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Abstract
Accurate timing analysis is key to efficient embedded system syn-
thesis and integration. Caches are needed to increase the processor
performance but they are hard to use because of their complex be-
havior especially in preemptive scheduling. Current approaches use
simplified assumptions or propose exponentially complex analysis
algorithms to bound the cache related preemption delay at a context
switch. Existing approaches consider only direct mapped caches or
propose non conservative approximation for set associative caches.

In this paper we propose a novel cache related preemption delay
analysis for set-associative instruction caches where the designer
can adjust the analysis precision by scaling the problem complexity.
Furthermore, this precise preemption delay analysis is integrated
into a scheduling analysis to determine the response time of tasks
accurately. In experiments we evaluate this tradeoff between anal-
ysis precision and analysis time. The results show an improvement
of 22%-71% in analysis precision of cache related preemption de-
lay and 5%-21% in response time analysis compared to previous
conservative approaches.

Categories and Subject DescriptorsB.3.3 [Memory Structures]:
Worst-case analysis.

General Terms Algorithms, Measurement, Performance.

Keywords Worst Case Execution Time Analysis, Cache, Embed-
ded Systems, Scheduling.

1. Introduction
Caches are needed to increase processor performance but they
are hard to use in real-time systems because of their complex
behavior. While it is difficult enough to determine cache behavior
for a single task, it becomes even more complicated if preemptive
task scheduling is included. Preemptive task scheduling means that
task execution can be interrupted by higher priority tasks. In this
case, cache improvements can be strongly degraded by frequent
replacements of cache blocks.

There are several approaches to make caches more predictable
and efficient. One approach is to partition the cache sets and to
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reserve these partitions for individual tasks. This has been inves-
tigated in [13]. The advantage is that cache lines do not have to
be reloaded after interrupts and between consecutive executions of
the same task. Also, cache behavior becomes (partly) orthogonal
for tasks and, therefore, more predictable. Task layout techniques
are suggested in [6] which aim at minimizing the inter-task inter-
ference in the instruction cache. Another approach is to lock fre-
quently used cache blocks. Such techniques have been investigated
by [10] [5] [17] . Both approaches come at an area and power cost
as they require a greater caches or memories to become effective.
Therefore, heterogeneous memory architectures with caches and
scratch-pad SRAM have been introduced [8], where the scratch-
pad can hold frequently used cache blocks. Compiler techniques
for such architectures have been proposed by [15].

While cache partition and lock strategies are certainly a very
useful add-on to improve cache predictability and efficiency, they
do not solve the general cache analysis problem which is critical
for larger systems of tasks.

Simplified approaches extend the known response time analysis
with fixed context switch costs [4] , while more recent approaches
[11] [14] use data flow analysis to determine the maximum cache
related preemption delay (CRPD) of two tasks. While the approach
in [14] is more precise but exponential, the approach in [11] is not
precise but polynomial in time complexity.

The first contribution of this paper is a pseudo-polynomial al-
gorithm, where the designer can decide the tradeoff between the
analysis precision and analysis execution time. The novel idea is to
adjust the level of accuracy by scaling the problem complexity. Sec-
ondly, this approach is conservatively extended to set-associative
caches. In related work only direct mapped caches are analyzed
[14] [16] [21] [4] and the extension to m-way set associative caches
in [11] is not conservative, as we will show in this paper. In [12] the
CRPD estimation is integrated in a scheduling analysis, but with ex-
ponential complexity. Other approaches, such as [16] [4], propose
polynomial scheduling algorithms but use simplified assumptions
on the CRPD of two tasks. The third contribution of this paper is
the integration of the proposed CRPD estimation into a scheduling
analysis, such that the entire framework is pseudo-polynomial and
is as precise as other polynomial algorithms while some aspects of
exponential scheduling algorithms are considered. This approach
can be used for timing verification of hard real time systems as
well as for design space exploration.

The rest of this paper is organized as follows. Related work is
presented in Section 2. In Section 3 the scalable data flow analysis
is introduced for direct mapped caches. This modeling is extended
in Section 4 to set-associative caches and integrated to a scheduling
analysis in Section 5. The results of the experiments are presented
in Section 6 before we conclude in Section 7.



2. Related Work
This section describes related work in the response time analysis
for fixed priority preemptive scheduling and reviews current ap-
proaches to bound the CRPD.

2.1 Preemptive scheduling analysis

The scheduling method presented in this paper is based on response
time analysis (RTA), as described in [4] [3] [9]. The computational
model assumes a fixed priority periodic task set with the deadline
at the end of a period.

The worst case response time occurs when all tasks are released
at the same time point (critical instant). An iterative approach is
used to calculate the response time of a given task. The approach
tries to allocate in a time windoww the taskτi’s computation time
Ci, the tasks blocking timeBi and the interference produced by
the execution of higher priority tasks. The blocking time is the
maximum time that a task can be delayed by lower priority tasks
due to resource contention. The process is iterative because in every
step the interference is added to the current windowwn

i , resulting in
a longer time windowwn+1

i that might include greater interference
in the next step. The process is finished when the window stops
growing (wn+1

i = wn
i ). If the resulted response time for any task

is greater than its deadline (wn+1
i = wn

i = Ri > Di), the task-set
is not schedulable. The iterative relation is shown below:

wn+1
i = Ci + Bi +

∑
j∈hp(i)

⌈
wn

i

Tj

⌉
· Cj (1)

The termhp(i) denotes the set of tasks with a higher priority than
taskτi.

2.2 Accounting for cache interference

In an embedded system with cache the context switch time depends
on the contents of the cache. When a taskτj preemptsτi some
cache blocks are removed byτj and have to be reloaded byτi

after it resumes. In [4] five possible ways to determine the CRPD
are given: 1.) The time to refill the entire cache. 2.) The time to
refill the cache blocks displaced by the preempting task. 3.) The
time to refill the cache blocks used by the preempted task. 4.) The
time to refill the maximum number of useful cache blocks that the
preempted task may hold in the cache when a preemption occurs.
Useful blocks are those that are likely to be used again [7]. 5.) The
time to refill the intersection of blocks between the preempting and
preempted task [12].

