
Towards Flexible Systems Engineering by Using Flexible Quantity Contracts∗

Judita Kruse, Clive Thomsen, Rolf Ernst

Institute of Computer and

Communication Network Engineering

kruse|thomsen|ernst@ida.ing.tu-bs.de

Thomas Volling, Thomas Spengler

Institute for Economics and

Business Administration

t.volling|t.spengler@tu-bs.de

Technical University of Braunschweig, D-38106 Braunschweig/Germany

Abstract

With increasing design complexity flexible systems engi-
neering becomes a challenging issue in SoC and embedded
system design. Furthermore the heterogeneity of different
components of a single system leads to a trend to distribute
the development process over several companies. Today we
already find such distributed design processes in automotive
engineering and space applications, where software plays
an important role. We expect a similar development in SoC
design.

We propose an approach that introduces flexible quantity
contracts into distributed SoC design processes. Flexible
quantity contracts are well known in operations manage-
ment, particularly in research on supply chains. Applied to
SoC design, these contracts will lead to an extension of the
period design trade-offs can be conducted to realize a sig-
nificantly better overall outcome. To enable flexible quan-
tity contracts we propose a structured data format for esti-
mated design data. By using structured estimation design
data, combined with flexible quantity contracts we expect
improved design productivity in inter-company design pro-
cesses.

Related Topics
Development processes and their improvements

Keywords
SoC Design, Estimation Data, Flexible Quantity Contracts,
Incentive Schemes

1. Introduction

Nowadays embedded systems play an increasingly im-
portant role in the design of airplanes, road and rail trans-

∗This work is supported by a grant from EADS and from the EU in the
SpeAC project (MEDEA+ A508).

portation systems. But the development processes of em-
bedded system and SoCs are getting more and more domi-
nated by the increasing complexity of the design.

Due to the fundamental demands on safety aspects in
the automotive engineering and space industries, embedded
systems are subject to hard real time constraints. Current
approaches allow the verification of heterogeneous embed-
ded hardware-software systems by using real time analysis.
These technics rely on design data which describe the prop-
erties of the system under development.

However, accurate design data is not available until near
completion of implementation. Therefore, system analysis
for specification and contracting in the early phases of the
design process can only be done based on estimation data.

Design processes are iterative, but iteration cycles hardly
reach beyond company borders. Iterations require availabil-
ity of preliminary design data, but due to liability clauses in
legal contracts suppliers often hesitate to provide prelimi-
nary design data. In addition, to minimize individual risks,
estimated values are always conservative and add up in an
oversized design.

A recent study revealed that among the top ten problems
encountered in collaborative design projects three were di-
rectly related to contractual issues. These were lengthy
discussions on contract price elements, complex commu-
nication interfaces, and hidden specifications [29]. What
seems to be needed to cope with the increased complexity
of future embedded system design, is an approach that dy-
namically directs development effort toward critical devel-
opment tasks. In particular, analyzing collaborative settings
the question arises, how to organize such development pro-
cesses.

When subcontracting is done today, the integrator for-
mulates her needs concerning functional and non-functional
design data as requirements, while suppliers determine as-
sertions concerning the values guaranteed to be reached.
The integrator takes the risk that requirements change dur-
ing the development process, while the risk of a supplier
is to break assertions made. In the case of the necessity to

change fixed design data, change requests have to be filed.
We propose a structured data format consisting of a set

of estimations denominating a guaranteed, a target and a
top value, to describe the properties of system components.
Such a set of values gives the system integrator a higher
flexibility for design specification and mapping. But greater
freedom allowed in the specification, requires a mechanism
to direct the development of the components towards a sta-
ble overall system. We will therefore introduce a differen-
tiated contracting scheme to provide an efficient coordina-
tion.

After the discussion of related work in chapter 2, we de-
scribe our system model in 3 and extend flexible quantity
contracts to distributed SoC and embedded system design
processes in chapter 4. We will illustrate our approach with
an example given in chapter 5 and conclude in 6.

2. Related work

2.1 SoC and embedded system design

The realization of a continuous SoC and embedded sys-
tem design flow is of great concern and is accelerated by
the corporate as well as by the science community. Con-
sortia like the VSI Allicane [7] and SPIRIT [3] are founded
to enable the development of SoCs with a special focus on
configurable predesigned IP-blocks. They specify a cata-
log of standards, listing essential design data for different
groups of components.

