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Abstract

Accurate timing analysis is key to efficient embedded system syn-
thesis and integration. Caches are needed to increase the process
performance but they are hard to use because of their complex be
havior especially in preemptive scheduling. Current approaches us
simplified assumptions or propose exponentially complex analysis

algorithms to bound the cache related preemption delay at a context
switch. Existing approaches consider only direct mapped caches or
propose non conservative approximation for set associative caches

In this paper we propose a novel cache related preemption delay

analysis for set-associative instruction caches where the designe
can adjust the analysis precision by scaling the problem complexity.
Furthermore, this precise preemption delay analysis is integrated

into a scheduling analysis to determine the response time of tasks

accurately. In experiments we evaluate this tradeoff between anal-

ysis precision and analysis time. The results show an improvement

of 22%-71% in analysis precision of cache related preemption de-
lay and 5%-21% in response time analysis compared to previous
conservative approaches.

Categories and Subject DescriptorsB.3.3 [Memory Structurds
Worst-case analysis.

General Terms Algorithms, Measurement, Performance.

Keywords Worst Case Execution Time Analysis, Cache, Embed-
ded Systems, Scheduling.

1. Introduction

Caches are needed to increase processor performance but the(g

are hard to use in real-time systems because of their complex
behavior. While it is difficult enough to determine cache behavior
for a single task, it becomes even more complicated if preemptive

task scheduling is included. Preemptive task scheduling means that

task execution can be interrupted by higher priority tasks. In this
case, cache improvements can be strongly degraded by frequen
replacements of cache blocks.

There are several approaches to make caches more predictabl
and efficient. One approach is to partition the cache sets and to
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reserve these partitions for individual tasks. This has been inves-
tigated in [13]. The advantage is that cache lines do not have to
reloaded after interrupts and between consecutive executions of

ﬁfe same task. Also, cache behavior becomes (partly) orthogonal

for tasks and, therefore, more predictable. Task layout techniques
are suggested in [6] which aim at minimizing the inter-task inter-
ference in the instruction cache. Another approach is to lock fre-
quently used cache blocks. Such techniques have been investigated
by [10] [5] [17] . Both approaches come at an area and power cost
as they require a greater caches or memories to become effective.
Therefore, heterogeneous memory architectures with caches and
scratch-pad SRAM have been introduced [8], where the scratch-
pad can hold frequently used cache blocks. Compiler techniques
for such architectures have been proposed by [15].

While cache partition and lock strategies are certainly a very
useful add-on to improve cache predictability and efficiency, they
do not solve the general cache analysis problem which is critical
for larger systems of tasks.

Simplified approaches extend the known response time analysis
with fixed context switch costs [4] , while more recent approaches
[11] [14] use data flow analysis to determine the maximum cache
related preemption delay (CRPD) of two tasks. While the approach
in [14] is more precise but exponential, the approach in [11] is not
precise but polynomial in time complexity.

The first contribution of this paper is a pseudo-polynomial al-
gorithm, where the designer can decide the tradeoff between the
analysis precision and analysis execution time. The novel idea is to
adjust the level of accuracy by scaling the problem complexity. Sec-
ndly, this approach is conservatively extended to set-associative
aches. In related work only direct mapped caches are analyzed
[14] [16] [21] [4] and the extension to m-way Set associative caches
in [11] is not conservative, as we will show in this paper. In [12] the
CRPD estimation is integrated in a scheduling analysis, but with ex-
ponential complexity. Other approaches, such as [16] [4], propose
Polynomial scheduling algorithms but use simplified assumptions
on the CRPD of two tasks. The third contribution of this paper is

éhe integration of the proposed CRPD estimation into a scheduling

analysis, such that the entire framework is pseudo-polynomial and
is as precise as other polynomial algorithms while some aspects of
exponential scheduling algorithms are considered. This approach
can be used for timing verification of hard real time systems as

well as for design space exploration.

The rest of this paper is organized as follows. Related work is
presented in Section 2. In Section 3 the scalable data flow analysis
is introduced for direct mapped caches. This modeling is extended
in Section 4 to set-associative caches and integrated to a scheduling
analysis in Section 5. The results of the experiments are presented
in Section 6 before we conclude in Section 7.



2. Related Work Aji(R;) that taskr; imposes on all tasks with lower priority than

This section describes related work in the response time analysis” 2d thwehr or eqléal pr]!ority then is cprrt])puteg %’ an iterﬁtive
for fixed priority preemptive scheduling and reviews current ap- approach. The number of preemptions is bounde ‘M?)’t at
proaches to bound the CRPD. is the maximum number of activations of the preempting tgsk