The approach in [4] considers the penalty according to number
1 and 2 of this list. The following equation is used for the response
time analysis. It differs from Equation 1 only by an additionalγi

which corresponds to the additional preemption delay due to the
cache interference caused by the preempting taskτj :

wn+1
i = Ci + Bi +

∑
j∈hp(i)

⌈
wn

i

Tj

⌉
· (Cj + γj) (2)

In contrast to the work in [4] Petters presents in [16] an approach
that considers the preempted task only. The response time of a task
is computed by

Ri = Ci + Bi +
∑

j∈hp(i)

(Ej(Ri) · Cj + ∆ji(Ri)) (3)

whereEj(Ri) denotes the worst case number of releases of taskτj

within the intervalRi. For fixed priority preemptive scheduling this

number is given byEj(Ri) =
⌈

Ri
Tj

⌉
. To simplify the description,

it is assumed that the final response time of a task is already
determined (Ri = wn+1

i = wn
i ). The maximum preemption delay

∆ji(Ri) that taskτj imposes on all tasks with lower priority than
τj and higher or equal priority thenτi is computed by an iterative
approach. The number of preemptions is bounded byEj(Ri), that
is the maximum number of activations of the preempting taskτj

during the response time ofτi. Then theEj(Ri) most expensive
preemptions are chosen. The drawback of this approach is that only
the useful cache blocks of the preempted task are considered as
preemption costs. For larger caches where the preempting and the
preempted tasks share only small parts of the cache, this modeling
can lead to a pessimistic overestimation.

Approaches such as [12] [14] have been proposed to reduce
such overestimation by considering the preempting and preempted
task. With a data flow analysis the maximum number of useful
cache blocks of the preempted task and the maximum number of
used cache blocks of the preempting task are computed. Both sets
are intersected to compute the maximum cache related preemption
delay. In [12] the response time of a task for fixed priority pre-
emptive scheduling is computed by constructing an integer linear
programming problem (ILP). The drawback of their modeling is
that an exponential number of equations is necessary to describe
the system, making it impracticable for industrial use. Further no
exact solution is given, because the worst case preemption cost is
assumed for every preemption. This analysis is applied to direct
mapped caches and an extension for m-way associative caches is
given. However we will show in Section 4.1 that this extension is
not conservative. In [14] an approach is proposed for direct mapped
caches that analyses the CRPD for each program path based on the
approach in [12] but exponential number cache states are necessary
in their data flow analysis.

Current approaches that analyze the CRPD are either polyno-
mial but not accurate [12] or exponential because all paths are
considered [14]. Current approaches that propose a polynomial
response time analysis including CRPD consider either the pre-
empted task only [16] or consider the preempting task only [4].
The approach in [12] which considers the preempted and the pre-
empting task needs an exponential number of equations in the ILP
formulation. All approaches restrict the CRPD analysis to direct
mapped caches, with one exception. In [11] an non-conservative
extension for m-way associative caches is given.

3. Preemption delay analysis
We will motivate our new approach with a small example. A task
is represented by its control flow graph (CFG) with basic blocks
as nodes and control flow as edges. Figure 1 shows a CFG of a
loop with two branches. A nodeBi shows the memory blocks of
assembly instruction for basic blockBi. For example, the memory
blocksm1, m2 andm3 contain assembly instructions that belong
to basic blockB2.

We assume a direct mapped cache with 4 cache sets. The map-
ping of memory blocks to cache sets is given in Figure 1. For ex-
ample, cache blocksm0, m4 andm8 are mapped to cache setc0.
In Figure 2 the cache contents are shown for each basic block. To
abbreviate the notation we use only the index of memory blocks,
such that [4 5 - -] represents an entire direct mapped cache with
four cache sets withm4 at cache setc0, m5 at c1 and cache set
c2 andc3 are empty. A formal definition of a cache state is given
in Section 3.2. At basic blockB4 the two incoming cache states
from B2 andB3 are updated according to the cache mapping in
Fig 1, because the memory blockm6 of basic blockB5 is mapped
to cache setc2.

After the second branch at basic blockB7 four cache states
would are present. To provide a program-path accurate analysis in
the approach in [14] the number of cache states ofn consecutive
branch statements is given by2n, leading to an exponential increase
of cache states. On the other side the approach in [11] merges the



contents of every cache set, such that there is at most one cache
state. The drawback is that such analysis is not program path-
accurate, which means that the cache contents on several paths are
merged leading to a reduced analysis precision.
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Cache Mapping

c0 : m0 m4 m8
c1 : m1 m5 m9
c2 : m2 m6 m10
c3 : m3 m7 m11

Figure 1. Control flow graph with memory blocks and cache map-
ping

To reduce the problem complexity we propose to bound the total
number of cache states at each node. This way the complexity is
reduced by the price of analysis precision. To integrate this idea into
CRPD analysis we have to define how to merge two cache states
and how to modify the known data flow analysis. For exposition
we restrict the presentation to direct mapped caches, which will be
extended to set-associative caches in Section 4. We continue the
example of Figure 2 in Section 3.5 to compute the cache contents
at basic blockB7.
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Figure 2. Control flow graph with cache states

3.1 Scope and Limitations

The new approach analyses the preempted task as well as the pre-
empting task to compute the cache related preemption delay for set

associative instruction caches. The scheduling analysis computes
the response time for a given task set by computing the maximum
number of preemptionsn and uses then most expensive preemp-
tion costs. During the data flow analysis the designer can determine
how many cache states are stored at each node. This allows to scale
the problem complexity as well as the analysis precision. The ap-
proach assumes the following:

• fixed periodic and fixed priority preemptive scheduling policy,
which can be extended to more general activation models (as
used in SymTA/S [20]) to model bursts or interrupts.