Engineering science discusses different approaches to
enable an efficient SoC design process like platform or
component based strategies [12, 17, 18, 31]. Formal real-
time analysis techniques are closely connected to these
approaches especially addressing heterogeneous systems
[24, 22]. To enable advanced real-time analysis techniques
particular system models are introduced in [23, 21]. In our
paper real-time requirements are used as an example of non-
functional system properties. This class of systems is well
suited for illustrating problems emerging from the interfer-
ence of different components.

Requirement management and tracing is an important
issue in design processes of complex products. For an
overview of current approaches refer to [14]. The commer-
cial tool DOORS [2] is widely used in the system indus-
try to achieve requirement management, while the eurostep
AP233 demonstrator [1] deals with the task of mapping re-
quirements to system components.

There are some approaches of defining an appropriate
language for system design. SystemC [5] emerged from the
idea of integrating hardware (VHDL) and software descrip-
tion (C++) to enable rapid simulation, whereas SysML [6]
is influenced by the UML and system engineering commu-
nity.

Embedded system and SoC design is increasingly inter-
related with the system integrators industries. As an ex-
ample, the space industry started research on possible SoC
solutions a few years ago [16] and has developed mean-

while a series of SPARC compliant cores called LEON. The
next generation LEON3 is currently announced [9]. Ac-
cordingly, the alignment of the SoC design flow with the
established distributed overall system design flow is of high
concern.

2.2 Introducing the supply chain management
perspective

The collaborative product development process will be
defined as the set of inter-linked tasks which is executed by
independent actors and aims at the transformation of a busi-
ness opportunity into a product for sale [26]. What results
is a network of organizations that is closely coupled by up-
and downstream linkages. This network is called supply
chain, the corresponding task of coordination and integra-
tion supply chain management [13].

As work is being distributed at the same time decision
making is. We will therefore refer to the collaborating ac-
tors as decision making units [25]. Accordingly several
aspects of decentralized control arise with coordination of
those decision making units being one central issue. With-
out coordination decisions are restricted to locally available
information, which represent an isolated view on the supply
chain and are consequently likely to cause inefficiencies up-
and downstream. By using the appropriate contract to reg-
ulate the parameters of the interaction it is possible to set
up efficient decentralized control as the cost structure of the
total value chain can be imposed on each decision making
unit involved in the process [28]. Thereby contracts may
contribute to less complex interactions as well as congru-
ent goals, as the individual objectives are aligned towards a
global one. In order to do so, behavioral aspects like locally
perceived incentives and risk need to be taken into consid-
eration in a manner, that all participants are left with their
own best interests [27]. A favorable contractual agreement
is consequently one, that at the same time promotes effi-
ciency, pareto optimality and incentive compatibility, while
incorporating individual rationality [30].

The analysis and design of contracts makes up a central
research objective of supply chain management literature.
For recent reviews refer to [11] and [28]. Particularly con-
tracts or more precisely contract parameters i.e. incentive
schemes are looked for, that direct individual actions to-
wards a globally desired outcome. Incentive schemes in this
understanding are defined as the relation between the trans-
fer paid to a contractor and the contractors performance
[20].

Incentive contracts have a long tradition for example in
the avionics industry and in public procurement [8]. How-
ever, lacking further information usually tangible measures
such as schedule and total costs are being employed for re-
warding contractors. Albeit clearly correlated to an efficient
design, quality measures are due to their rather intangible
nature not taken into account in most practical applications.
Especially, to the authors knowledge no integrated approach
exists, that simultaneously analyzes component design and
contracting issues.

s
1

s
2

s
c

s
0

s
5

s
3

s
4

CPU

HdS

f1

s
a

fa f2

BUS

S

Figure 1. Example System

S

s
0

s
5

BUS

...