during the response time ef. Then theE;(R;) most expensive
2.1 Preemptive scheduling analysis preemptions are chosen. The drawback of this approach is that only
the useful cache blocks of the preempted task are considered as
Ereemption costs. For larger caches where the preempting and the
preempted tasks share only small parts of the cache, this modeling
can lead to a pessimistic overestimation.
. Approaches such as [12] [14] have been proposed to reduce
The worst case response time occurs when all tasks are released,, ., gyerestimation by considering the preempting and preempted
at the same time point (critical instant). An iterative approach is task. With a data flow analysis the maximum number of useful
used to calculate the response time of a given task. The approachyache piocks of the preempted task and the maximum number of
tries to allocate in a time window the taskr;'s computation time ;s cache blocks of the preempting task are computed. Both sets
C;, the tasks blocking timé3; and the interference produced by  5r¢ jntersected to compute the maximum cache related preemption
the execution of higher priority tasks. The blocking time is the delay. In [12] the response time of a task for fixed priority pre-
emptive scheduling is computed by constructing an integer linear
%rogramming problem (ILP). The drawback of their modeling is
that an exponential number of equations is necessary to describe
: I ) the system, making it impracticable for industrial use. Further no
in the next step. Thne process is finished when the window Stops g4t solution is given, because the worst case preemption cost is
growing (w;""" = wy'). If theﬁzsulted response time for any task  555med for every preemption. This analysis is applied to direct
is greater than its deadline[™" = w;" = R; > D;), the task-set  mapped caches and an extension for m-way associative caches is

The scheduling method presented in this paper is based on respons
time analysis (RTA), as described in [4] [3] [9]. The computational
model assumes a fixed priority periodic task set with the deadline
at the end of a period.

step the interference is added to the current winddwresulting in
alonger time windov‘lr,uf+1 that might include greater interference

i

is not schedulable. The iterative relation is shown below: given. However we will show in Section 4.1 that this extension is
el w? not conservative. In [14] an approach is proposed for direct mapped
wi™ =Ci+ Bi+ Z { T —‘ -G 1) caches that analyses the CRPD for each program path based on the
jehp(iy 7 approach in [12] but exponential number cache states are necessary
Th : h f tasks with a high ioritv th in their data flow analysis. _
tasifrmhp(z) denotes the set of tasks with a higher priority than Current approaches that analyze the CRPD are either polyno-

mial but not accurate [12] or exponential because all paths are
2.2 Accounting for cache interference considered [14]. Current approaches that propose a polynomial
response time analysis including CRPD consider either the pre-
Sempted task only [16] or consider the preempting task only [4].
The approach in [12] which considers the preempted and the pre-
empting task needs an exponential number of equations in the ILP
formulation. All approaches restrict the CRPD analysis to direct
mapped caches, with one exception. In [11] an non-conservative
extension for m-way associative caches is given.

In an embedded system with cache the context switch time depend
on the contents of the cache. When a taslkpreemptsr; some
cache blocks are removed by and have to be reloaded hy
after it resumes. In [4] five possible ways to determine the CRPD
are given: 1.) The time to refill the entire cache. 2.) The time to
refill the cache blocks displaced by the preempting task. 3.) The
time to refill the cache blocks used by the preempted task. 4.) The
time to refill the maximum number of useful cache blocks that the . .
preempted task may hold in the cache when a preemption occurs.g' Preemption delay analysis
Useful blocks are those that are likely to be used again [7]. 5.) The We will motivate our new approach with a small example. A task
time to refill the intersection of blocks between the preempting and is represented by its control flow graph (CFG) with basic blocks
preempted task [12]. as nodes and control flow as edges. Figure 1 shows a CFG of a
The approach in [4] considers the penalty according to number loop with two branches. A nod8; shows the memory blocks of
1 and 2 of this list. The following equation is used for the response assembly instruction for basic blodk;. For example, the memory

time analysis. It differs from Equation 1 only by an additional blocksmy, m2 andms contain assembly instructions that belong
which corresponds to the additional preemption delay due to the to basic blockBs.
cache interference caused by the preemptingtask We assume a direct mapped cache with 4 cache sets. The map-

n ping of memory blocks to cache sets is given in Figure 1. For ex-
wt =Ci + B + Z {wz-‘ (Cj 4+ ;) 2) ample, cache blockso, m4 andms are mapped to cache set
) T In Figure 2 the cache contents are shown for each basic block. To
JjEhp(3) . . .
) ) abbreviate the notation we use only the index of memory blocks,
In contrast to the work in [4] Petters presents in [16] an approach sych that [4 5 - -] represents an entire direct mapped cache with
that considers the preempted task only. The response time of a taskour cache sets withn, at cache sety, ms at ¢c; and cache set
is computed by c2 andcz are empty. A formal definition of a cache state is given
in Section 3.2. At basic bloclB, the two incoming cache states
Ry =Ci+ B+ Z (Bj(Ri) - G5+ Aji(Ri)  (3) from B, and Bz are updated according to the cache mapping in

J€hp(i) Fig 1, because the memory blogks of basic blockBs5 is mapped
whereE; (R;) denotes the worst case number of releases oftask {0 cache set,. _
within the intervalR;. For fixed priority preemptive scheduling this After the second branch at basic bloék four cache states

o _ [r; N . would are present. To provide a program-path accurate analysis in
number is given by; (R:) = TT—‘ - To simplify the description,  the approach in [14] the number of cache states ebnsecutive
it is assumed that the final response time of a task is already branch statements is given b¥, leading to an exponential increase
determined R; = w'™' = w). The maximum preemption delay  of cache states. On the other side the approach in [11] merges the



contents of every cache set, such that there is at most one cach@ssociative instruction caches. The scheduling analysis computes
state. The drawback is that such analysis is not program path-the response time for a given task set by computing the maximum
accurate, which means that the cache contents on several paths aneumber of preemptions and uses the most expensive preemp-
merged leading to a reduced analysis precision. tion costs. During the data flow analysis the designer can determine
how many cache states are stored at each node. This allows to scale
the problem complexity as well as the analysis precision. The ap-
proach assumes the following:

e fixed periodic and fixed priority preemptive scheduling policy,
which can be extended to more general activation models (as
used in SymTA/S [20]) to model bursts or interrupts.
™, ) constant cache miss penalty to load one cache block from the

m, m Cache Mapping main memory to the instruction cache
B, M Co My M, Mg memory access time is additive to the core execution time.
Cy My Mg My This means that the CPU stalls until the fetched memory block
B, mg C, 1M, Mg My, arrives.
C3 - M3 My My, worst case execution time (WCET) is given for each task, in-
mg mg cluding intra-task cache effects.