• constant cache miss penalty to load one cache block from the
main memory to the instruction cache

• memory access time is additive to the core execution time.
This means that the CPU stalls until the fetched memory block
arrives.

• worst case execution time (WCET) is given for each task, in-
cluding intra-task cache effects.

3.2 General Data Flow Analysis

In a direct mapped cache each memory block can only be mapped
into one cache set. In order to merge two cache states we define a
cache set as vector ofn setsc[0, · · · , n − 1], wherec[i] is aset of
memory blocksandm ∈ c[i] if cache blocki holds memory block
m. Otherwise, if theith cache block does not hold any memory
block we denote this asc[i] = ∅.

We assume that an operation� over M (M is the set of all
memory blocks) can be applied to a cache state by applying the
operation pointwise to its elements. Two cache statesc1 andc2 can
be merged by applying the union operator to each element:

c1 ∪ c2 = ({c1[1] ∪ c2[1]}, · · · , {c1[n] ∪ c2[n]})

In the same way the intersection of two cache states is computed.
This cache state definition differs from the cache state as de-

scribed in [14] where eachc[i] contains exactly one memory block.
A reaching cache stateRCSB at a basic blockB of a task is

the set of possible cache states when B is reached via any incoming
program path. The live cache states at a basic block B, denoted
LCSB , are the possible first memory reference to cache blocks via
any outgoing program path fromB. RCSB captures the possible
cache states when a task is preempted andLCSB captures the
possible cache usages when the task resumes execution.

As shown in [11] [18] it is sufficient to consider only the end
of each basic block as preemption point for CRPD estimation. The
setsLCSB andRCSB are computed for each basic block B by
the fixed-point iterative data flow analysis, as originally described
in [1] for optimizing compilers and applied for CRPD estimation
in [11] [14] [18].

For the RCS property the quantitiesRCSIN
B andRCSOUT

B are
computed and we setRCSB = RCSOUT

B if the fixed point is
reached. InitiallyRCSIN

B = ∅ andRCSOUT
B = genB . Where

genB holds all memory blocks introduced into the cache by basic
block B. The iterative equations are as follows:

RCSIN
B = boundZ(

⋃
p∈pred(B)

RCSOUT
p ) (4)

RCSOUT
B = {r � genB |r ∈ RCSIN

B } (5)

c� c′ =

{
c′ if c′ 6= ∅
c otherwise

(6)

Wherec andc′ represent a cache set - in both interpretations: cache
set as a part of a cache state as well as a mathematical set of
memory blocks. The functionboundZ(C) reduces the number of
cache states ofC to Z elements. This functions allows us to scale



the problem complexity to bound the number of cache states at each
node. Its computation is described in Section 3.3

Similarly the LCS property is computed by an iterative fixed
point algorithm, the only difference is that theLCSOUT

B is defined
by all LCSIN

B sets of all successors of basic block B and the
LCSIN

B is computed by applying the� operator to thegenB set
and allLCSOUT

B sets. Here thegenB set is defined by the first
memory references in basic block B. Refer to [14] [11] for the
details.

3.3 Cache State Reduction

To scale the problem complexity the number of cache sets are
bounded. The functionboundZ(C) reduces the setC to Z ele-
ments, if |C| > Z otherwiseboundZ(C) = C. This is shown
in Figure 3. In line 2 the two elementsci, cj ∈ C with the min-
imum distancedmin(ci, cj) = min{d(ck, cl)|ck, cl ∈ C} , are
chosen. In line 3 these elements are removed fromC and in line 4
the merged cache stateci ∪ cj to C is inserted again. In each it-
eration the number of elements ofC decreases by one, thus this
algorithm always terminates.

The distance functiond(ci, cj) of two cache statesci, cj is
defined as a metric that delivers the difference of two cache sets. A
simple scalar metricdscalar that only counts the number of unequal
cache sets, is shown in Equation 7. The indexn denotes the total
number of cache states.

1 while (|C| > Z) do{
2 choose (ci, cj) with d(ci, cj) minimal
3 C = C \ {ci} \ {cj}
4 C = C ∪ {ci ∪ cj}
5 }

Figure 3. boundZ(C) algorithm

dscalar(ci, cj) =

n∑
k=1

{
1 if ci[k] 6= cj [k]
0 otherwise

(7)

A more sophisticated metric, that counts the number of different
memory blocks of each cache set with the symmetric difference is
given in Equation 8.

d(ci, cj) =

n∑
k=1

|(ci[k] ∪ cj [k]) \ (ci[k] ∩ cj [k])| (8)

There are several strategies to choose candidates of cache states
of C for merging. One strategyM1 is allow only singleton sets,
such that the metric is computed between pure cache states (sin-
gleton set) and one cache state that might contain (real) sets as its
elements. This favors the idea to keep as many separate cache states
as possible. The complexity of the merge functionM1 is propor-
tional to the number of cache states of all predecessor nodes, hence
a linear time complexityO(|C|). A second strategyM2 applies the
metric to all cache states ofC. This metricM2 requires to compare
all pairs of cache states leading to quadratic complexity O(|C|2).
With same number of elements inC the metric M2 is expected to
yield more accurate results than M1, because the cache states with
the smallest distance are merged.

3.4 CRPD Computation

The cache related preemption delay is computed by the intersection
of useful cache blocks ofτ1 and used cache blocks ofτ2, if τ2

preemptsτ1. The RCS and LCS properties are computed for each
basic block with the iterative data flow analysis described in the
previous section. The intersection of both setsRCSB andLCSB

is the set of useful cache blocks (cache utility vector)CUVB at
basic block B.

The set of used cache blocks is determined by theRCSout of
the last basic block of the preempting taskτ . As in [14] we define
the Final Usage VectorFUVτ . Suppose thatend is the last basic
block of the preempting taskτ , thenFUVτ = {used(r)|r ∈
RCSend}. The functionused is defined over the set of cache states
asused(r) = r′ wherer′ is the following bit-vector:

r′[i] =

{
1 if r[i] 6= ∅
0 otherwise

(9)

Finally the CRPD at each basic block B is computed by the inter-
section of all useful cache blocksCUVB and used cache blocks of
the preempting taskFUVτ .