s
a

s
c

f1
f2 fa

CPU

HdS

Subsystem

Supplier0..5

HW-Modul

Supplier 1

SW-Block

Supplier 2

SW-Block

Supplier 1

HW-Modul

Supplier 2

Subsystem

Supplier 6

SW-Modul

Supplier

Integrator

Subsystem

Integrator

event model,packet size,power consumption

b
a
n
d
w

id
th

,

a
rb

itr
a
tio

n

worst case core
execution tim

e scheduling policy

clo
ck

ra
te

,

p
o
w

e
r
co

n
su

m
p
tio

n

event model,

packet size,

power consumption

wce
t w

ce
t

h
a
rd

re
a
ltim

e
,

p
o
w

e
r
co

n
su

m
p
tio

n

hard realtime,

power consumption

Customer

Figure 2. System model with actors

3. System model

In our approach a hierarchical system model is used,
which reflects the system structure as well as the supply
chain. A system is usually partitioned into subsystems,
modules and blocks, collectively referred to as components
si. We distinguish between components by granularity. A
block is the smallest entity considered and often directly
linked to a particular implementation like a single VHDL
or C source. A module denominates a more complex com-
ponent, for example a generic core. Modules should ei-
ther be hard- or software. Components covering a hard-
ware/software system or a ’pure’ but very complex hard-
ware or software system are called subsystems. A subsys-
tem could contain other subsystems, modules and blocks,
while modules can only be composed of blocks.

Figure 1 shows an example system with several subcom-
ponents connected to a bus. Communication is indicated
by the curved arrows. s0 to s5 and sa are black-boxed to
subsystems, whereas sc is broken down into three software
blocks f1, f2 and fa, the hardware module CPU and a soft-
ware module HdS, which in general stands for hardware
dependent software and refers to the scheduler in the exam-
ple. The appropriate system model along with the actors of

the supply chain is shown in figure 2.
Inherently, each component has a large number of func-

tional and non-functional properties, e.g. timing, power
dissipation, thermal stress resistance or even the color of a
LED. In distributed system development all these properties
and their characteristics need to be defined by contracts. A
couple of non-functional properties of the example system
is annotated in figure 2.

Requirements r characterize the properties a component
must achieve. They can originate from the environment of
the system, from technical needs or from customer requests.
Derived requirements on a subcomponent are obtained from
higher level requirements.

Assertions a are properties components guarantee to
other components. The higher level component can sim-
ulate or analyze the behavior of the subcomponents based
on the assertions given and can assert a specific behavior to
the next higher level on its part.

In fixed price scenarios requirements are firmly speci-
fied by contracts and for this reason all assertions are fixed.
Penalty clauses assure that important properties are re-
flected by critical requirements. This determination of crit-
ical requirements and assertions is a time-consuming task
for suppliers as for integrators in early specification phases.
Due to conservative estimations of either actor the overall
system is likely to end up in an over-estimated design. In
distributed development environments with fixed contracts
this fact cannot be neglected, since the over-estimation adds
up with every other supplier.

To enable flexible contracts in distributed embedded sys-
tem design, we proposed a structured estimation format for
assertions and introduced set-critical requirements in [19].
The term set-criticality is used for requirements which are
critical in conjunction with other requirements, but are not
critical by themselfs. Assertions in the structured estimation
format consist of three values: a conservative estimation, a
target, which denotes the expected, and a best case:

a = (agua, atar, atop)

In many cases more than one requirement concern a sin-
gle physical parameter. If all associated requirements force
the parameter in the same direction, they strengthen each
other. However, often they are competing.

A typical example regards a CPU which should be faster
for performance requirements, but at the same time low
power dissipation is needed. Due to

P = Cgates · f · V 2
CC

fulfilling a timing requirement rT will always decrease the
assertable low power requirement rP for the very same
component (i.e. same technology, same core voltage).

Hence, we extend the structured estimation format for
assertions regarding competing requirements as follows.
All competing requirements of a component are prioritized.
The assertion for a lower priority requirement is estimated
as a function of the higher priority one. Let rT be prior to

rP . The related assertions for a component i will be given
by

aT
i = (aT,gua

i , aT,tar
i , aT,top

i)

aP
i = (fP,gua(aT

i), fP,tar(aT
i), fP,top(aT

i))

4. Contract structure and design

The objective of the following is to provide a framework
for the design of contractual agreements with respect to the
setting introduced above. For our analysis we assume that
specific cost estimates pgua, ptar, and ptop are available for
a three point interval of a property defined by agua, atar,
and atop.

