An Image Processor for Digital Film Processing

Amilcar do Carmo Lucas,

Rolf Ernst

Institute of Computer and Communication Network Engineering
Technical University Braunschweig, Germany
{lucas | ernst} @ida.ing.tu-bs.de

Abstract

This paper presents an FPGA based hardware architec-
ture, named FlexWAFE, for high resolution, high troughput
real-time digital film processing. Complex algorithms re-
quire several hundred arithmetic operations per pixel which
is beyond the scope of current DSP processors. To simplify
programming and yet achieve high clock rates, the archi-
tecture combines component configuration with weak pro-
grammability. It alleviates the memory bottleneck by an ef-
ficient use of internal memory blocks and a multi-stream
SDRAM memory scheduler with tightly bounded latency.
Several examples of a Discrete Wavelet Transform and a
complex noise reducer demonstrate the architecture effi-
ciency.

Keywords: weak-programing, stream-based architech-
ture, digital film, reconfigurable, FPGA

1. Introduction

In high-end applications, such as HDTV or electronic
motion pictures, bandwidth is critical. High resolution ap-
plications, widely used in motion picture and advertising
industries, require up to 2K resolutions (2048x1556 pixels
per frame at 30 bit/pixel and 24 pictures/s resulting in an
image size of 91 MBytes and a data rate of 274 MBytes per
second) resolutions that translate to a data-rate of 2.1 Gbit
per second and channel [1], [2]. The very high end of digital
cinema (D-Cinema) applications have grown in importance
over the last couple of years with a brilliant resolution of
4K per frame [3] and even higher resolutions are expected
in the future. Real-time processing, such as filtering for up-
and down-scaling, color keying, compression or trick ef-
fects at this data rate and precision is far beyond the scope
of today’s workstations and DSP processors.

The market volume for such systems is very small, so
ASICs are not economically viable and, therefore, not an
option.

In the FlexFilm project [4], a cooperation between two

universities and industry, a multi-board, extendible FPGA
based system is under development that will implement
even complex video algorithms, such as multi-frame (3D)
noise reduction requiring several 100 arithmetic operations
per pixel. Main challenges of this architecture are the large
required memory space holding several consecutive frames
that is realized with DDR-SDRAM using high throughput
flow controlled memory schedulers [5], and the high com-
munication bandwidth provided by a PClexpress [6] com-
munication network.

Only large FPGAs, such as the Xilinx Virtex-II and IV
families [7] provide sufficient computing resources, but the
relatively small internal memories create a serious memory
bandwidth problem. The solution is a configurable com-
bination of parameterized and weakly programmable local
memories with controllers (LMC) that support sophisticated
memory pattern transformations and of data stream process-
ing units (DPUs). Their sizes fit the typical FPGA blocks
and form macro blocks that can be easily laid out reaching
clock rates of 125 MHz on a Xilinx Virtex-II. These blocks,
their configuration and their programming are the topics of
this paper.

Section 2 contains an overview of the FlexWAFE (Flex-
ible Weakly programmable Advanced Film Engine) ar-
chitechture. A more detailed explanation of its building
blocks is given in section 3. Section 4 describes an applica-
tion example and section 5 concludes the paper.

1.1. Related Work

The Imagine stream processor [8] uses a three level hi-
erarchical memory structure: small registers between pro-
cessing units, one 128KB stream register file and external
SDRAM. It has eight arithmetic clusters each with six 32-
bit FPUs (floating point units) that execute VLIW instruc-
tions. Although it is a stream oriented processor, it does
not achieve the theoretical maximum performance due to
stream controller and kernel overhead.

The methodology presented by Park et al. [9] is focused
on application level stream optimizations and ignore archi-

PG pixel stream input

parameter
4 control bus
Algorithm .+~ [param J«—

con/trQJJer ‘/; done

< DPU B e,
5 . soram ¥ j By b4
o interface LMC. & RAM xa, > &
2 =

e

R = Tf::;: DPU
«-- LMC *
4—' pixel stream output

= = =p address bus

—p data bus
D param regs + local controller + AGs

—— feedback (“done” signals)
m—p parameter bus (data+addr)

I param regs + local controller

Figure 1. FlexWAFE architecture (left) with a
FIR filter DPU example (right)

tecture optimizations and memory prefetching.
1.2. Technology status

Current FPGAs achieve over 300 MHz, have up to
1 MByte distributed RAM and up to 512 18-bit MAC
units (source Xilinx Virtex-IV [7]). Together with the
huge amount of distributed logic in the chip (up to 100K
CLBs [7]) it is possible to build circuits that compete with
ASICs regarding performance, but have the advantage of
their configurability and therefore reuse.

