the

main "drawing area". The environmental is modeled as virtual source and sink tasks.

Few parameter windows allow the task parameters such as the core execution time and

scheduling parameters as well as bus protocol and operating system configuration, scheduling

strategy, OS overhead, etc.. to be modified. Different OS and protocol types are available as

analysis libraries. The analysis library currently contains abstract scheduling models for the

most popular and practically used process scheduling and bus arbitration policies.

Specifically, these are preemptive and non-preemptive priority-based scheduling, time-

division multiple access (TDMA), and Round Robin. Detailed. Models of real-world

operating systems and bus protocols can be included as library elements. So far, we have done

this for an OSEK based operating system and the CAN bus protocol. Interfaces to established

Tools are currently being developed.

The analysis fully hides the mathematical background from the user, so she/he can

concentrate on the key tasks, that is integration, analysis, and optimization. In order to allow

fast and easy tool control, key information about the analysis status (schedulable or not)

visualized using an intuitive color code: green=success, red=failure. The timing parameters of

central concern such as response times, buffer sizes, and jitters can optionally be shown as

tool tips when the mouse is moved over a specific element in the drawing area.

Figure 8 SymTA/S Screenshot

In addition to the specific system properties such as task deadlines, global response times,

buffering delays, and resource load and utilization, SymTA/S generates worst-case scheduling

diagrams, that visualize the complex interdependencies and thereby dramatically increase user

understanding. Two scheduling diagrams are shown in Figure 8.

Due to its analysis speed --turn-around times are in the range of seconds-- a variety of

different architectures, task mappings, and scheduling decisions can be explored quickly. A

one-click mechanism allows to e.g. toggle priorities or change time-slots. And we have added

automatic system optimization to SymTA/S that uses highly efficient genetic algorithms.

Finally, the sensitivity analysis plug-in in particular supports exploration and optimization in

two ways. Firstly, it detects unused performance reserves in working systems and analyzes

how the system properties can be modified whilst still meeting all constraints, e.g. how much

a task's run-time is allowed to exceed its specification without violating some deadline.

Secondly, it detects possible sources of overload and non-schedulability in non-working

systems by providing information about which task, CPU, or bus must be optimized by what

amount to make the system working, e.g. a CPU might be required to run 50% faster to meet

all constraints.

4 Conclusions

Early architecture exploration is a critical task with a huge impact on the success (or failure)

of a design project. It requires appropriate estimates of the expected architecture performance

for a specific application. The state-of-the-art benchmarking approach, however, can not cope

with the increasing complexity of today's systems, and more systematic and structured

approaches are needed.

The SymTA/S approach provides this structure, at the same time requiring only few key

parameters which can be provided as estimates. For the reasons mentioned above (can use

estimated data, allows abstraction from details, supports exploration of alternatives, and

provides quick evaluation of architectural changes) SymTA/S is a promising technology for

system architects in the early exploration process. And once critical decisions have been

made, the SymTA/S specification can be communicated along component supply chains to

support the performance verification process throughout the whole design cycle. Models can

be refined as new implementation details become available, allowing SymTA/S to verify

implementations and detect critical bottlenecks earlier than simulation-based and

benchmarking techniques.

We have successfully applied the tool and the technology to several verification and

exploration problems in automotive, telecommunications, and multimedia industries where

we could detect and solve serious system integration problems. We consider our approach to

be a serious alternative to performance simulation and test. The new technology allows

comprehensive system integration and provides reliable performance estimates extremely

early and with very little computation time.

References

[Ar04] Heinz Arnold. Thema der Woche (topic of the week): Automotive electronics, in

 German. Markt & Technik, (36):16–20, 2004.

[ITRS03] Semiconductor Industry Association, International Technology Roadmap for

 Semiconductors, 2003, http://public.itrs.net/Files/2003ITRS/Design2003.pdf.

[Wo02] F. Wolf, Behavioral Intervals in Embedded Software, Kluwer Academic Publisher,

 Boston, 2002.

[LL73] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-

 real time environment. J. ACM, vol. 20, no. 1, pp. 46-61, 1973.

[JLT85] E. Jensen, C. Locke, and H. Tokuda, “A Time-Driven Scheduling Model for Real-

 Time Operating Systems, Proc. 6th IEEE Real-Time Systems Symp. (RTSS85), IEEE

 Computer Society Press, Los Alamitos, Calif., 1985, pp. 112-122.

[RE02] K. Richter and R. Ernst, “Event Model Interfaces for Heterogeneous System

 Analysis,” Proc. Design, Automation and Test in Europe Conf. (DATE02), IEEE

 CS Press, Los Alamitos, Calif., 2002, pp. 506-513.

[Ri02] K. Richter, D. Ziegenbein, M. Jersak, R. Ernst, “Model Composition for Scheduling

 Analysis in Platform Design,” Proc. Design Automation Conf. (DAC02), ACM Press,

 New York, 2002, pp. 287-292.

[Ha04] A. Hamann, R. Henia, R. Racu, M. Jersak, K. Richter, R. Ernst. "SymTA/S -

 Symbolic Timing Analysis for Systems". In WIP Proc. Euromicro Conference on

 Real-Time Systems 2004 (ECRTS '04), pages 17-20. Catania, Italy, June 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