From an economic perspective a universal representation
of a component development contract is given by

Ps = P fix
s +

m∑
J=1

pJ(aJ)

where Ps refers to the transfer to be paid to a vendor
contracted to develop a component s. P fix

s denotes a fixed
price part while pJ(aJ) are m specific price parts as a func-
tion of asserted properties aJ for s. More specifically the
latter term is comprised of two summands, a fixed baseline
pJ,base and pJ,inc denoting the incentive scheme applied.

pJ(aJ) = pJ,base(αJ) + pJ,inc(aJ)

For applicability reasons we determine pJ,base(αJ) such
as αJ = 100 sets pJ(aJ,gua) equal to pJ,gua, whereas
αJ = 0 results in pJ(aJ,tar) equaling pJ,tar no matter what
incentive parameters are chosen.

pJ,base(αJ) = − αJ

100
· bJ,gua · (aJ,tar − aJ,gua)

Finally the incentive scheme is given by

pJ,inc(aJ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pJ,tar + (vJ,gua + bJ,gua) · (aJ − aJ,tar)

foraJ < aJ,tar

pJ,tar + (vJ,top + bJ,top) · (aJ − aJ,tar)

for aJ ≥ aJ,tar

The parameters vJ,gua and vJ,top can be interpreted as
the slope of the linear interpolation between aJ,gua, aJ,tar,
and aJ,top and their associated prices. Compensative pay-
ments granted to the supplier are represented by bJ,gua and
bJ,top. Penalties for assertions worse than the target value
can be adjusted using αJ

We will further distinguish three characteristic instances
comprehensively illustrated in figure 3 for a ’the-more-the-
better’ scenario: fixed price, quantity flexible, and incentive

contracts. We thereby restrict our analysis to piecewise lin-
ear contracts as they stand for most real-world applications
[20]. The resulting prices are shown as a function of the
assertions made at design freeze. As an additional refer-
ence the linear interpolations of the initial cost estimates
are given by the dotted lines. These may serve as a simple
approximation of the price to be paid, if selecting a fixed
price contract.

Fixed price contracts are due to their transparent struc-
ture widely used across industries. In this case the contract
is given by two parameters for each requirement: a fixed as-
sertion atar and a corresponding price ptar. With α = 0
deviations to the specified value are either not permitted
or not rewarded (see figure 3a). The contractor is residual
claimant for any cost savings but also carries the entire risk
of cost overruns. Thus what influences the contractors de-
cision making is his local i.e. private cost information. The
cost structures of other players are not taken into account.

In order to improve overall supply chain performance
several approaches like flexible quantity contracts [10] or
backup agreements [15] have been discussed. An example
of a flexible quantity contract applied to a distributed em-
bedded system design is given in [19]. Here, analogue to
the fixed price buyer and supplier agree on a design target
and a target price. Additionally a bonus is defined, if the
buyer requires more or less than the target. The allowed
deviations are restricted to an interval narrowed down by an
upper boundary atop and a lower boundary agua (figure 3b).
The intention of the bonus is to compensate the supplier for
an increased exposure to design risk, as she is obliged to
accept reduced overall business, if stipulated by the integra-
tor. Accordingly changes to the initial agreement are not
excluded, but are associated with higher specific costs for
the buyer. Still, as they result in net savings, reduced re-
quirements might be desirable for the integrator if backed
by improved system analysis.

Incentive contracts finally represent the most complex
contract instance. In addition to the flexible quantity case
a fixed baseline bonus pbase is granted. They are particu-
larly well suited for settings where uncertainty prevails in
terms of the achievement of design goals represented by
atar. To motivate better performance it is rewarded with
a higher transfer. Specifically the parameters α, bgua, and
btop are used to define the power of the incentive scheme
(figure 3c).

In assessing the fitness of a contractual scheme for a cer-
tain component property essentially three decisions can be
employed. The criticality of a property is affected by the en-
vironment, internal system effects or customer demands. A
sensitivity analysis can be used to determine this measure.
For properties with associated requirements, which can be
attenuated to set-critical ones, incentive or flexible quantity
schemes are a good choice.