2. Architecture overview

The architecture consists of three kinds of compo-
nents: datastreams communicators, datastreams processors
and image algorithm dependent global control. Datas-
treams communicators will be referenced as Local Mem-
ories with Controllers (LMCs), datastreams processors as
Data Processing Units (DPUs) and image algorithm depen-
dent global control as Algorithm Controller (AC) troughout
this paper. These units can be combined into a group that
will perform a specific image processing algorithm or part
of it. Such group is called Processing Group (PG) and figure
1 shows a simple example.

DPU and LMC components are parameterized and op-
timized for speed. Besides parameters that are config-
ured at design time, there are programmable parameters
that are downloaded at run-time to enable processing in
multiple passes and simplify component structure. So,
instead of introducing complex dynamic reconfiguration,
weak programmability is used. Such weak programmability
in combination with design time component configuration
is heavily used in SoC (System-on-Chip) platforms, such
as VIPER [10]. In case of the FlexWAFE architecture, the

approach requires little area overhead, as the experiments
show.

Weak programming is controlled by a third component
type, the central Algorithm Controller, AC. The AC has
a micro program store that contains all the run-time code
for weakly programmable DPUs and LMCs. The AC uses
few component parameter registers to hide programming la-
tency. Loading parameters for the next operations occurs in
parallel to the current processing step. Since weak program-
ming requires little information, a small shared bus is suf-
ficient for programming all components. This small global
control bus adds little to the global wire cost and can be
routed automatically. The local-global controller synchro-
nization uses simple handshaking. It is implemented with
a point-to-point connection instead of using the already ex-
isting bus. This avoids the latency penalty of a bus while
not adding to the routing complexity because of a single bit
signal per component.

This way, weak programming separates time critical lo-
cal control in the components from non time-critical global
control. This approach accounts for the large difference in
global and local wire timing and routing cost. The result is
similar to a local cache that enables the local controllers to
run very fast because all critical paths are local.

3. FlexWAFE architecture building blocks

As shown in the previous section, the FlexWAFE archi-
tecture is composed by three blocks. Namely, LMC, DPU
and AC. This section explains each block in detail.

3.1. LMC:s - Local memory controllers

Managing data efficiently is an important issue, not only
because big images require high data volume but, also, be-
cause image processing algorithms either have a tendency
to not reuse data or to reuse data only at a very small scale
(i.e. image extension on image boundaries for filtering op-
erations). In the FlexWAFE architecture data is transfered,
reorganized and stored using LMCs. To do so, these blocks
have a dual ported local memory that is read and written us-
ing independent address generators (AG), an ingress AG for
the incoming data and an egress AG for the outgoing data as
seen on the left LMC in figure 2. These AGs are based on
the ones described by Hartenstein et al. in [11] and generate
the address sequences using only six parameters. This set of
parameters, although small, provides a large number of pat-
terns, allowing the LMC to rotate, flip, decimate, extract a
ROI (region-of-interest), scan in different zig-zag patterns,
act as a FIFO or implement a combination of any of these
operations. Later in this paper, it will be explained how
these six parameters work.

Local DPU data streamv

Local DPU data streamv

Local DPU data stream SDRAM address and data stream Local DPU data stream
! 3 MC W
oLl v g LMC v %) Ingress AG
8 Ingress AG E: Ingress AG i g ‘@
-S »| param — »[param | [gen } -E > P Dual
5 | fen] (genps Ouval | S | [genps Dual | E|-iei o~
GE) ported 1S ported € Egress AG p
ress AG © Egress AG RAM o | RAM
S | ofpsami s RAM | § | ofparmilents S [
o S * | e & | e e

SDRAM address and data stream

Figure 2. Local Memory Controller (LMC) building blocks

The LMC units can read and write data streams from/to
either external memory or from/to local memory. There is
an extra address generator to calculate the addresses for the
external memory as shown in figure 2 (middle and right
blocks). External SDRAM access with small speed penalty
requires a specialized bounded delay time memory con-
troller [12], [5] as shown in figure 1. The controller is
configurable to different memory sizes, word lengths, and
number of parallel access streams. It is bust oriented and
the LMCs are responsible for the data de-bursting for read
operations and data bursting for write operations.

