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Abstract

Increasing design complexity eventually leads to a de-
sign process that is distributed over several companies. This
is already found in the automotive industry but SoC de-
sign appears to move in the same direction. Design pro-
cesses for complex systems are iterative, but iteration hardly
reaches beyond company borders. Iterations require avail-
ability of preliminary design data and estimations, but due
to cost and liability issues suppliers often hesitate to pro-
vide such preliminary data. Moreover, companies are rarely
able to judge the accuracy and precision of externally es-
timated data. So, the systems integrator experiences in-
creased design risk. Particular mechanisms are needed to
ensure, that the integrated system will meet the overall re-
quirements even if part of the early estimations are wrong
or imprecise. Based on work in supply chain management,
we propose an inter-company design process that is based
on formal techniques from real-time systems engineering
and so called flexible quantity contracts. In this process,
formal techniques control design risk and flexible contracts
regulate cooperation and cost distribution. The process ef-
fectively delays the design freeze point beyond the contract
conclusion to enable design iterations. We explain the pro-
cess and give an example.

1. Introduction

Efficient design processes and new strategies are needed
to meet the challenges of the increasing complexity of cur-
rent and future embedded system and SoC designs. In-
dustries like automotive engineering and space applications
have established sophisticated supplier-integrator chains.
We expect that the semiconductor SoC design will follow
the same path in SoC development. The success of IP
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providers such as ARM and their frameworks for inter-
company exchange and interoperability of documents and
tools [3] are clear indicators

Such supply chains turn out to be the first step towards
a distributed design process. Today we already find dis-
tributed design processes in automotive engineering and
space applications, where software plays an important role.
Distributed design processes are spread over several compa-
nies and cover the whole design flow from subcomponents
to the integration of the overall system.

Increasing SoC complexity, multiple layers of hard-
ware dependent software, application programmer inter-
faces, and third party software libraries give raise to fur-
ther design process distribution over a heterogeneous set of
players that follow divergent business goals. They must be
coordinated via engineering and business mechanisms. It is
about time for systematic approaches to that issue that put
these mechanisms into context.

Especially in complex product development implemen-
tation and integration are done in the late phases of classi-
cal design flows (e.g. specified for ESA projects by ECSS
standard ’System Engineering’ [8]). Hence accurate as-
sertions about design data and objective requirements are
late as well. But contracting based on design specifications
containing requirements is done at the beginning of a new
design. Therefore integrator and suppliers estimate their
needs conservatively leading to increased cost and subop-
timal products.

One key problem in distributed design processes is to
reach true collaborative inter-company developments, while
keeping corporate know-how proprietary at the same time.

The approach in this paper was motivated by the SpeAC
project in which a large space systems company, EADS
Astrium, develops an inter-company design flow with
two suppliers and applies it to a concrete satellite hard-
ware/software subsystem development as a demonstrator.
As a prerequisite, design data are shared between the com-
panies using restricted access mechanisms to protect IP and
management internals.



One of the side effects of this inter-company design flow
is the availability of formalized design data using standards
such as SystemC[5] for hardware description or SysML[6]
for overall system modeling including thermal, power, and
mechanical design aspects. It has been shown in the project
that the necessary data for the process proposed in the
following paper can be formulated and communicated in
SysML.

After the discussion of related work in chapter 2, we in-
troduce flexible quantity contracts and their application to
distributed SoC and embedded system design processes in
chapter 3. We will illustrate our approach with an example
given in chapter 4 and conclude in 5.

2. Related work

The realization of a continuous SoC and embedded sys-
tem design flow is of great concern and is accelerated by
the corporate as well as by the science community. Con-
sortia like the VSI Allicane [7] and SPIRIT [3] are founded
to enable the development of SoCs with a special focus on
configurable predesigned IP-blocks. They specify a cata-
log of standards, listing essential design data for different
groups of components.