3.5 Example, continued

We continue the example of Figure 1 and 2. Assume that we want to
bound the number of possible cache states toZ = 2. At basic block
B7 are four cache states reached via incoming edges. According to
the previous sections, we choose the cache states with the minimum
distance. The metricd of (8) is used in this example. We denote the
cache states ofB5 asc1 = ({m0}, {m1}, {m6}, {m7}) andc2 =
({m4}, {m5}, {m6}, {m7}) and the cache states ofB6 asc3 =
({m8}, {m9}, {m10}, {m3}) andc3 = ({m8}, {m9}, {m10}, ∅).
Then:

d(c1, c2) = 4 d(c1, c3) = 8 d(c1, c4) = 7

d(c2, c3) = 8 d(c2, c4) = 7 d(c3, c4) = 1

Therefore we choose to mergec3 ∪ c4 = (m8, m9, m10, m3) and
c1 ∪ c2 = ({m0, m4}, {m1, m5}, {m6}, {m7}. These are the
missing cache states of basic blockB7 of Figure 2.

Then the computation of RCS is continued as described in
equation 5 and 6, until the fixed point is reached. The intersection
of RCS and LCS (which are computed similarly) at each node is
the set of useful cache blocks which will be intersected with the set
of used cache blocks of the preempting task to determine the cache
related preemption delay at that basic block.

4. Set associative caches
The general description in Section 3.2 considered only the simplest
cache organization: the direct mapped cache. This section extends
the proposed analysis to set-associative caches. In an-way asso-
ciative cache a memory block can be placed intom cache blocks
within its designated cache set. This set-associative cache organi-
zation requires a policy called the replacement policy that decides
which block to replace when a new memory block is mapped to
the cache set and all cache blocks are occupied. The least recently
used (LRU) policy, which replaces the block that has not been refer-
enced for the longest time, is typically used for that purpose. In the
following, we explain how to compute the number of useful cache
blocks for set-associative caches assuming the LRU replacement
policy. None of the existing CRPD analysis approaches considered
associative caches so far, except in [11]. We show in the Section 4.1
that this modeling is not conservative.

For set associative caches we have to extend the definition of a
cache set. A state of a cache set of ann-way set associative cache
is defined by a vector(mi1 , mi2 , · · · , min), wheremij are sets of
memory blocks andmi1 is the set that contains the least recently
referenced block andmin the set that contains the most recently
referenced bock.

4.1 Lee et al. approach is not conservative

The approach by Lee et al. [11] extends the direct mapped cache
by modeling a cache set as a vector. Because of the limited space



we cannot describe the model in detail, but rather we give an
counter example (refer to [11], section 7.1). Assume the cache set
vector c1 = (m1, m2, m3, m4), wherem1 is the least recently
used cache block andm4 the most recently used cache block.
In Lee et al. definition of cache sets are modeled as a vector of
memory blocks, not as a vector of sets of memory blocks. Further
assume that a basic blockB contains the memory blocksm1 and
m3 which are mapped toc1. Then similarly thegen set is also
represented by a vector:genc1 = {(⊥,⊥, m1, m3)} (⊥ denotes
none memory block). Then the set of reaching memory blocks
(RMB) is computed by Equation 10.

RMBOUT
c1 [B] = {(m3, m4, m1, m3)} (10)

Clearly m2 6∈ RMBOUT
c1 [B], however the actual cache access

results to:

(m1, m2, m3, m4)m1 = (m2, m3, m4, m1)

(m2, m3, m4, m1)m3 = (m2, m4, m1, m3)

The elements in the correct cache state(m2, m4, m1, m3) are only
reordered. This case was not considered in Lee et al.’s approach,
as equation 10 shows. This leads to a smallerRMB set and to
a smaller set of useful cache blocks, which consequently leads to
an underestimated cache related preemption delay. We learn from
this error, a conservative analysis for set-associative caches has to
consider existing elements of the cache state. This is formulated in
the next section.

4.2 Data flow analysis

According to our definition in Section 3.2, theRCSB contains all
possible cache blocks at basic block B. In the case of direct-mapped
caches, a cache set can hold only one memory block. This modeling
has to be extended. In the following we formulate the computation
of RCS in data flow analysis terms, we focus on theRCS at the
beginning and end of each basic block, as for the case of direct
mapped caches. The extension ofLCS is analogous.

We defineRCSIN
c [B] and RCSOUT

c [B] as the sets of all
possible cache states of cache setc at the beginning and the end
of basic blockB, respectively. The setgenc[B] contains the state
of cache setc generated by basic blockB. Its elements have up ton
distinct memory blocks that are referenced in basic blockB and are
mapped to cache setc. More specifically, it is either empty (when
none of the memory blocks mapped to cache setc are referenced in
B) or a singleton set whose only element is a vector

(genc
1[B], genc

2[B], · · · , genc
n[B])

In this vector,genc
n[B] contains the memory block which is the

last reference to cache setc in B. Similarly genc
n−1[B] contains

the second most recent reference to basic blockB and so on. With
this definition ofgenc[B], the setsRCSIN

c andRCSOUT
c , whose

elements are now vectors ofn sets of memory blocks, are related
as follows:

RCSIN
c [B] = boundZ(

⋃
p∈pred(B)

RCSOUT (p))

RCSOUT
c [B] =

⋃
r∈RCSIN

c [B]

LRUgenc
k
(LRUc

genk+1(

· · · (LRUgenn(r)) · · ·)

The functionboundZ(C) is the same as in Figure 3. The extended
LRUm(c) algorithm computes the usual LRU replacement but also
considers the case wherem is an element of cache setc.