m

'__3
°

BgM1o 3.2 General Data Flow Analysis

In a direct mapped cache each memory block can only be mapped
L into one cache set. In order to merge two cache states we define a

cache set as vector efsetsc[0, - - - ,n — 1], wherec][i] is aset of
memory blockandm € c[i] if cache blocki holds memory block
m. Otherwise, if theith cache block does not hold any memory
block we denote this adi] = ().

We assume that an operation over M (M is the set of all

To reduce the problem complexity we propose to bound the total memory blocks) can be applied to a cache state by applying the
number of cache states at each node. This way the complexity isoperation pointwise to its elements. Two cache statendc, can
reduced by the price of analysis precision. To integrate this idea into be merged by applying the union operator to each element:
CRPD analysis we have to define how to merge two cache states
and how to modify the known data flow analysis. For exposition ave ={allJuell}- - {ar]Uecln]})
we restrict the presentation to direct mapped caches, which will be |n the same way the intersection of two cache states is computed.
extended to set-associative caches in Section 4. We continue the This cache state definition differs from the cache state as de-
example of Figure 2 in Section 3.5 to compute the cache contentsscribed in [14] where eadtji] contains exactly one memory block.
at basic blockBy. A reaching cache statRCSg at a basic blockB of a task is
the set of possible cache states when B is reached via any incoming
program path. The live cache states at a basic block B, denoted
LCSg, are the possible first memory reference to cache blocks via
any outgoing program path frol. RC'Sp captures the possible
cache states when a task is preempted A6tz captures the
possible cache usages when the task resumes execution.

As shown in [11] [18] it is sufficient to consider only the end

Figure 1. Control flow graph with memory blocks and cache map-
ping

|Bzo 123 | | B;45- - | of each basic block as preemption point for CRPD estimation. The
/ setsLC'Sp and RC'Sp are computed for each basic block B by
\ the fixed-point iterative data flow analysis, as originally described

in [1] for optimizing compilers and applied for CRPD estimation

B.| 0163 || 456- | in [11] [14] [18].

/\ For the RCS property the quantiti&” SLY andRCSIVT are
computed and we se®C'Sp = RCSSUT if the fixed point is
| 0167 | | 89103 | reached. InitiallyRC'SEY = 0 and RCSEY" = genp. Where
Bs Bs genp holds all memory blocks introduced into the cache by basic
| 4567 | | 8910- | block B. The iterative equations are as follows:

RCSE = boundz( U RCSSYT) 4)

-
| RCSSUT = {r®genplr € ROSE} )

Figure 2. Control flow graph with cache states , ¢ aif d#0
cOc = . (6)

c otherwise

o Wherec andc’ represent a cache set - in both interpretations: cache
3.1 Scope and Limitations set as a part of a cache state as well as a mathematical set of
The new approach analyses the preempted task as well as the prememory blocks. The functioboundz (C) reduces the number of
empting task to compute the cache related preemption delay for setcache states af' to Z elements. This functions allows us to scale



the problem complexity to bound the number of cache states at eachis the set of useful cache blocks (cache utility vectOfy Vs at
node. Its computation is described in Section 3.3 basic block B.

Similarly the LCS property is computed by an iterative fixed The set of used cache blocks is determined byRIG€S,.,. of
point algorithm, the only difference is that thie' S5V 7 is defined the last basic block of the preempting taskAs in [14] we define
by all LCSEY sets of all successors of basic block B and the the Final Usage VectoFU'V.. Suppose thatnd is the last basic
LCSEY is computed by applying the operator to theiens set block of the preempting task , then FUV; = {used(r)|r €
and all LCSQUT sets. Here thgenp set is defined by the first RC'Scrna}. The functionused is defined over the set of cache states
memory references in basic block B. Refer to [14] [11] for the asused(r) = " wherer’ is the following bit-vector:

details. . .
r[i] = 1 if r[z}'yé ] )
3.3 Cache State Reduction 0 otherwise

To scale the problem complexity the number of cache sets are Finally the CRPD at each basic block B is computed by the inter-

bounded. The functiohoundz(C) reduces the set’ to Z ele- section of all useful cache blocksU Vs and used cache blocks of

ments, if|C| > Z otherwiseboundz(C) = C. This is shown the preempting taskU' V...