Engineering science discusses different approaches to
enable an efficient SoC design process like platform or
component based strategies [9, 15, 16, 30]. Formal real-
time analysis techniques are closely connected to these
approaches and address heterogeneous systems especially
[24, 21]. To enable advanced real-time analysis techniques
particular system models are introduced in [23, 20]. In our
paper real-time requirements are used as an example of non-
functional system properties. This class of systems is well
suited for illustrating problems emerging from the interfer-
ence of different components.

Requirement management and tracing is an important is-
sue in design processes of complex products. The commer-
cial tool DOORS [2] is widely used in the system indus-
try to achieve this, while the eurostep AP233 demonstra-
tor [1] deals with the task of mapping requirements to sys-
tem components. Booth are used in the mentioned devel-
opment project. The interaction of competing requirements
is not addressed in this paper. For an overview of current
approaches refer to [13].

Contractual agreements have been studied in a variety of
academic disciplines, notably economics, engineering, law,
and operations management. In contrast to various quali-
tative contributions (e.g. [11, 14, 25]), quantitative treat-
ment can be found in operations management, particularly
in work analyzing supply-chains. Here, settings of at least
two independent actors, interlinked by flows of information,
physical goods, and financial funds are analyzed [10]. Com-
mon premises include asymmetric access to information as
well as significant difficulties to monitor other actors’ per-
formance (hidden action) [27, 28].

In this context a central phenomenon causing inefficien-
cies is titled double marginalization and arises in supply-

chains where decisions of individuals are driven by their
subjective perception of the supply-chain incentive struc-
ture. This does not necessarily correspond to the optimal
decision basis as compared to a central decision maker [12].
A favorable contractual agreement in this context is one,
that at the same time promotes efficiency, Pareto optimality,
and incentive compatibility, hereby incorporating individual
rationality [29]. A comprehensive review of contract analy-
sis in the field of supply-chain management is provided by
[27]. First analysis of contractual issues in software busi-
ness has been proposed by [22, 29].

For situations of uncertain demand the managerial flex-
ibility to change a chosen course of action is usually asso-
ciated with better performance [18]. The objective of flex-
ible contracting in this sense is to increase the flexibility
of certain entities. Accordingly uncertainty and thus risk
is being shared with respect to the contractual agreement
in place. Of particular interest for the research presented
are contracts with inbuilt flexibility in terms of quantity, so
called flexible quantity contracts [26]. Hereby contractual
clauses exist, that define conditions under which the exact
amount to be purchased may diverge from an initial esti-
mate. Instances of flexible quantity contracts include to-
tal minimum and buy-back contracts. However, in order to
adopt flexible contracting schemes to the development of
microelectronic devices, specific aspects of interdependent
design parameters need to be incorporated. To our knowl-
edge yet no contribution exists in this field of analysis.

3. Introducing flexible quantity contracts

3.1. Fixed price versus flexible quantity contracts

Figure 1a outlines a classical distributed design pro-
cess based on fixed contracts. In case of SoC or embed-
ded system design the system S is concretized by a hard-
ware/software system under development.

Initially the integrator performs system partitioning and
optimization. Subsequently she formulates her needs re-
garding the components si as requirements ri and releases
final component specifications at a certain point in time t∗
called design freeze. Requirements concern functional and
non-functional design data and can originate from the sys-
tems environment, from technical needs, or from customer
requests. Requirements can be classified according to crit-
ical and non-critical requirements, depending on whether
the system must or should achieve the associated demands.
In fixed contracting scenarios integrators will pass on criti-
cal system requirements to components as critical require-
ments again, to avoid the risk that a critical overall system
requirement is missed (see figure 1b).

In a next step the suppliers prepare offers that correspond
to the requirements predicting their design data and cost
with special emphasis on critical requirements that must be
estimated very conservatively. The offer includes these pre-
dictions that are passed to the integrator as higher level com-
ponent assertions ai. With contracting at t0 the suppliers
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Figure 1. Flow with fixed price contracts

ultimately give fixed assertions that their implementations
will meet the requirements (figure 1c). By fixing the price
pi of a component si, the specific price associated with its
assertion ai is determined by

pi = p(si) = p(ai)

In case the integrator refines her requirements during con-
tract negotiations, design freeze and contracting coincide at
t∗ = t0. Regarding a simple single requirement system con-
sisting of n components and assuming that each component
si is described exactly by one assertion ai, the price P is
given at t0 by

P =
n∑

i=1

p(si) =
n∑

i=1

p(ai)

In a subsequent implementation phase, the suppliers take
the risk of not complying with assertions, while the inte-
grator’s risk is that of changing requirements due to unex-
pected contingencies, or even worse, of a faulty integration.
In case of the necessity to change requirements, usually for-
mal change requests have to be filed.