The data flow analysis considers each cache set separately. This
is similar to Lee et al. Note, thatZ does not bound the number
of cache blocks within a set, but rather the total number of cache

Input: cache set c, memory blockm Output: cache set c’
0 functionLRUm(c)
1 Initialization∀i. c′[i] = ∅
2 if(m 6∈ c)
3 c′[n] = {m}
4 c′[j] = c[j + 1] ∀j. n > j ≥ 1
5 else
6 c′[n] = {m}
7 ∀i.m ∈ c[i] do
8 c′[j] = c′[j] ∪ c[j + 1] ∀j. n > j ≥ i
9 c′[j] = c′[j] ∪ c[j] ∀j. i > j ≥ 1
10 if ( ∃m′ 6= m. m′ ∈ c[i])
11 c′[j] = c′[j] ∪ c[j + 1] ∀j. n > j ≥ 1
12 remove memory blockm from all c′[j]. ∀n > j ≥ 1

Figure 4. Extended LRU algorithm

states, which can contain several (mathematical) sets of cache sets.
For example in Fig. 5, basic blockB7 contains two cache states.
The cache statecs1 ∪ cs3 again contain two cache setsc0 andc1.
Cache setc0 is a set of memory blocks, but there could be more than
two elements at each position, independent of the value ofZ. The
concept for set-associative caches is the same as for direct mapped
caches: the parameterZ bounds the number of cache states. It is
different in the sense that each cache set itself can contain several
sets of memory blocks.

4.3 Extended LRU Algorithm

The functionLRUm(c) implements the LRU replacement strategy
for caches states where cache sets are vectors of sets of memory
blocks. The algorithm is presented in Figure 4.

Lemma. The algorithm in Figure 4 computes theLRUm(c)
replacement strategy, when memory blockm is mapped to cache
set c. Provided that c is a vector of sets:c = [c1, c2, · · · , cn],
ci ⊂ M , where M is the set of all memory blocks andc1 denotes
the least recently used andcn the most recently used cache block
of cache setc.

Proof. The proof is presented over the structure of the cache set
elements. We start with the restriction that allci contain only one
element (|ci| ≤ 1) and extend this modeling step-wise toci ⊂ M .

Part I. We assume∀ci. |ci| ≤ 1.
This case represents an ordinary cache state, withn sets for an
way set-associative cache. We distinguish if there existsci with
m ∈ ci or not.
(a) ∀ci. m 6∈ ci. The cache block inc1 will be replaced and the
elements will be reordered, such thatc′ = [c2, · · · , cn, {m}]. This
is implemented in lines 2-4 in Figure 4.
(b) ∃ci. m ∈ ci. From assumption|ci| ≤ 1 follows that
ci is unique and the loop in line 7 will be executed exactly
once. The memory blockm ∈ ci is placed at the most recently
used positioncn and all ci+1 · · · cn elements shifted one posi-
tion to the left (lines 6-8):(c1, · · · , ci−1, ci, ci+1, · · · , cn)m =
(c1, · · · , ci−1, ci+1, · · · , cn, {m}).

Note, that the contents of the cache does not change. All ele-
ments left fromci do not change their position (line 9). The con-
dition in line 10 will always evaluate to false, because|ci| ≤ 1.
Finally the memory blockm is removed from the positions 1 till
n− 1 of the cache set vector (line 12). Thus, we have shown that if
all |ci| ≤ 1 theLRUm(c) is correct.

Part II. Assumption∀ci. m 6∈ ci : |ci| ≤ 1.
All ci that do not containm are singleton sets, only thoseci with
m ∈ ci may contain more elements.
(a)m 6∈ ci∀ci this has been shown in (I.)



(b) there exists a uniqueci. m ∈ ci. If |ci| ≤ 1 , refer to I,
otherwise the case|ci| = d ≥ 1 is detected in lines 10-11 in the
algorithm. We have to distinguish two cases:

(b1) (c1, · · · , ci−1, {m}, ci+1, · · · , cn)

(b2) (c1, · · · , ci−1, {mk}, ci+1, · · · , cn),∀mk ∈ ci.mk 6= m

For (b1) we have shown already in I. thatLRUm(c) is correct.
In the case of (b2) there ared − 1 possible cache states, where
m 6∈ c. This means that the least recently used memory blockc1 is
replaced, the contents ofci, i = 2, · · · , n move one position to the
left, andcn = {m}.
(c) There exist severalci.m ∈ ci. Note that in the set representation
there may be several sets that containm, but there cannot be a
original cache state withm ∈ ci, m ∈ cj , i 6= j. Thus we can
apply lines 8-11 to each cache setci that containsm separately
and take the union of the resulting cache setc′. Consider we apply
the algorithm to someci, and there existcj1 , · · · , cjk other sets
that containm. We can formally construct the set of all possible
cache states that are described by this cache set and apply the LRU
strategy to each cache state, as in part I, and take the union of the
resulting cache states. This is implemented in lines 8-9.

Part III . All ci may have more then one element.
In Part II we have shown that theLRUm(c) algorithm is correct
when allci that do not containm are singleton sets. Part II can be
naturally extended toci as sets by constructing every possible cache
state from the set-based representation, applying the LRU strategy
and taking the union of the results. This completes the proof.

4.4 Example

We apply the algorithm to the control flow graph of Figure 1
with an 4-way associative instruction cache with 2 cache sets. For
demonstration we compute the reaching cache states (RCS) for
each node. Figure 5 shows the same control flow graph with the
possible cache states. A cache state consists of two cache setsc0

andc1 with each four positions. For example, in basic blockB3

memory blockm0 andm4 are mapped to cache setc0 and memory
blockm5 to cache setc1. To save space,mi is abbreviated asi. An
empty position is denoted with−. In order to demonstrate the cache
state reduction, we restrict the number or cache states toZ = 2.
Consequently, inB4 two cache states are reached. InB4 only the
memory blockm6 is mapped toc0. Sincem6 6∈ c0 in both cache
states the condition in line 2 is true and the lines 3-4 in the extended
LRU algorithm in Figure 4 are executed, which means all memory
blocks move one position to the left andm6 is at the most recently
used position. Cache setc1 is not modified. These two cache states
are propagated toB5 andB6, wherem6, m7 andm8, m9, m10 are
accessed respectively.