in Figure 3. In line 2 the two elements, ¢; € C with the min- )

imum distancednin (ci, ¢;) = min{d(cx,c)|ck,c € C} , are 3.5 Example, continued

chosen. In line 3 these elements are removed {foand inline 4~ \We continue the example of Figure 1 and 2. Assume that we want to

the merged cache state U ¢; to C' is inserted again. In each it-  pound the number of possible cache state% te 2. At basic block

eration the number of elements 6f decreases by one, thus this B, are four cache states reached via incoming edges. According to

algorithm always terminates. . the previous sections, we choose the cache states with the minimum
The distance functioni(c;, c;) of two cache states;, c; is distance. The metrié of (8) is used in this example. We denote the

defined as a metric that delivers the difference of two cache sets. Acache states dB; asc1 = ({mo}, {m1}, {me}, {m+}) andc, =

simple scalar metrid;.... that only counts the number of unequal ({ma}, {ms}, {ms}, {m-}) and the cache states &% asc; =

cache sets, is shown in Equation 7. The indestenotes the total ({ms}, {mo}, {mio}, {ms}) andes = ({ms}, {mo}, {mio},0).

number of cache states. Then:

1 while (|C‘ > Z) dO{ d(cl,CQ) =4 d(C1, 03) =8 d(C1, 04) =7

2 choosed;, Cj) with d(Ci, Cj) minimal d -8 d =7 d =1

3 C = O\ e\ (e} (c2,c3) (c2,ca) (c3,ca)

4 C=CU{ciUct Therefore we choose to mergeU ¢4 = (ms, mg, mio, m3) and

5 } c1 Uca = {mo,ma},{mi,ms}, {ms},{m~}. These are the
missing cache states of basic blaBk of Figure 2.

Figure 3. boundz(C) algorithm Then the computation of RCS is continued as described in

equation 5 and 6, until the fixed point is reached. The intersection
of RCS and LCS (which are computed similarly) at each node is
the set of useful cache blocks which will be intersected with the set
n ; ) ) of used cache blocks of the preempting task to determine the cache
dscalar(ci,cj) = Z { 1 Zf C’L[k:] 7& Cj [k} (7) p pting

0 otherwise related preemption delay at that basic block.

k=1
A more sophisticated metric, that counts the number of different 4. Set associative caches

memory blocks of each cache set with the symmetric difference is o ] ) )
given in Equation 8. The general description in Section 3.2 considered only the simplest

n cache organization: the direct mapped cache. This section extends
the proposed analysis to set-associative caches.nhway asso-
d(ei, ) = Z |(eslk] U es [KI)\ (ealk] N e5 [K])] ®) ciative cache a memory block can be placed int@ache blocks
k=1 within its designated cache set. This set-associative cache organi-
There are several strategies to choose candidates of cache statemation requires a policy called the replacement policy that decides
of C for merging. One strategy/ 1 is allow only singleton sets, which block to replace when a new memory block is mapped to
such that the metric is computed between pure cache states (sinthe cache set and all cache blocks are occupied. The least recently
gleton set) and one cache state that might contain (real) sets as itaised (LRU) policy, which replaces the block that has not been refer-
elements. This favors the idea to keep as many separate cache statesiced for the longest time, is typically used for that purpose. In the
as possible. The complexity of the merge functifi is propor- following, we explain how to compute the number of useful cache
tional to the number of cache states of all predecessor nodes, hencélocks for set-associative caches assuming the LRU replacement
a linear time complexity)(|C|). A second strategy/2 applies the policy. None of the existing CRPD analysis approaches considered
metric to all cache states 6f. This metricM 2 requires to compare  associative caches so far, exceptin [11]. We show in the Section 4.1

all pairs of cache states leading to quadratic complexity>(¥{. that this modeling is not conservative.

With same number of elements @ the metric M2 is expected to For set associative caches we have to extend the definition of a
yield more accurate results than M1, because the cache states witltache set. A state of a cache set ofilaway set associative cache
the smallest distance are merged. is defined by a vectofm,, , mi,, - - -, m,, ), wherem,; are sets of

) memory blocks andn;, is the set that contains the least recently
3.4 CRPD Computation referenced block angh;,, the set that contains the most recently
The cache related preemption delay is computed by the intersectionreferenced bock.
of useful cache blocks of; and used cache blocks of, if 2
preemptsr;. The RCS and LCS properties are computed for eac
basic block with the iterative data flow analysis described in the The approach by Lee et al. [11] extends the direct mapped cache
previous section. The intersection of both sBtSSg and LC'Sp by modeling a cache set as a vector. Because of the limited space

in

h 41 Leeetal approach is not conservative



we cannot describe the model in detail, but rather we give an Input: cache set ¢, memory bloek Output: cache set ¢’
counter example (refer to [11], section 7.1). Assume the cache set | O functionLRU,, (c)

vectore; = (ma1, ma, ms, ms), Wwherem, is the least recently 1 InitializationVi. c'[i] = 0

used cache block anth, the most recently used cache block. 2if(m & ¢)

In Lee et al. definition of cache sets are modeled as a vector of 3  d[n]={m}

memory blocks, not as a vector of sets of memory blocks. Further 4 djl=cj+1 Vi n>ji>1

assume that a basic blodk contains the memory blocks; and 5else

mg which are mapped te;. Then similarly thegen set is also 6 c[n]={m}

represented by a vectogen = {(L, L, m1,ms)} (L denotes 7  Vi.m € c[i] do

none memory block). Then the set of reaching memory blocks 8 dlil=cjlUclj+1] V5. n>j>1
(RMB) is computed by Equation 10. 9 dlgl=djlucly] Vi i>ji>1

10 if (Im’ #m. m' € cli))