Image processing streams are known in advance in most
applications considered i.e. FIR, IIR and median filter-
ing, exhaustive motion search, color correction, color space
transformation, DCT, DWT ... etc, this allows to prefetch
the data from external memory and, therefore, effectively
hide the latency of most off-chip accesses. In the cases
where there is no need to reorder the datastreams, a FIFO
can be used instead of the dual ported RAM and its two ad-
dress generators. The FIFO is based on the one described by
Cummings et al. in [13], but gray counters where used in-
stead of binary counters to improve performance. It can be
made asynchronous allowing the decoupling of the internal
DPU frequency from the external SDRAM bus frequency.

parameter address bus

parameter data bus o

v
parameter registers (local memory)

inst | base start | base deita | base end | addr detta [limit start | imit del
inst | base start | base delta | base end | addr detta | limit start [limit del
inst | base start | base delta | base end | addr delta | limit start | limit del
inst | base start | base delta | base end | addr delta | limit start | lmit delta

[= | et | ase ol | s | 2dd: dolta | Tt start Tlimit Sola]
instruction

Address Generato

state

EHEE

done

l address

Figure 3. Address generator and local control
in detail

In general, the LMCs use different access patterns on
their egress and ingress AGs using the local memory as a
buffer. The six address parameters operate under the ad-
dress slider principle [11] depicted in figure 4(a). The ad-
dress stepper generates an address sequence between base
and [limit in address step steps. The base stepper and the
limit stepper work in an analogous manner. This simple
structure allows complicated access patterns, an example of
such is the zig-zag stream shown in figure 4(b). To achieve
this pattern the ingress AG writes the incoming pixel steam
in order (1..16) to the local memory but the egress AG uses
the two parameter sets in the table of figure 4(b). Once it
finishes the first parameter set (for the upper triangle) it im-
mediately starts the second (for the lower triangle) because
the AG can switch the parameters between sequences with-
out introducing idle cycles. As explained in section 2, these
address parameters are kept in a small local parameter mem-
ory and adddress unit control is also local as seen in figure
3. In all the examples which we investigated, only few reg-
ister sets are needed per LMC with an address word length
of 10 bit or less that can be implemented in CLB registers.
Hence, each LMC typically requires only one FPGA mem-
ory block.

The parameters are sequentially transmitted in advance
over the low bandwidth control bus from the AC. Each pa-
rameter register has its own unique address. In effect, this
local memory provides shadow registers for the working pa-
rameters that currently control the address generator. Once
an address sequence is finished, the local controller sends
an acknowledge signal to the AC and that feeds the next set
of parameters to the address generator. This way, the AG
can work uninterruptedly and the AC can control and syn-
chronize multiple address and operation sequences.

3.2. DPUs - Data processing units

DPUs process the streams provided by the LMCs. DPUs
can have multiple data input and output ports. This covers
operations with two operands or more (i.e. addition) and/or
two or more results (i.e. division with quotient and rest).
For the applications considered so far, they have one or two

Base Step | Limit

base base base address limit limit 1 [N N [-N+1] 1 T1
start step end step start step address step Nx(N-1)+2] 1 [NxN[-N+1[2N| N
‘ base &) limit
base limit start =+ stan D6 6 @
stepper stepper base step: limit step (YA
address "~“|| } 'I Y 5/6 7/
l base Steiper limit 9/10/m @
basey 1 1 1 > PV
done address end ¥ ! ' ' v o 3 @ @ @
(a) slider principle (b) Zig-zag address

sequence example for n=4

Figure 4. Address generator based on the slider principle

data inputs and one or two data outputs. The complexity of
the operations they perform can vary, a simple example is a
truncation DPU, a complex one is a decimated vertical filter
with internal SPE [14] calculation (see section 4). The sim-
pler DPUs do not need an interface to the AC because they
are not weakly programmable (i.e. an adder) more complex
DPUs use the same shadow memory technique as the LMCs
(see section 3.1) to decouple their local controller from the
AC. The right side of figure 1 presents an example of a three
tap FIR filter DPU in which the filter coefficients are pro-
grammable.