When the algorithm computes theRCSIN
B7 is detects that four

cache statescs1, cs2 cs3, cs4 are available on incoming edges, but
only two are allowed. Therefore two of the cache states with the
minimum distance according to equation 8 will be merged:

d(cs1, cs2) = 5 d(cs1, cs3) = 5 d(cs2, cs3) = 10

d(cs1, cs4) = 10 d(cs2, cs4) = 5 d(cs3, cs4) = 5

We choose to mergecs1 ∪ cs3 andcs2 ∪ cs4.

cs′′5 = cs1 ∪ cs3 =

{
c0 [{2}, {0, 6}, {2, 8}, {6, 10}]
c1 [∅, {1}, {3}, {7, 9}]

cs′′6 = cs2 ∪ cs4 =

{
c0 [{4}, {0, 6}, {4, 8}, {6, 10}]
c1 [∅, ∅, {5}, {7, 9}]

In basic blockB7 memory blockm11 is mapped toc1. Note
thatm11 6∈ c1, such that all elements are only shifted one position
to the left by the LRU operatorcs′5 = LRUm11(cs

′′
5 ) andcs′6 =

LRUm11(cs
′′
6 ). These cache states are shown in basic blockB7.

B1
B3

B6

B2

B4

B5

B7

c0 : - - 0 4 
c1  :  - - - 5

c0 : - - 0 2 
c1  :  - - 1 3

c0 : - 0 2 6 
c1  :  - - 1 3

c0 : - 0 4 6 
c1  :  - - - 5

c0 : - 0 2 6 
c1  :  - 1 3 7

c0 : - 0 4 6 
c1  :  - - 5 7

c0 : 2 6 8 10 
c1  :  - 1 3 9

c0 : 4 6 8 10 
c1  :  - - 5 9

c0 : - - - 0 
c1  :  - - - -

cs1

cs2

cs3

cs4

c0 : 2

c1 : 1    3         11

6
0

8
2

10
6

9
7

c0 : 4

c1 : - 5        11

6
0

8
4

10
6

9
7

31 cscs ∪ 42 cscs ∪

Cache Mapping

c0: m0 m2 m4 m6 m8 m10
c1: m1 m3 m5 m7 m9 m11

Figure 5. Reaching Cache States for 4-way assoc. cache with 2
sets.

To safe space several elements within a set at a position are aligned
vertically, such asm6 andm10 in cache setc0. For the next basic
block B1 we have a different case, wherem0 ∈ c0 in both cache
states. Therefore the loop in line 7 is executed only once, the
contents ofc0[2] till c0[4] move one position to the left andm0

is placed in thec0[4] slot. This results to

cs5 = LRUm0(cs
′
5) =

{
c0 [{2, 6}, {2, 8}, {6, 10}, {0}]
c1 [{1}, {3}, {7, 9}, {11}]

cs6 = LRUm0(cs
′
6) =

{
c0 [4, {0, 6}, {4, 8}, {6, 10}]
c1 [∅, ∅, 5, {7, 9}]

The last example of the algorithm is the RCS computation of basic
block B2 with a gen-set={m1, m2, m3} and thecs5, such that
the extended LRU algorithm if Figure 4 is applied three times:
RCSOUT

B2 = LRUm3(LRUm2(LRUm1(cs5))).

cs′ = LRUm1(cs5) =

{
c0 [{2, 6}, {2, 8}, {6, 10}, {0}]
c1 [{3}, {7, 9}, {11}, {1}] (11)

cs′′ = LRUm2(cs
′) =

{
c0 [{6, 8}, {6, 10}, {0}, {2}]
c1 [{3}, {7, 9}, {11}, {1}] (12)

cs′′′ = LRUm3(cs
′′) =

{
c0 [{6, 8}, {6, 10}, {0}, {2}]
c1 [{7, 9}, {11}, {1}, {3}] (13)

The access ofm1 in equation 11 shows a reordering in cache set
c1 sincem1 ∈ c1[1]. The access ofLRUm2(cs

′) in equation 12
is more complicated to model becausem2 ∈ c1[1] as well as
m2 ∈ c1[2]. Consider now all valid cache states that can be
constructed fromcs′ for cache setc0. The cache states[2, 2, 6, 0],
[2, 2, 10, 0], [6, 2, 6, 0] and [6, 8, 6, 0] are not valid because one
element occurs several times in the 4-way associative cache set.
The original LRU replacement strategy results to:

LRU2[2, 8, 6, 0] = [8, 6, 0, 2] LRU2[2, 8, 10, 0] = [8, 10, 0, 2]
LRU2[6, 8, 10, 0] = [8, 10, 0, 2] LRU2[6, 2, 10, 0] = [6, 10, 0, 2]

The union of the above resulting cache states is then the conserva-
tive cache statecs′′ that is computed by the algorithm in Figure 4



(lines 6-12). FinallyLRUm3(cs
′′) is applied in equation 13, which

is a reordering forc1. This example has shown the application of
the analysis algorithm to a small control flow graph.

Note, that the set-based cache model may yield to an overesti-
mation, because the model includes cache states that are invalid.
However the representation is conservative, such that the actual
cache related preemption delay is always smaller than the estimated
one.

5. Response time analysis
This section gives an overview of our scheduling analysis, which
was developed in previous work [18] [19]. We assume an activa-
tion modelEj(Ri) that determines how often taskτj is activated
during a time intervalRi. The data flow analysis delivers the worst
case cache related preemption delay for thenth most expensive
preemption. We have proven the following Theorem in [19].

Theorem. Given a set of real-time tasks scheduled by a fixed
priority preemptive policy where taskτi suffers a worst case
penaltyδz

j,i by τj for thezth preemption, there either exists a worst
case response time value forRi for each taskτi which makes the
Equation system 14 to 16) true or such a task set is not schedulable.