OUT [y
R]\ch1 [B] = {(m3,m4,m1,m3)} (10) 11 C/[j} — Cl[j} U CL] + 1] V‘] n> ] 2 1

Clearly ms ¢ RMBSUT[B], however the actual cache access 12 remove memory block from all '[j]. Vn >j > 1
results to:

(m1,ma, ma,ms)m1 = (ma, ms, ma, my) Figure 4. Extended LRU algorithm

(m2, ms, ma,m1)ms = (ma, ma, m1,Mm3)
The elements in the correct cache state, ma, m1,ms) are only states, which can contain several (mathematical) sets of cache sets.
reordered. This case was not considered in Lee et al.’s approachFor example in Fig. 5, basic block contains two cache states.
as equation 10 shows. This leads to a smalftér B set and to he cache states; U cs; again contain two cache setgandc; .

a smaller set of useful cache blocks, which consequently leads toCache set, is a set of memory blocks, but there could be more than
an underestimated cache related preemption delay. We learn fromtWo elements at each position, independent of the valug. dthe
this error, a conservative analysis for set-associative caches has t&oncept for set-associative caches is the same as for direct mapped

consider existing elements of the cache state. This is formulated incaches: the parameter bounds the number of cache states. It is
the next section. different in the sense that each cache set itself can contain several

sets of memory blocks.
4.2 Data flow analysis

. . . ) 4.3 Extended LRU Algorithm

According to our definition in Section 3.2, tHeC'Sg contains all . .
possible cache blocks at basic block B. In the case of direct-mapped] e functionL RUy, () implements the LRU replacement strategy
caches, a cache set can hold only one memory block. This modelingfor caches states where cache sets are vectors of sets of memory
has to be extended. In the following we formulate the computation PlOcks. The algorithm is presented in Figure 4.
of RCS in data flow analysis terms, we focus on tR€'S at the . o
beginning and end of each basic block, as for the case of direct Lemma. The algorithm in Figure 4 computes tHeR U, (c)
mapped caches. The extension/af S is analogous. replaceme_nt strategy, yvhen memory blogkis mapped to cache

We define RCSIN[B] and RCSOUT[B] as the sets of all set c. Provided thgt c is a vector of sets:= [c1,c¢2, -, ¢nl,
possible cache states of cache et the beginning and the end ¢ C M, where Mis the set of all memory blocks anddenotes
of basic blockB, respectively. The sefen®[B] contains the state the least recently used amrg the most recently used cache block
of cache set generated by basic blodg. Its elements have up to of cache set. .
distinct memory blocks that are referenced in basic biBand are Proof. The proof is presented over the structure of the cache set
mapped to cache set More specifically, it is either empty (when elements. We start with the restriction that@llcontaln only one
none of the memory blocks mapped to cache-see referenced i~ €/ementfc;| < 1) and extend this modeling step-wisectoC M.

B) or a singleton set whose only element is a vector Partl. We assum&c;. |c;| < 1. _
This case represents an ordinary cache state, wisets for an

(geni[B], gen3[B], - - -, geny[B]) way set-associative cache. We distinguish if there existsith
m € c¢; or not.

In this vector,gens, [B] contains the memory block which is the (@)Vei. m & ci. The cache block i, will be replaced and the

last reference to cache sein B. Similarly gen;, _[B] contains

the second most recent reference to basic blBand so on. With elements will be reordered, such that= [z, ---, ¢, {m}]. This
this definition ofgen®[B], the setRCSIY andRCSOUT, whose 'S Implemented in lines 2-4 in Figure 4.
elements are now vectors afsets of memory blocks, are related () 3¢i- m € ci. From assumptioric;| < 1 follows that
as follows: ¢; is unique and the loop in Ime 7 will be executed exactly
once. The memory blockn € ¢; is placed at the most recently
RCSINIB] = boundy( U RCS®YT (p)) used positionc,, and all ¢;11 - - - ¢, elements shifted one posi-
pepred(B) tion to the left (lines 6-8):(c1,- -, Ci—1,Ci, Cit1," ", cn)M =
ouT ¢ (Cl,"',Ci71701+1,"',0n,{m}).
RCS;"7[B] = U LRUgens (LRUgen, ., ( Note, that the contents of the cache does not change. All ele-
reRCSIN[B] ments left frome; do not change their position (line 9). The con-

oo (LRUyen,(r)) - --) dition in line 10 will always evaluate to false, becalsg < 1.
genn Finally the memory blockn is removed from the positions 1 till

The functionboundz (C) is the same as in Figure 3. The extended n — 1 of the cache set vector (line 12). Thus, we have shown that if
LRUp,(c) algorithm computes the usual LRU replacement but also all |¢;| < 1 the LRU.,,(c) is correct.
considers the case wheteis an element of cache set Part Il. Assumptionve;. m & ¢; : |e;| < 1.

The data flow analysis considers each cache set separately. Thill ¢; that do not containn are singleton sets, only thosgwith
is similar to Lee et al. Note, thaf does not bound the number  m € ¢; may contain more elements.
of cache blocks within a set, but rather the total number of cache (a) m ¢ ¢;Ve; this has been shown in (1.)