The trade-off relevance arises for set-critical attributes.
A high trade-off relevance indicates, that a better perfor-
mance facilitates broader requirements with respect to other
properties. Global cost savings could therefore be obtained.
In this case incentive contracts motivating better perfor-

 0

b
gua

> 0

b
top

> 0

 = 0

b
gua

= - v
gua

b
top

= - v
top

p
gua

p
top

p
tar

p
gua

p
top

p
tar

p
gua

p
top

p
tar

a
gua

a
tar

a
top

a
gua

a
tar

a
top

a
gua

a
tar

a
top

 = 0

b
gua

< 0

b
top

> 0

fixed price

quantity flexible

incentive contract

a)

b)

c)

Figure 3. Pricing schemes

mance should be used.
The third evidence is the scalability of a property. Scal-

ability refers to the technical feasibility of changes to a
particular parameter merely restricted to given boundaries.
Examples for scalable attributes are the number of I/O-
interfaces or the size of the memory. Obviously flexible
quantity contracts are not applicable, if the attribute at hand
is not scalable. Consequently, fixed price contracts are cho-
sen for critical properties which cannot be attenuated to set-
critical ones. For scalable attributes on the contrary flexible
quantity contracts induce a higher flexibility without signif-
icant drawbacks and should therefore be pursued.

The actual transfer paid to a contractor is finally deter-
mined by applying the general contract representation in-
troduced above. The challenge of contract design lies in
determining well balanced contracts. That is, as better per-
formance is rewarded in the incentive contract case, flexible
quantity clauses are needed to adopt to the changed system
configuration without encountering massive cost overruns.

5. Example

To illustrate our approach we take the example system
from figure 1. An already existing system consisting of s0

to s5 and sc and the bus shall be extended by the additional
functionality of the pair of components sa and fa. Option-
ally, the hitherto used CPU can be displaced by an alterna-
tive with the same instruction set.

The properties of the initial system are listed in table
1. The 8bit system bus operates at 33MHz with a load of
40.24%. s0 to s5 consume 10mW each. sc is the relevant
component for system power consumption and consumes

Figure 4. SymTA/S model for revisioned sys-
tem

255mW at 50MHz and has a load of 80.00%. The sub-
systems communication behavior with end-to-end deadlines
and packet sizes can be found in table 1, also. Overhead is
not regarded, neither for the CPU nor for the bus.

The additional component sa will produce a packet of
8 byte periodically. This packet shall be send over the bus
to an additional task fa running on the CPU of sc. The
resulting packet of 8byte will be send back to sa over the
bus again. The end-to-end deadline of the path from sa to
sc and back to sa shall equal the period of sa.

The development of sa will be subcontracted to a
hardware-module supplier, while the implementation of fa

will be subcontracted to a software supplier. A bid for alter-
native CPUs will be solicited from another hardware sup-
plier.

Hard real-time behavior and a maximal power consump-
tion of 320mW are critical overall system requirements.
Power consumption and CPU speed are competing require-
ments concerning the physical parameter clock-frequency.
For this reason we priorize timing prior to power.

The real-time analysis tool SymTA/S[4] is used for tim-
ing analysis of the overall system bus as well as for the lo-
cal analysis of the subsystem sc. An equivalent SymTA/S
model of the example system is shown in figure 4. To ana-
lyze the bus SymTA/S needs event stream models for s0 to
s5, sa and sc, descriptions of the communication tasks c0

to c7, the bus-speed, and the arbitration. For the scheduling
analysis of the CPU, the scheduling policy, the clock-rate,
and worst case execution times for f1, f2 and fa are needed.

Every component of the initial system provides its ini-
tially analyzed timing properties as fixed assertions to the
system. sa, fa and the CPU are set-critical concerning
the timing requirement and provide assertions in the struc-
tured estimation format. Since sa and fa are not imple-
mented yet, the worst case execution time for fa and the
event models for sa have to be estimated. The hardware
supplier has reliable informations on possible clock-rates