Ri = Ci + Bi +
∑

j∈hp(i)

(Ej(Ri) · Cj + ∆ji(Ri)) (14)

∆ji(Ri) is computed by the following formulas:

n =

i−1∑
k=j

Ek(Ri) M =

j+1⊎
k=i

⊎
Ek(Ri)

δ̂j,k (15)

∆ji =

n∑
k=1

maxk(M) (16)

The termEk(Ri) denotes the maximum number of activations of

τk during the intervalRi, δ̂j,k = {δ1
j,k, δ2

j,k, · · · , δEj(Rk)

j,k } is the
set of theEj(Rk) most expensive preemptions costs imposed byτj

on τk, maxk(M) returns thekth most largest value of the setM .
The operator] symbolizes the union of two sets allowing multiple
occurrence of elements, e.g.{a, b} ] {a, c} = {a, a, b, c}.

This scheduling analysis is polynomial, yet we have given some
extensions to consider some cases of task phasing. The preemp-
tion delays are calculated interactively by three main modules. First
the scheduling analysis assumes a default cache related preemption
delay and performs a standard scheduling analysis. Then the maxi-
mum number of preemptions of taskτi by τj are given by the num-
ber of activations and the period of the tasks. This is formulated as
a scenario tuple(τpreemptingτpreempted, k).

At a second step the most expensiven preemption costs have to
be computed. We use the control flow graph as the representation of
task. An optimization algorithm that guarantees to find the optimal
solution is necessary to find thek most expensive preemption
points. The branch and bound algorithm is such an algorithm. It
gets the scenario tuple as input and needs the actual costs of thekth
preemption provided thatk − 1 preemptions have been occurred
at ni1 , ni2 , nk−1. A simple approximation would be to determine
the k most expensive preemption points, but this is not accurate
as shown in [18]. The branch and bound algorithm gets this data
from the data flow analysis (DFA) which was described in the
previous sections. The DFA gets as input a tuple of nodes where a
preemption already took place and determined the preemption cost
for thek preemption. Each individual preemption cost is computed
by analyzing the maximum number of useful cache blocks of the
preempted task and the maximum number of used cache blocks of
the preempting task.

The data flow analysis in [18] was based on the cache state
approach and therefore exponential in time complexity. This pitfall
is overcome with this novel scalable precision analysis. Now we
are able to integrate both, the task level analysis of cache behavior
and the system level scheduling analysis in polynomial time.

6. Experiments
This section describes the experimental results for the scalable pre-
cision cache analysis. In the experiments the influence of cache
size, utilization and associativity is evaluated for different embed-
ded benchmarks which are mainly taken from [11] and [14]. Fig-
ure 1 presents their main memory usage in Byte [B], the number of
C source code lines and the WCET in103 clock cycles [clk] for a
4-way set associative 1KB instruction cache. The worst case execu-
tion time of each task was determined by a cycle accurate ARM945
processor simulator [2] for the different instruction cache architec-
tures with a 30 cycles cache miss penalty. Each instruction is 4 byte
long and we choose a cache blocks size of 8 byte, such that 2 in-
structions fit in a cache block. That these benchmarks are rather
small compared to a real application curses us to use a smaller
cache. But this is not a limitation, when the cache footprint is taken
into consideration.

Id Mem C-Ln WCET Description
τ1 376 83 1.401 square root calculation
τ2 296 275 1.617 packet receiver
τ3 888 180 15.34 fast fourier transform
τ4 144 34 39.23 exchangesort
τ5 1023 286 4051 whetstone

Table 1. Benchmark Description with Memory Usage[B], c-lines
and WCET[103clk].

The cache footprint index determines how many tasks use a
single cache block on average. Table 2 shows this index for some
task setups for a direct mapped cache and cache sizes of 256, 512,
1024 and 2048 Byte, respectively.

Tasks 256B 512B 1024B 2048B
τ1 τ2 2.0 1.68 1.34 0.75
τ1 τ3 2.0 1.68 1.31 0.83
τ1 τ4 1.53 0.95 0.47 0.24
τ1 τ5 2.0 1.68 1.34 1.17
τ2 τ3 2.0 2.0 1.97 1.23
τ2 τ5 2.0 2.0 2.0 1.57

Table 2. Cache footprint index for a direct mapped cache.

For example both tasksτ1 andτ2 occupy the entire 256B cache,
hence the footprint index is2. The footprint of 1.17 of τ1, τ5

for 2 KB cache describes the fact that most cache lines are used
by one task only. In the case of a 2KB cache for tasksτ1 and
τ4 we can study the cache effects for a large cache compared to
small application size, since most of the cache lines are empty
(index=0.24). The cache footprint index enables us to generalize
the results of this paper, because the cache behavior mainly depends
on its utilization, and not on cache size or application size alone.

We have implemented the analysis approach of the preced-
ing sections for direct mapped andn-way associative instruction
caches. We assume the distance metric of equation 8 and the strat-
egy M2, which compares all possible cache cache states.

Figure 6 shows the preemption costs for several task scenarios
for a 4-way set associative 512 Byte instruction cache. In the legend
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Figure 6. Preemption Delay for 4-way 512B cache.

the preemption scenario is denoted as1− 2 which means that task
τ1 preemptsτ2. The x-axis shows the number of cache states,Z,
that are allowed during the data flow analysis and the y-axis shows
the cache related preemption delay in cache blocks. For example,
in the preemption scenario, whereτ2 preemptsτ5 the CRPD for
Z = 1 is 57 and forZ = 2 is 20 cache blocks. The CRPD for the
preemption scenario2− 3 is 49 forZ = 1 and 20 cache blocks for
Z > 1.

As the number of cache states increases, the CRPD drops by
72% for scenario1− 2 and to 35% for scenario2− 5. The greatest
change is betweenZ = 1 andZ = 2, for greaterZ the CRPD is
constant. For some cases the CRPD does not decrease. The reason
for the significant change for small numbers ofZ is that during the
analysis only a few number of RCS and LCS states were used.