With growing complexity a series of drawbacks of fixed
price contracts can be identified. As subsequent changes
of requirements are not explicitly part of the contract (as
opposed to the procedure how changes are dealt with, i.e.
change management) they consequently are neither foresee-
able in terms of cost nor of performance and development
time. In this situation rational behavior dictates for the in-
tegrator to build in more safety in the system architecture
and thus in request for proposals than initial analysis sug-
gests. In addition suppliers benefit from tight requirements,
as these represent extra business from their point of view,
but at the same time due to an increased exposure to devel-
opment risk raise their safety margin. The inevitable conse-
quence is the pursuit of over-dimensioned designs.

In fixed contracts potential design trade-offs at system
level are limited to the pre-contracting phase (t < t0), re-
sulting in an early design freeze and consequently ham-
pering reactions promoted by better information available.
Also trade-off cost information will be private to the indi-
vidual subjects and thus only, if at all, available to the other

actors after renegotiation. Accordingly when conducting
design trade-offs, decisions are restricted to local informa-
tion. Results therefore solely reflect a fraction of the design
project’s decision basis. This situation corresponds to the
mentioned double marginalization phenomenon in supply-
chain management. Similar contracting schemes should
therefore be applicable.

In the problem setting described, flexible agreements of-
fer an opportunity to both accelerate the decision process
and increase its efficiency. The basic idea of flexible con-
tracting in distributed decision making is to on the one hand
defer design freeze by extending the period for possible de-
sign refinements and on the other to increase the efficiency
of decentralized decision making. A basic approach of set-
ting up efficient decentralized process control, as proposed
in economics, is to impose the cost structure of the total
value-chain (i.e. the design-consortium) on the decision-
making entity (i.e. each individual actor), thereby inter-
nalizing external effects [19]. One commonly accepted ap-
proach in supply-chain management lies in designing more
complex contracts by means of contractual baseline and in-
centive schemes applied [27].

As a prerequisite of adopting a contracting scheme of
such kind to design processes, initially suitable measures
substituting quantities of physical goods in supply-chain ap-
plications need to be identified. In the following we will in-
troduce structured estimation data as a capable measure for
flexible contracting.

3.2. Flexible contracts in design processes

To enable flexible contracts in SoC and embedded sys-
tem design, we propose a structured estimation format for
assertions and introduce set-critical requirements. Asser-
tions in the structured estimation format consist of three
values: a conservative estimation agua, a target atar, which
denotes the baseline, and a best case atop, replacing physi-
cal quantities.

The term set-criticality will be used for requirements
which are critical in conjunction with other requirements,
but are not critical by themselfs. This statement can be held
even for requirements derived from critical requirements,
provided that several combinations of interdependent com-
ponents with different implementations exist. Obviously
any kind of optimization benefits from this fact. Doing so a
critical system requirement can be attenuated to set-critical
component requirements.

A distributed design process based on flexible contracts
is illustrated by figure 2a. The integrator starts with system
partitioning and component specification. But in contrast to
fixed price contracts she will pass a critical system require-
ment as set-critical requirements to derived components
(figure 2b). The suppliers submit offers with assertions in
the structured estimation format ai = (agua

i , atar
i , atop

i ) in-
stead of delivering only a fixed assertion (figure 2c), along
with a corresponding set of prices pi = (pgua

i , ptar
i , ptop

i ).
Using the flexible contracting scheme comprehensively

illustrated in figure 3 the integrator will determine the slope
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parameters vgua
i and vtop

i corresponding to linear interpola-
tions. In order to compensate the supplier for the increased
exposure to development risk, an additional premium bi will
be paid for deviations to the initial target. From the integra-
tor’s point of view, bi is used as an incentive for the sup-
pliers to direct the development of the system in a suitable
way. Applying sensitivity analysis she can identify which
components have the largest influence on the critical prop-
erty and can assign them a higher bi.