3.3. AC - Algorithm controller

In the current implementation, the AC consists of a mi-
cro code memory and a simple micro code sequencer imple-
mented as an FSM (finite state machine). Simple sequenc-
ing is possible since all operation sequences need a fixed
execution time. Synchronization is used to account for the
buffered DDR-SDRAM memory access. The AC reacts to
the DPUs and LMCs via the point-to-point connections and
controls them trough the shared parameter by programming
their local shadow registers as seen in figure 5.

Algorithm controller
client0 done RAM
point-to-point | client1 done
- low latency | client2 done
reaction client3 done

wait flags|_parameter address | parameter data

it flag
parameter address_| parameter data

global

ontroller

[wal flags] _parameter address | parameter data

t J

parameter address bus

shared bus — minimize
routing congestion and
simplify expansion

parameter data bus Y

Figure 5. Algorithm controller block diagram

4. DWT - An application example

The discrete wavelet transform (DWT) allows one to
transform a signal into a space where the base functions are

LP Filter coefficients
5
a PRV FR | -7, 255, 6/6, 276, -8
PAVER 2
[FRVFR" 02,1, 12
P R FIR"| -1/8_-2/8. 618, -28, -1/8

3
”

FIR o

. HFIR'

Figure 6. One DWT level (analysis and syn-
thesis)

wavelets [15], similarly to the way Fourier transformation
maps signals to a sine-cosine based space. The 5/3 wavelet
was chosen for its integer coefficients and invertibility (the
property to convert back to the original signal space with-
out data loss). The 2D wavelet transformation is achieved
by filtering the row major incoming stream with two FIR
filters (one with 5 the other with 3 coefficients) and then fil-
tering the resulting two signals columnwise using the same
filter coefficients. The four resulting streams can be trans-
formed back to the original stream by filtering and adding
operations as seen on figure 6.

The implementation of the filters uses polyphase decom-
position (horizontal) and coefficient folding (vertical) and
is based on the work of Po-Cheng Wu et al. [16]. To max-
imize throughput the transformation operates line-by-line
instead of level-by-level [17]. This allows for all DPUs to
operate in parallel (no DPU is ever idle), minimizes mem-
ory requirements and performs all calculations as soon as
possible. Because the 2D images are a finite signal some
control was added to achieve the symmetrical periodic ex-
tension [14] required to achieve invertibility. This creates a
dynamic datapath because the operations performed on the
stream depend on the data position within the stream. All
multiply operations where implemented with shift-add op-
erations because of the simplicity of the coefficients used.
The simple system on figure 6 executes 18 add operations
on the direct DWT, 22 add operations on the inverse DWT

Resource Usage Percentage
RAMB 12 out of 56 21%)|
Slices 1,650 out of 10,752 15%]
Flip-Flops [1,149 out of 21,504 5%

* 10 bits per pixel
* 2 pixels/clock cycle

* 91 additions of ten or more bits/clock cycle
* three lines latency between input and output
* no external memory required

* configurable up to 2048x2048 pixel/image
e up to 125 Mhz

« 59 fps @ 2048x2048, 10bpp

Figure 7. Mapping and resource usage in a Xilinx XC2V2000 device

Resource Usage Percentage |
RAMB 44 out of 56 78%
Slices 7,184 out of 10,752 66%]
Flip-Flops [4,729 out of 21,504 21%)

* 12 bits per pixel

* 2 pixels/clock cycle

* no external memory required

* configurable up to 2048x2048 pixel/image
* up to 100 Mhz

* 41 fps @ 2048x2048, 12bpp

AC

(connects to

all blocks)

Figure 8. A Noise reduction application using DWT

and 57 extra add operations to support the SPE, all between
10 and 24 bits wide. It processes two pixels per clock cy-
cle and runs at 125 MHz on a Xilinx Virtex-1I XC2V2000
chip [7]. The mapping and the resource usage for images
up to 2048x2048 pixels, 10 bits per color component (only
one component was considered, also known as grayscale
images) can be seen on figure 7. This system achieves 59
frames per second with images of 2048x2048 pixels. Based
on these DPU blocks a noise reduction algorithm that op-
erates on the wavelet space was developed [18]. This algo-
rithm requires three levels of decomposition, therefore three
of the blocks described in figure 6 and 7 were cascaded and
the noise reduction DPUs added. To compensate the latency
of the higher decomposition levels, FIFO based LMCs were
used. The resulting system is depicted in figure 8.