Figure 7 presents the influence of associativity for the preemp-
tion scenario2−3 for a 512B cache. Again the cache states and the
CRPD is shown on the x-axis and y-axis, respectively. The figure
shows that forZ ≥ 3 the CRPD is constant, except for the 2-way
associative cache, where the jump happens between 7 and 8 cache
states.
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Figure 7. CRPD for several associativities (512B).

The analysis time for the same setup, 512B cache for scenario
2 − 3, is presented in Figure 8. The curves show an exponential
growth of analysis time for increasing number of cache states for
direct mapped (1-way) and 2-way set associative caches. For higher
order of associativities the analysis time is in a rage of 2 to 18
seconds. A direct mapped or 2-way associative cache consists of
relatively high number of cache sets. Therefore the number of
combinations is much greater then higher order of associativities.
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From Figure 7 and Fig 8 we conclude that a higher number of
cache states does not necessarily lead to reduced preemption de-
lay. Already for small number ofZ there is a significant jump of
analysis precision. Analysis time potentially grows with number of
cache states. A strategy is to analyze only for the first few num-
ber of states, until the preemption delay does not change, because
further increase ofZ is time consuming without an analysis im-
provement.

In Figure 9 we evaluate the effect of different 4-way associative
cache sizes for the scenario2− 3. The preemption delay increases
for larger caches as more cache blocks can potentially be useful
or can potentially be used by the preempting task. The difference
between 1KB and 2KB cache size is small since the number of
useful cache blocks is also bounded by the application.
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Finally, we integrate the CRPD estimation of m-way associa-
tive instruction caches into a scheduling analysis. We compare our
results to Busquets-Mataix [4] and Petters [16] approach. The ap-
proach by [12] with exponential number of in-equations would
have been to time-consuming to re-implement for comparison pur-
poses.

We compute the worst case response time for the task set
τ1, τ2, τ3, τ4 with τ1 as highest priority task andτ4 as lowest pri-
ority task. The execution time of the whetstone benchmark was
much greater than the other four, that why we left it out. Figure 10
shows the total preemption delay in clock cycles during the entire
schedule for several cache sizes with each 4-way set associativity.
Compared to Busquets the data flow analysis with scaling factor



15 shows an improvement of 57%, 35%, 22% and 31% for 256B,
512B, 1KB and 2KB cache respectively. Compared to Petters our
analysis shows an improvement of 39%, 43%, 59% and 70% for
the given cache sizes.
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Figure 10. Total CRPD during response time ofτ4.

The response time of taskτ4 including cache related preemption
delay is shown in Figure 11. The y-axis shows the response time in
percentage of the response time that was calculated by Busquets
approach. Besides Busquets, the results of Petter’s approach, the
set-based approach with scaling factor 1 and scaling factor 15
are draws. The analysis precision for scaling factor 15 improves
between 5% for 1KB cache till 21% for 256 Byte cache.
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Figure 11. Comparison of WCRT forτ4.

7. Conclusion
Cache memory introduces unpredictable interference to task exe-
cution time when it is used in real-time computing systems where
preemptive scheduling is allowed. We have proposed a schedul-
ing analysis that takes such interference into account. In the first
step, the cache related preemption delay was computed by a scal-
able analysis framework for direct mapped caches. This offers the
designer a valuable tool to find the tradeoff between analysis preci-
sion and analysis time.

In a second step we have extended this modeling conservatively
to set-associative caches, while current approaches assume direct
mapped caches or propose non conservative approximations. The
results show that for small number of cache states the analysis fin-
ishes within seconds making it attractive for fast design space ex-
plorations. For later re-evaluation this parameter can be adjusted to

obtain more accurate results which might take considerably more
time. Finally we integrated the preemption delay analysis in a poly-
nomial scheduling analysis which is as precise as other polynomial
algorithms and which includes some aspects of exponentially com-
plex analysis approaches.

References
[1] A. V. Aho, R. Sethi, and J. Ullman.Compilers: Principles, Techniques

and Tools. Addison-Wesley, Reading, GB, 1988.
[2] ARM Developer Suite, (ADS) version 1.2.http://www.arm.com.
[3] A. Burns. Preemptive priority based scheduling, chapter An

appropriate engineering approach, pages 225–248. Prentice-Hall
International, Inc., 1994.

[4] J. V. Busquets-Mataix and A. Wellings. Adding instruction cache
effect to schedulability analysis of preemptive real-time systems. In
Proceedings of the IEEE Real-Time Technology and Applications
Symposium, pages 204–212, June 1996.

[5] M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix. Static use of
locking caches in multitask preemptive real-time systems. InIEEE
Real-Time Embedded System Workshop, December 2001.

[6] A. Datta, S. Choudhury, A. Basu, H. Tomiyama, and N. Dutt.
Satisfying timing constraints of preemptive real-time tasks through
task layout technique. InIEEE VLSI Design, pages 97–102, January
2001.

[7] S.-S. L. et al. An accurate worst case timing analysis for risc
processors.IEEE Transactions on Software Engineering, 21(7):593–
603, July 1995.

[8] Infineon. Tricore 1 manual http://www.infineon.com.
[9] M. Joseph and P. Pandya. Finding response times in a real-time

system.The Computer Journal (British Computer Society), 29:390–
395, Oct. 1986.

[10] D. B. Kirk. Smart (strategic memory allocation for real-time) cache
design. InIEEE Real-Time Systems Symposium, pages 229–239,
1989.

[11] C.-G. Lee, J. Hahn, and Y.-M. S. et al. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.IEEE
Transactions on computers, 47(6):700–713, June 1998.

[12] C.-G. Lee, K. Lee, and J. H. et al. Bounding cache-related
preemption delay for real-time systems.IEEE Transactions on
software engineering, 27(9):805–826, November 2001.
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