Table 1. Initial system properties

component timing power

S busload 40.24% system power consumption 315mW

BUS 33MHz,8bit,priority based arbitration, overhead not regarded power consumption not regarded

s0 produces 64byte with period P = 100µs, jitter J = 0.02µs subsystem power consumption 10mW

s1 produces 4byte with period P = 1µs, jitter J = 0 subsystem power consumption 10mW

and consumes 4byte with period P = 1µs, jitter J = 1µs,

requires end-to-end deadline of 1µs

s2 produces 4byte with period P = 2µs, jitter J = 0 subsystem power consumption 10mW

and consumes 4byte with period P = 2µs, jitter J = 2µs,

requires end-to-end deadline of 2µs

s3 produces 32byte with period P = 50µs, jitter J = 0.02µ subsystem power consumption 10mW

s4 consumes 64byte sporadically, with period P = 100µs, jitter J = 50µs subsystem power consumption 10mW

s5 consumes 32byte sporadically, with period P = 50µs, jitter J = 25µs subsystem power consumption 10mW

sc cpuload 80% CPU power consumption 255mW

f1 20cycles no back-annotation used for software

f2 40cycles no back-annotation used for software

HdS static priority preemptive, overhead not regarded no back-annotation used for software

CPU 50MHz idle:75mW, busy:300mW

Table 2. Pricing schemes applied

component αi bgua
i btop

i pricing scheme

rT
sa

50 0.5 0.5 incentive

rP
sa

0 - - fixed

rT
fa

50 -1 -1 incentive

rT
CPU 0 -0.5 0.5 flexible quantity

rPidle

CPU 25 -0.2 -0.2 incentive

r
Pbusy

CPU 25 -1 -1 incentive

for the CPU. Therefore, the integrator chooses an incentive
pricing scheme for sa and fa, whereas flexible quantity is
used for the CPU. The timing assertions and corresponding
prices of the additional components are shown in table 3,
along with assumed incentive parameters. For the example
the fixed price part of a component development contract is
regarded as zero. Table 2 summerizes the applied pricing
schemes.

For the power consumption of S a simplified calculation
is used:

P =
∑

Pi(si)

Table 3. Timing assertions

component aT,gua
i pT,gua

i aT,tar
i pT,tar

i aT,top
i pT,top

i

sa[µs] 4.7 10 5.5 60 6.6 120

fa[cycles] 150 80 100 120 80 300

CPU [MHz] 50 50 100 100 200 300

The power consumption of sc is estimated by the following
formula:

P = Pidle ·(1−Utilizationbusy)+Pbusy ·Utilizationbusy

For power requirements we assume, that sa asserts a
fixed power consumption of 10mW. We do not regard the
power consumption of the bus. Therfore rP,critical

s can be
passed to sc as rP,critical

s = 250mW . Since the timing
requirement rT is prior to the power requirement rP , the
power assertions are provided in dependence of the timing
requirement. See table 4 for the details.

An initial system analysis based on the target values for
the additional components and the so far used CPU reveals
that such a system does not have the required real-time ca-
pability (table 5.1). Analysis number two indicates that the

Table 4. Power assertions for CPU
component aP,gua

CPU aP,tar
CPU aP,top

CPU

fPidle(aT,gua)[mW] 75 60 40

fPbusy (aT,gua)[mW] 300 200 170

fPidle(aT,tar)[mW] 100 75 50

fPbusy (aT,tar)[mW] 400 240 230

fPidle(aT,top)[mW] 120 100 65

fPbusy (aT,top)[mW] 550 400 330

pPidle

CPU [mu] 25 50 150

p
Pbusy

CPU [mu] 25 50 150

chosen target set-up is appropriate: both, the timing as well
as the power requirement is met (table 6.2). Setting all com-
ponents to the guaranteed value, except the CPU running at
the target point, will result in a system violating both re-
quirements (table 5.3). The negative overall system price
results from the incentive parameters used, which enable
penalties within incentive pricing contracts. However, as
the timing properties of the CPU was contracted with flex-
ible quantity, the integrator can employ the CPU with the
top clock-rate to obtain a stable overall system (table 5.4).
Due to the low transfers for the components not improving
the guaranteed value, the overall system price is similar to
a typical target system. The other corner case is calculated
using the analysis set number five (table 5.5). sa and fa

reach their top points and the system price exceeds the tar-
get system price more than twice. As analysis number six
shows, using a CPU at guaranteed clock-rate instead is of no
option, because the CPU would violate its timing require-
ment. Furthermore, the system price could even increase, if
the hardware supplier has enhanced the power consumption
properties of the chip (table 6.6). The last analysis exam-
ple indicates a possible solution, assuming that the hard-
ware supplier offers not only CPUs with the corner point
frequencies.