5. Conclusion

The FlexWAFE architecture consists of chains of mem-
ory transformations and data paths. A combination of com-
ponent design time configuration and weak programmabil-
ity with small local controllers and hidden programming la-
tency requires few basic components yet reaches high clock
speed even for complex applications. The FPGA resource
utilization is very satisfactory including memory and rout-
ing resources. The FlexWAFE architecture is part of a larger
project towards an extendible PClexpress based real time
film processing system.

6. Acknowledgements

This work was partly founded by German BMBF and
Thomson - Grass Valley

References

(1]
(2]
(3]
(4]
(5]

(6]
(7]
(8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

http://www.quantel.com.
http://www.discreet.com.
http://www.thomsonbroadcast .com.
http://www.flexfilm.org

Sven Heithecker and Rolf Ernst. Traffic Shaping for
an FPGA based SDRAM Controller with Complex
QoS Requirements. In Design Automation Conference
(DAC), page (to appear). ACM, 2005.

http://www.pcisig.com/home.
http://www.xilinx.com.

Jung Ho Ahn, William J. Dally, Brucek Khailany, Uj-
val J. Kapasi, and Abhishek Das. Evaluating the Imag-
ine Stream Architecture. SIGARCH Comput. Archit.
News, 32(2):14, 2004.

Joonseok Park and Pedro C. Diniz. Syntesis of
Pipelined Memory Access Controllers for Streamed
Data Applications on FPGA-based Computing En-
gines. In ISSS. ACM, 2001.

S. Dutta, R. Jensen, and A. Rieckmann. Viper: A mul-
tiprocessor SoC for advanced set-top box and digital
tv systems. In IEEE Design and Test of Computers,
Sip, pages 21-31, October 2001.

R. Hartenstein, A. Hirschbiel, and M. Weber. MOM -
Map Oriented Machine. In Proceedings of the Inter-
national Workshop on Hardware Accelerators, 1987.

Sven Heithecker, Amilcar do Carmo Lucas, and Rolf
Ernst. A Mixed QoS SDRAM Controller for FPGA-
Based High-End Image Processing. In Proceedings of
the 2003 IEEE Workshop for Signal Processing Sys-
tems, 2003.

Clifford E. Cummings and Peter Alfke. Simulation
and synthesis Techniques for Asyncronous FIFO De-
sign with Asyncromous Pointer Comparations. In Syn-
opsys Users Group - San Jose, 2002.

Christopher M. Brislawn. Calssification of nonexpan-
sive symmetric extension transforms for multirate fil-
ter banks. In Applied and Computational Harmonic
Analisys, volume 3, pages 337-357, 1996.

Satyabrata Rout. Orthogonal vs. Biorthogonal
Wavelets for Image Compression. Master’s thesis,
Virginia Polytechnic Institute and State University,
2003.

[16]

[17]

[18]

Po-Cheng Wu and Liang-Gee Chen. An Efficient
Architecture for Two-Dimensional Discrete Wavelet
Transform. IEEE Transactions on circuits and systems
for video technology, 11(4), 2001.

N. Zervas, G. Anagnostopoulos, V. Spiliotopoulos,
Y. Andreopoulos, and C. Goutis. Evaluation of De-
sign Alternatives for the 2D-Discrete Wavelet Trans-
form. In IEEE Transactions on Circuits and Systems
for Video Technology, volume 11, pages 12461262,
2001.

Stefan Eichner, Gunter Scheller, and Uwe Wes-
sely. Wavelet-temporal basierende Rauschreduktion
von Filmsequenzen. In 21. Jahrestagung der FKTG,
Koblenz, May 2004.

http://www.quantel.com
http://www.discreet.com
http://www.thomsonbroadcast.com
http://www.flexfilm.org
http://www.pcisig.com/home
http://www.xilinx.com

	. Introduction
	. Related Work
	. Technology status

	. Architecture overview
	. FlexWAFE architecture building blocks
	. LMCs - Local memory controllers
	. DPUs - Data processing units
	. AC - Algorithm controller

	. DWT - An application example
	. Conclusion
	. Acknowledgements