(b) there exists a unique;,. m € ¢;. If |¢;| < 1, refer to |,

otherwise the casg;| = d > 1 is detected in lines 10-11 in the c- - - - 0
algorithm. We have to distinguish two cases: . Bife o o o S
/\ 3
(bl) (Clv"',Ci—lv{m}7ci+17"',cn) Cj' - - 0 2 Co: - - 0 4
(02) (c1, -+, cim1,{mr}, cit1, -, cn), VMg € cimp, #m ¢, - - 13| |legg:- - - 5
For (b1) we have shown already in I. thARU.,,(c) is correct. —
In the case of (b2) there ark— 1 possible cache states, where G: - 0 i g Cache Mapping
m & c. This means that thg least recently used memory hiodk B, Cy ! Cor Mg M, M, Mg Mg Mo
replaced, the contents of,¢ = 2, - - -, n move one position to the C: - 0 4 6 C.r M, M. My M. M. m
left, ande,, = {m}. ¢:- - -5 - = 7 - u
(c) There exist several.m € c;. Note that in the set representation B —— B,
there may be several sets that contain but there cannot be a
original cache state witth € ¢;,m € ¢;,i # j. Thus we can csy|Co: - 0 2 B[ ¢ 2 6 8 10
apply lines 8-11 to each cache setthat containsm separately G: - 137 lg: - 1309
and take the union of the resulting cacheceConsider we apply cs.|C: - 0 46 cs|Co: 4 6 8 10
the algorithm to some;, and there exist;, , - - -, c;, other sets %le,: - - 5 7 ‘gt - - 509
that containm. We can formally construct the set of all possible —
cache states that are described by this cache set and apply the LRU 0 2 6 0 1 6
strategy to each cache state, as in part I, and take the union of the C: 2 6 810 |[C: 4 6 810
resulting cache states. This is implemented in lines 8-9. B, 7 . 7
Part Il . All ¢; may have more then one element. ¢t 1 3 g 11 ]G - 5 g1l
In Part Il we have shown that theRU., (c) algorithm is correct CS1u CS3 CS2 U CS4

when all¢; that do not contaimn are singleton sets. Part Il can be
naturally extended te; as sets by constructing every possible cache Figure 5. Reaching Cache States for 4-way assoc. cache with 2
state from the set-based representation, applying the LRU strategySets.

and taking the union of the results. This completes the proof.

4.4 Example To safe space several elements within a set at a position are aligned
) . vertically, such asne andmo in cache sety. For the next basic

We apply the algorithm to the control flow graph of Figure 1 yock B/ we have a different case, where, € ¢, in both cache

with an 4-way associative instruction cache with 2 cache sets. FOr gi5t05 Therefore the loop in line 7 is executed only once, the

demonstratlor_1 we compute the reaching cache states (RC_:S) foreontents ofco[2] till co[4] move one position to the left aneko
each node. Figure 5 shows the same control flow graph with the ;¢ placed in the:[4] slot. This results to

possible cache states. A cache state consists of two cache sets

andc; with each four positions. For example, in basic bldgk _ LRU ) co [{2,6},{2,8},{6,10},{0}]
memory blockmn, andm4 are mapped to cache sgtand memory ~ *% = mo(es3) =19 ¢, {1}, {3}, {7,9}, {11}]

blockms to cache set;. To save spacen; is abbreviated as An

empty position is denoted with. In order to demonstrate the cache ¢ — | RU,.,, (esf) = 4 © L4 10,6}, {4,8},{6,10}]
state reduction, we restrict the number or cache statés to 2. © et [0,0,5,{7,9}]

Consequently, in3, two cache states are reached.Mn only the The last example of the algorithm is the RCS computation of basic
memory blockmg is mapped tax. Sincemg ¢ co inboth cache 5B “yith a gen-setfm;, ma,m3} and thecss, such that
states the condition in line 2 is true and the lines 3-4 in the extendedthe extended LRU algorithm if Figure 4 is applied three times:

LRU algorithm in Figure 4 are executed, which means all memory ouT _
blocks move one position to the left ands is at the most recently RCSp, " = LEUm; (LRUm, (LRUm, (cs5)))-
used position. Cache set is not modified. These two cache states

p ' — LRU.. (cs5) _{ co [{2,6}, {2,8}, {6, 10}, {0}]

are propagated tB5 and Bs, wherems, m7 andms, mo, m1o are cs a ({3}, {7,9}, {11}, {1}]
accessed respectively.

When the algorithm computes tieC' S5 is detects that four " = LRUp,(cs') = 1 [{6,8},{6,10}, {0}, {2}] (12)
cache statess;, cs2 cs3, cs4 are available on incoming edges, but ma a [{3},{7,9}, {11}, {1}]
only two are allowed. Therefore two of the cache states with the
minimum distance according to equation 8 will be merged: ¢s" = LRUp,(cs”) = { co [{6,8},{6,10}, {0}, {2}] (13)

c1 [{7,9}, {11}, {1},{3
d(cs1,cs2) =5 d(esi,cs3) =5 d(csz,cs3) =10 + {798 (11 {1, (3]
_ _ _ The access ofn; in equation 11 shows a reordering in cache set
d(csi,csa) =10 d(esz,cs) =5 d(css, cs4) =5 c1 sincem; € ci[1]. The access of. RUms(cs’) in equation 12