6. Conclusion

Flexible Systems Engineering becomes a more and more
important issue in embedded system design processes. A
system model was described to capture requirements and
assertions of a complex system in a distributed design en-
vironment. The concept of structured estimation data was
extended to capture competing requirements as well. An
incentive mechanism was added to the flexible contracting
scheme and a decision matrix was given.

Our further work is on research of how dependencies in
SoCs can be determined and traced. In addition we study,
how the structured estimation data model can be extended
by assessment methods.

7. Acknowledgment

We would like to thank Roland Müller and others
from Astrium, Hubert Stich from EuroTelematik, and Peter
Ganal from Tecnotron for their valuable input and feedback
from design practice.

References

[1] AP233. http://ap233.eurostep.com/.
[2] DOORS. http://www.telelogic.com/products/doorsers/doors/.
[3] SPIRIT Consortium. http://www.spiritconsortium.com/.
[4] SymTA/S. http://www.symta.org/.
[5] SystemC. http://www.systemc.org/.
[6] Systems Modeling Language. http://www.sysml.org/.
[7] Virtual Socket Interface Alliance. http://www.vsi.org/.
[8] Federal Aquisition Regulations - Volume 1, 2001. General

Services Administration and Department of Defense and
National Aeronautics and Space Administration.

[9] Leon3 processor core, Oct. 2004. Gaisler Research AB.
[10] R. Anupindi and Y. Bassok. Supply Contracts with Quantity

Commitments and Stochastic Demand. In S. Tayur, editor,
Quantitative models for supply chain management, pages
198–232. Kluwer, Boston, 1999.

[11] G. P. Cachon. Supply chain coordination with contracts. In
A. G. d. Kok and S. C. Graves, editors, Supply chain man-
agement, pages 229–339. Elsevier, Amsterdam, 2003.

[12] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and
L. Todd. Surviving the SOC Revolution. Kluwer Academic
Publishers, 1999.

[13] M. Christopher. Logistics and supply chain management.
Financial Times/Prentice Hall, London, 1998.

[14] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. In Selected Papers of
the 6th Int. Workshop on Software Specification and Design,
pages 3–50. Elsevier Science Publishers B. V., 1993.

[15] G. D. Eppen and A. V. Iyer. Backup Agreements in Fashion
Buying. Management science, 43(11):1469–1484, 1997.

[16] S. Habinc. Design space applications using synthesis-
able cores. In Proc. 2nd Military & Aerospace Ap-
plications of Programmable Devices & Technologies Int.
Conf.(MAPLD’99), Maryland, USA, Sept. 1999.

[17] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design: Orthog-
onalization of concerns and platform-based design. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 19(12):1523–1543, 2000.

[18] H. Kopetz. Component-based design of large distributed
real-time systems. In 14th IFAC Workshop on Distributed
Computer Control Systems (DCCS’97), pages 171–177,
Seoul, Korea, 1997.

[19] J. Kruse, T. Volling, C. Thomsen, R. Ernst, and T. Spen-
gler. Introducing flexible quantity contracts into distributed
soc and embedded system design processes. In Proc. De-
sign, Automation and Test in Europe (DATE’05), Munich,
Germany, 2005.

[20] J.-J. Laffont and J. Tirole. A theory of incentives in pro-
curement and regulation. MIT Press, Cambridge, 5 edition,
2002.

Table 5. Timing analysis results

no. set-up aT
fa

p(aT
fa

) aT
sa

p(aT
sa

) aT
CPU p(aT

CPU) aT
Sc

critical requirement aT
S

∑
pi(aT

i)