Regarding a single requirement and assuming that each
component si is described exactly by one assertion ai, the
specific price pi associated with ai is determined by

pi(ai) =
{

ptar
i + (vgua

i − bi) · (ai − atar
i ) for ai < atar

i

ptar
i + (vtop

i + bi) · (ai − atar
i ) for ai ≥ atar

i

Based on the sets of assertions given by the suppliers, the
integrator executes a sanity check, to assure that the critical
system requirement will not be violated, according to inte-
grator defined rules. Examples for sanity check metrics are:

The critical system requirement r with a safety margin of
m% will be achieved (with x% of atop

i − agua
i ) if. . .

one-sided: . . . each final component implementation will
change the target assertion atar

i at most by x%.
conservative: . . . one-sided, but at most y final component

implementations will not improve the guaranteed as-
sertion agua

i .
optimistic: . . . one-sided, but at least y final component im-

plementations will reach the top assertion atop
i .

balanced: . . . y of n final component implementations will
improve the target assertion atar

i at least by x%, while
(n − y) final component implementations will fail the
target assertion atar

i at most by x% .
weighted: . . . the final component implementations will

change the target assertion atar
i by an individual co-

efficient of x%, e .g. depending on assessments based
on former experiences with the particular supplier.

If the sanity check was passed successfully, contracting
is done at t = t0 with the offered assertions and their corre-
sponding flexible pricing schemes.

During the subsequent prototyping phase, the suppliers
deliver n iteratively refined estimations at t = ti for the
final implementation, but subjected to the boundaries given
by agua and atop, and before a certain point in time t∗. At
design freeze the final specification will be determined, and
the so far set-critical requirements become critical ones with

ri = a∗
i for a price of P ∗

i =
n∑

i=1

p(a∗
i ).

With flexible contracts an efficient strategy is proposed
to establish system wide risk management and optimization
within the refinement loop of distributed SoC and embed-
ded system design processes. Change requests can be omit-
ted for the most part, because possible variations of imple-
mentations have been anticipated by deferring design freeze
beyond t0, the point contracting is done.

4. Example

To test the applicability of our approach, we calculated
different scenarios for the example system shown in fig-
ure 4. An integrator assigned to design the system parti-
tioned it choosing the following architecture: three func-
tions F1, F2, F3 should be implemented in software, run-
ning on a customized CPU. Due to hard deadlines with
periodic activations given for the three functions a real-
time scheduler is needed. The critical system requirement
is rcritical =’CPU-utilization ≤ 100%′ and can be veri-
fied performing schedulability analysis provided, e.g. by
SymTA/S[4].

The software shall be subcontracted to a software sup-
plier, and the implementation of the CPU to a hardware
supplier respectively. The suppliers include the estimations
of the worst case execution times for the software and the
clock rate for the CPU along with prices (in mu, i.e. ’money
units’) as assertions in their offers. Example data are shown
in table 1, with the calculated slopes vgua

i and vtar
i . The

integrator chooses the scheduling policy asched =’simple
static priority preemptive’[17].



S

r=(rF1=1µs, rF2=1.5µs, rF3=3.5µs)

F1

F2

F3

CPU

HdS

aF1
gua,tar,top

aF2
gua,tar,top

aF3
gua,tar,top

aCPU
gua,tar,top

asched

SW

supplier
HW

supplier

integrator

Figure 4. Model of the example system

Table 1. Example data
agua

i pgua
i atar

i ptar
i atop

i ptop
i vgua

i vtop
i

F1 30 10 20 50 10 150 -4 -10
F2 60 10 40 60 20 180 -2.5 -6
F3 150 10 100 60 80 120 -1 -3

CPU 50 100 100 200 200 600 2 4

aF1,F2,F3[cycles], aCPU [MHz], pi[mu], vi[
mu
[ai]

]

Depending on the risk she is willing to take, the inte-
grator will pick an appropriate sanity check at t = t0. As
the results in table 2 show, the selection is crucial. With
an assumed safety margin of 5% the critical requirement
’CPU-utilization’ must not exceed 95%. In our example the
integrator chooses the balanced check, which passed suc-
cessful. To find reasonable premiums bi, a sensitivity anal-
ysis tool, as offered by SymTA/S is valuably. Results asens

i
of the sensitivity analysis and the chosen bi are shown in
table 3.