We choose to merges; U cs3 andesz U csa. is more complicated to model because < c;[1] as well as
my € c1[2]. Consider now all valid cache states that can be
css = csiUcsz = { co %Q%’ﬁo’{g{’ %’ S{]’ {6,10}] constructed fromes’ for cache set,. The cache statdg, 2, 6, 0],
“ PR A [2,2,10,0], [6,2,6,0] and [6,8,6,0] are not valid because one
" co [{4},{0,6},{4,8},{6,10}] element occurs several times in the 4-way associative cache set.
csg = cspUcsy = o [0,0,{5},{7,9}] The original LRU replacement strategy results to:

In basic blockB; memory blockmi; is mapped ta;. Note LRU,(2,8,6,0] = [8,6,0,2] LRU2(2,8,10,0] = [8,10,0,2]
thatmq1 ¢ c1, such that all elements are only shifted one position LRU[6,8,10,0] = [8,10,0,2] LRU2[6,2,10,0] = [6,10,0,2]
to the left by the LRU operatats; = LRUn,, (cs5) andcsg = The union of the above resulting cache states is then the conserva-
LRUp,,, (csg). These cache states are shown in basic biBek tive cache states” that is computed by the algorithm in Figure 4



(lines 6-12). FinallyL RU,,, (cs”) is applied in equation 13, which The data flow analysis in [18] was based on the cache state

is a reordering for;. This example has shown the application of approach and therefore exponential in time complexity. This pitfall

the analysis algorithm to a small control flow graph. is overcome with this novel scalable precision analysis. Now we
Note, that the set-based cache model may vyield to an overesti-are able to integrate both, the task level analysis of cache behavior

mation, because the model includes cache states that are invalidand the system level scheduling analysis in polynomial time.

However the representation is conservative, such that the actual

cache related preemption delay is always smaller than the estimatedg_ Experiments

one.
This section describes the experimental results for the scalable pre-

. . cision cache analysis. In the experiments the influence of cache
5. Response time analysis size, utilization and associativity is evaluated for different embed-

This section gives an overview of our scheduling analysis, which ded benchmarks which are mainly taken from [11] and [14]. Fig-
was developed in previous work [18] [19]. We assume an activa- Ure 1 presents their main memory usage in Byte [B], the number of
tion model E; (R;) that determines how often task is activated ~ C source code lines and the WCETIi6” clock cycles [clk] for a
during a time intervaR;. The data flow analysis delivers the worst ~ 4-way set associative 1KB instruction cache. The worst case execu-
case cache related preemption delay for #itle most expensive  tion time of each task was determined by a cycle accurate ARM945
preemption. We have proven the following Theorem in [19]. processor simulator [2] for the_dlfferent instruction cach_e archltec-
Theorem. Given a set of real-time tasks scheduled by a fixed tures with a 30 cycles cache miss penalty. Each instruction is 4 byte
priority preemptive policy where task; suffers a worst case  long and we choose a cache blocks size of 8 byte, such that 2 in-
penaltys? ; by 7; for the zth preemption, there either exists a worst structions fit in a cache block. That these benchmarks are rather
case response time value fB5 for each taskr; which makes the small compared to a real application curses us to use a smaller

Equation system 14 to 16) true or such a task set is not schedulablecache. But this is not a limitation, when the cache footprint is taken
into consideration.

R, =C;+ B + Z (Ej(R:) - Cj + Aji(Ry)) (14)

Jj€hp(d) l

Id [ Mem [ C-Ln [ WCET [ Description ]

) ] 71 | 376 83 1.401 | square root calculation
Aj;(R;) is computed by the following formulas: T2 | 296 | 275 | 1.617 | packet receiver
i1 J+1 T3 888 180 15.34 | fast fourier transform
n = En(R) M=+ | §; 15 T4 | 144 34 39.23 | exchangesort
Z K(R) U W e @9 7, | 1023 | 286 | 4051 | whetstone
k=j k=i Ej,(R;)
n X Table 1. Benchmark Description with Memory Usage[B], c-lines
Ay =) maz(M) (16) and WCET[L0%clk].
k=1

The termEj (R;) denotes the maximum number of activations of The cache footprint index determines how many tasks use a

during the intervalR;, 8,5 = {6%,,0%,,-,6-1")} is the i is i

Tk g is 05,k = 05, ks Ojky "5 05k single cache block on average. Table 2 shows this index for some
set of thelZ; (R, ) most expensive preemptions costs imposed;by  task setups for a direct mapped cache and cache sizes of 256, 512,
on 7., maz® (M) returns thekth most largest value of the saf. 1024 and 2048 Byte, respectively.

The operator) symbolizes the union of two sets allowing multiple
occurrence of elements, efgr, b} W {a, c} = {a,a, b, c}.

Tasks| 256B | 512B | 1024B | 20488 |

This scheduling analysis is polynomial, yet we have given some p— 20 1.68 1.34 0.75
extensions to consider some cases of task phasing. The preemp- T T3 20 | 1.68 | 1.31 0.83
tion delays are calculated interactively by three main modules. First T | 153 | 095 | 047 0.4
the scheduling analysis assumes a default cache related preemption 7 | 2.0 | 1.68 | 1.34 117

delay and performs a standard scheduling analysis. Then the maxi-
mum number of preemptions of taskby r; are given by the num-
ber of activations and the period of the tasks. This is formulated as
a scenario tuplery cempting Tpreempted k). ) Table 2. Cache footprint index for a direct mapped cache.