1 agua
CPU , star

a , f tar
a 100 95 5.5 80 50 75 116.36 CPU violated 49.06 250

2 atar
CPU , star

a , f tar
a 100 95 5.5 80 100 100 58.18 ok 49.06 275

3 atar
CPU , sgua

a , fgua
a 150 5 4.7 -100 100 100 71.91 deadline sa violated 50.56 5

4 atop
CPU , sgua

a , fgua
a 150 5 4.7 -100 200 350 35.96 ok 50.56 255

5 atar
CPU , stop

a , f top
a 80 295 6.0 250 100 100 53.33 ok 48.32 645

6 agua
CPU , stop

a , f top
a 80 295 6.0 250 50 75 106.67 CPU violation 48.32 620

7 a75MHz
CPU , stop

a , f top
a 80 295 6.0 250 75 87.5 71.11 ok 48.32 632.5

aT
fa

[cycles], aT
sa

[µs], aT
CPU [MHz] , aT

Sc
[%] =CPU-Util., aT

S [%]=BUS-Util., pT
i [mu]

Table 6. Power analysis results

no. set-up aPidle

CPU p(aPidle

CPU) a
Pbusy

CPU p(aPbusy

CPU) aPsum

CPU p(aPsum

CPU) aP
si

p(aP
sa

) aP
S

∑
pi(aP

i)
∑

pi(aJ
i)

1 aP,tar
CPU (aT,gua

CPU) 60 49.25 200 25 232.73 74.25 70 10 302.73 84.25 334.25

2 aP,tar
CPU (aT,tar

CPU) 75 48.75 240 10 171 58.75 70 10 241 68.75 343.75

3 aP,gua
CPU (aT,tar

CPU) 100 18.75 400 -175 315.74 -156.25 70 10 385.74 -146.25 -141.25

4 aP,tar
CPU (aT,top

CPU) 100 49 400 12.5 207.87 61.5 70 10 277.87 71.5 326.5

5 aP,top
CPU (aT,tar

CPU) 50 153.75 230 120 146 273.75 70 10 216 283.75 928.75

6 aP,top
CPU (aT,gua

CPU) 40 153.25 170 155 181.33 308.25 70 10 378.25 318.33 938.25

7 aP,gua
CPU (aT,75MHz

CPU) 40.5 21.25 153 -85 120.5 -63.5 70 10 190.5 -53.5 579

aP [mW], pP
i [mu]

[21] J. C. Palencia, J. J. G. Garcia, and M. G. Harbour. Best-case
analysis for improving the worst-case schedulability test for
distributed hard real-time systems. In Proc. 10th Euromicro
Workshop on Real-Time Systems, page 35, Berlin, Germany,
June 1998.

[22] P. Pop, P. Eles, and Z. Peng. Bus access optimization for dis-
tributed embedded systems based on schedulability analysis.
In Proc. Design, Automation and Test in Europe (DATE’00),
Paris, France, 2000.

[23] K. Richter, M. Jersak, and R. Ernst. A formal approach to
MpSoC performance verification. IEEE Computer, 36(4),
Apr. 2003.

[24] S. K. S. Chakraborty and L. Thiele. A general framework
for analysing system properties in platform-based embedded
system designs. In Proc. Design, Automation and Test in
Europe (DATE’03), Munich, Germany, Mar. 2003.

[25] C. Schneeweiss and K. Zimmer. Hierarchical coordination
mechanisms within the supply chain. European Journal of
Operations Research, 153(3):687–703, 2004.

[26] S. A. Shane and K. T. Ulrich. Technological Innovation,
Product Development, and Entrepreneurship in Manage-
ment Science. Management science, 50(2):133–144, 2004.

[27] A. A. Tsay. The Quantity Flexibility Contract and Supplier-
Customer Incentives. Management science, 45(10):1339–
1358, 1999.

[28] A. A. Tsay, S. Nahmias, and N. Agrawal. Modeling Supply
Chain Contracts. In S. Tayur, R. Ganeshan, and M. Maga-
zine, editors, Quantitative models for supply chain manage-
ment, pages 299–336. Kluwer, Boston, 1999.

[29] F. van Echtelt, J. F. Wynstra, A. van Weele, and G. Duysters.
Critical processes for managing supplier involvement in new
product development. 2004.

[30] S. Whang. Contracting for Software Development. Man-
agement science, 38(3):307–324, 1992.

[31] T. Zhang, L. Benini, and G. D. Micheli. Component se-
lection and matching for IP-based design. In Proc. Design,
Automation and Test in Europe (DATE’01), pages 190–195,
Munich, Germany, Mar. 2001.