After contracting but before design freeze the suppliers
start prototyping and update their estimations frequently for
a predefined number of n iterations. As design progresses,
the integrator will monitor expected system performance,
based on estimations with constantly increasing accuracy.
For illustration table 4 shows data for three hypothetical it-
erations at t0 ≤ t1, t2,t3 ≤ t∗.

When validation stops, the integrator freezes the design.
In the example the critical system requirement was met and
a fairly good CPU-utilization was reached. Therefor the in-
tegrator will tighten the component requirements ri from
set-critical to critical ones according to the assertions at t3.

Table 2. Sanity checks
check x[%] y pass info

one-sided 0 − y 75.24% CPU-util.
one-sided −5 − y 85.4% CPU-util.
one-sided −10 − n 105.77% CPU-util.

conservative 0 1 n failed for CPU
optimistic −10 1 y -
balanced 10 2 y n!

y!·(n−y)!
analysis steps

weighted 1) − y 85.4% CPU-util.
1)x(F1, F2, F3, CPU)[%] = (−20, +10,−50, 0)

Table 3. Sensitivity analysis based on atar
i

atar
i asens

i ∆ai bi[
mu
[ai]

]

F1[cycles] 20 39 19 -3
F2[cycles] 40 69 29 -2
F3[cycles] 100 169 69 -0.5

CPU [MHz] 100 80 20 1

Table 4. Risk management
t aF1 aF2 aF3 aCPU CPU-util.[%]

t1 21 55 120 100 91.95
t2 28 42 135 100 94.57
t3 21 37 150 100 88.52

aF1,F2,F3[cycles], aCPU [MHz]

The associated prices can be found in table 5 with calcu-
lated prices for a fixed price scenario. The fixed price val-
ues are based on the assumption, that the integrator would
have called for bids on critical requirements equal to the tar-
get implementation, which leaves a significant safety mar-
gin regarding CPU-utilization. The comparison shows that
a fair value-chain was obtained with a win-win situation for
all actors. Supplier of F1 receives slightly less, but avoids
change requests due to a missed critical requirement. Sup-
plier of F2 is rewarded for her effort, while supplier of F3

earns significantly less, though is prevented from poten-
tial contractual penalty. From the integrator’s perspective
the development of the system is less expensive without an
oversized dimensioning.

Employing flexible contracts with estimations the inte-
grator gains an extended period for design trade-offs. Con-
sequently cost reductions can be achieved from the inte-
grators perspective. Considering the suppliers, an overall
loss in business can be identified in some cases. How-
ever incentive compatibility is created, because an extra pre-
mium is paid, due to the compensation scheme. Moreover
broader requirements are likely to reduce the suppliers in-
ternal costs. Consequently applying the flexible contracting
scheme an enhanced design process is facilitated, comply-
ing with Whang’s criteria for optimal contracting [29].

5. Conclusion

Inter-company design processes gain importance. Con-
tractual constraints and IP protection issues entail an overly

Table 5. Pricing

F1 F2 F3 CPU
n∑

i=1

pi(ai) CPU-util

p∗
i 49 84 35 200 368 88.52

pfix
i 50 60 60 200 370 75.24

aF1,F2,F3[cycles], aCPU [MHz], pi[mu]



conservative design style. Motivated by a satellite com-
ponent design project, a design process based on flexible
quantity contracting and formal analysis was proposed that
reduces overdesign but allows to control design risk. Re-
design cycles can be reduced, because critical component
requirements can be traded off against each other. A simple
example shows the incentives for the different players in the
design process and demonstrates fairness.
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