At a second step the most expensivpreemption costs have to
be computed. We use the control flow graph as the representation of
task. An optimization algorithm that guarantees to find the optimal For example both tasks andr occupy the entire 256B cache,
solution is necessary to find thle most expensive preemption hence the footprint index i€. The footprint of 1.17 of 1,75
points. The branch and bound algorithm is such an algorithm. It for 2 KB cache describes the fact that most cache lines are used
gets the scenario tuple as input and needs the actual costsidhthe by one task only. In the case of a 2KB cache for tasksand
preemption provided that — 1 preemptions have been occurred 74 we can study the cache effects for a large cache compared to
atn;,, ni,,ng—1. A simple approximation would be to determine  small application size, since most of the cache lines are empty
the £ most expensive preemption points, but this is not accurate (index=0.24). The cache footprint index enables us to generalize
as shown in [18]. The branch and bound algorithm gets this data the results of this paper, because the cache behavior mainly depends
from the data flow analysis (DFA) which was described in the on its utilization, and not on cache size or application size alone.
previous sections. The DFA gets as input a tuple of nodes where a  We have implemented the analysis approach of the preced-
preemption already took place and determined the preemption costing sections for direct mapped amdway associative instruction
for thek preemption. Each individual preemption cost is computed caches. We assume the distance metric of equation 8 and the strat-
by analyzing the maximum number of useful cache blocks of the egy M2, which compares all possible cache cache states.
preempted task and the maximum number of used cache blocks of  Figure 6 shows the preemption costs for several task scenarios
the preempting task. for a 4-way set associative 512 Byte instruction cache. In the legend

T2 T3 2.0 2.0 1.97 1.23
To T 2.0 2.0 2.0 1.57
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Figure 6. Preemption Delay for 4-way 512B cache. Figure 8. Analysis time (512B cache).
the preemption scenario is denotedlas 2 which means that task From Figure 7 and Fig 8 we conclude that a higher number of

71 preemptsr,. The x-axis shows the number of cache sta#s,  cache states does not necessarily lead to reduced preemption de-
that are allowed during the_data flow _analy5|s and the y-axis shows,ay. Already for small number of there is a significant jump of

the cache related preemption delay in cache blocks. For example,qna)ysis precision. Analysis time potentially grows with number of

in the preemption scenario, wherg preemptsrs the CRPD for cache states. A strategy is to analyze only for the first few num-
Z = 1is 57 and forZ = 2 is 20 cache blocks. The CRPD for the e of states, until the preemption delay does not change, because
preemption scenari®— 3 is 49 forZ = 1 and 20 cache blocks for ¢, 1ther increase ofZ is time consuming without an analysis im-

Z>1 , rovement.

OAS the number of cache st?tes increases, the CRPD drops by" |, Figure 9 we evaluate the effect of different 4-way associative
72% for scenarid —2 and to 35% for scenard— 5. The greatest  .5che sizes for the scenatio- 3. The preemption delay increases
change is betweeff = 1 andZ = 2, for greaterZ the CRPD IS o |arger caches as more cache blocks can potentially be useful
constant. F_o'r some cases the CRPD does not decreasz_e. The reasf} can potentially be used by the preempting task. The difference
for the significant change for small numbersfs that during the between 1KB and 2KB cache size is small since the number of
analysis only a few number of RCS and LCS states were used. useful cache blocks is also bounded by the application.

Figure 7 presents the influence of associativity for the preemp-
tion scenari@® — 3 for a 512B cache. Again the cache states and the|
CRPD is shown on the x-axis and y-axis, respectively. The figure i
shows that forZ > 3 the CRPD is constant, except for the 2-way

associative cache, where the jump happens between 7 and 8 caclf ™ %—H—-—H—i

states. 60 1
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Figure 9. CRPD for different cache sizes (4-way).
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Cache States Finally, we integrate the CRPD estimation of m-way associa-

tive instruction caches into a scheduling analysis. We compare our
results to Busquets-Mataix [4] and Petters [16] approach. The ap-
proach by [12] with exponential number of in-equations would
have been to time-consuming to re-implement for comparison pur-
The analysis time for the same setup, 512B cache for scenarioposes.
2 — 3, is presented in Figure 8. The curves show an exponential We compute the worst case response time for the task set
growth of analysis time for increasing number of cache states for 71, 72, 73, 74 With 71 as highest priority task ang, as lowest pri-
direct mapped (1-way) and 2-way set associative caches. For higherrity task. The execution time of the whetstone benchmark was
order of associativities the analysis time is in a rage of 2 to 18 much greater than the other four, that why we left it out. Figure 10
seconds. A direct mapped or 2-way associative cache consists ofshows the total preemption delay in clock cycles during the entire
relatively high number of cache sets. Therefore the number of schedule for several cache sizes with each 4-way set associativity.
combinations is much greater then higher order of associativities. Compared to Busquets the data flow analysis with scaling factor

Figure 7. CRPD for several associativities (512B).



15 shows an improvement of 57%, 35%, 22% and 31% for 256B, obtain more accurate results which might take considerably more
512B, 1KB and 2KB cache respectively. Compared to Petters our time. Finally we integrated the preemption delay analysis in a poly-
analysis shows an improvement of 39%, 43%, 59% and 70% for nomial scheduling analysis which is as precise as other polynomial
the given cache sizes. algorithms and which includes some aspects of exponentially com-
plex analysis approaches.
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