
Context Sensitive Performance Analysis of Automotive Applications

Jan Staschulat, Rolf Ernst
Institute of Computer and Communication Network Engineering

Hans Sommer Str. 66, D-38106 Braunschweig, Germany
{staschulat|ernst}@ida.ing.tu-bs.de

Andreas Schulze, Fabian Wolf
Powertrain Electronics Software Systems, Volkswagen AG

Letter box 1687, D-38436 Wolfsburg, Germany
{andreas.schulze|fabian.wolf}@volkswagen.de

Abstract

Accurate timing analysis is key to efficient embedded sys-
tem synthesis and integration. While industrial control soft-
ware systems are developed using graphical models, such
as Matlab/Simulink or ASCET/SD, exhaustive simulation is
not suitable for verifying functional and timing behavior.
Formal performance analysis is an alternative but can lead
to wide timing intervals because of input data dependency
and complex target architectures. Hence a designer might
want to restrict the formal performance analysis to parts of
the software system, called context or process modes.

In this paper, we describe how to define and characterize
such context information from graphical models. Further,
we extend the formal performance analysis to consider con-
texts. Results from an automotive application demonstrate
the applicability of our approach.

1. Introduction and Motivation

Accurate timing analysis is key to efficient embedded
system synthesis and integration. In general, imprecise es-
timation of software execution costs increases design risks
or leads to inefficient designs [16].

Increasing functionality and software complexity in au-
tomotive systems requires concepts for distributed develop-
ment between car manufacturers and control unit suppliers.
These concepts need well-defined and established develop-
ment processes as well as safe and certifiable software inte-
gration approaches [7] [9]. Functional and timing behavior
is often specified in graphical environments, such as Mat-
lab/Simulink or ASCET/SD. For timing validation the state-
of-the-art in industry is still simulation or profiling. Since
the automatically generated code from such models heav-

ily depends on input data a great many test cases would be
required for a full path coverage. The exponential number
of input data makes exhaustive simulation impracticable for
performance validations of industrial applications. To make
testing feasible, system complexity should be broken down
to the software module. Input dependency is restricted to
this module and function calls and hence input data depen-
dency to other modules can be ignored.

As a consequence, software simulation in general can
only partially test a software system and only a lower bound
of the worst case execution time (WCET) can be found. As
an alternative to simulation, many approaches to static tim-
ing analysis [13] [18] [6] [2] have been proposed during the
last decade. Formal analysis provides reliable upper and
lower bounds of the execution time. Despite the theoretic
advances in academic research there has been hardly any
impact on the industrial practice of timing analysis [10].

None of the existing formal approaches can be applied to
software modules because input data dependencies cannot
be defined systematically. Context dependent analysis can
be used to improve the analysis precision [17]. For exam-
ple, a context for a cruise control software might be keeping
the speed while driving uphill or stepping on the brake to
disable speed control. Context information are also used in
[8] for scheduling analysis to obtain tighter analysis results.
However, for complex embedded applications it is often dif-
ficult to find these contexts.

This paper describes how to define and characterize con-
texts using graphical modeling environments. Here we pro-
pose a generic XML format to specify contexts which is
useful for timing analysis approaches. Then we extend our
static timing analysis to consider context dependency.

This paper is structured as follows. Related work is re-
viewed in Section 2. In Section 3 we describe our static
timing analysis Symta/P. The context sensitive analysis is



presented in Section 4, and in Section 5 we show the appli-
cability of our approach in several experiments before we
conclude in Section 6.

2. Related Work

During the last decade many research approaches have
been proposed for static performance analysis. In [13] im-
plicit path enumeration was introduced. Here, the user pro-
vides linear equations to define feasible and false paths. To
evaluate these equations, Li and Malik map the upper and
lower bound identification to two optimization problems.
The work in [6] is based on this kind of interaction while
abstract interpretation is used for the static prediction of ex-
ecution time including cache and pipeline behavior.

In [2] the notion of probabilistic hard real time system is
introduced, as a system which has to meet all deadlines but
for which a probabilistical guarantee is sufficient. The work
in [5] presents a WCET framework with several low-level
timing analysis techniques, while restricting input programs
to a subset of the language C and requiring the user to spec-
ify all input data. In [12] a parametric WCET analysis is
proposed, where parameters may represent values of input
parameters, or maximal iteration counts for loops. No re-
sults from experiments have been reported. In [11] a hybrid
framework using runtime measurements together with static
program analysis is presented. Traditional WCET analysis
is extended by automatic generation of test data using model
checking and constraint-based analysis.

Despite the theoretic advances in academic research in
WCET and the commercial availability of analysis tools,
such as [1] [3] [4], there has been hardly any impact on the
industrial practice of timing analysis [10]. One reason is
that performing pure runtime measurements with exhaus-
tive search over the value space of the input data is in gen-
eral not feasible. In approaches with abstract interpretation
a new abstract model has to be written for every new pro-
cessor which is time consuming and makes it difficult to
re-target the analysis.

Input data generation becomes feasible for programs
with few input-data dependent control flows [10]. In pre-
vious work [17] we have shown that contexts lead to a re-
duced number of input data and more precise execution time
intervals. However, for complex embedded applications, it
is often difficult to find these contexts. Therefore, we de-
scribe in Section 4 how to define and characterize contexts
in a general and flexible framework and extend our static
timing analysis to context dependency in Section 3.

3. Symta/P - a Static Timing Analysis Tool

Symta/P is a tool for static timing analysis of embedded
applications [14] [15]. Best case and worst case execution

time bounds of C programs for complex target architectures
are computed. Path analysis based on an abstract syntax tree
identifies input data independent program segments while
the execution time of program segments can be estimated by
a cycle accurate off-the-shelf processor simulator or by di-
rect measurement. For the determination of execution times
of program segments no interrupts are allowed. A cache
analysis determines the number of cache hits and misses for
best and worst case.

3.1. Program Path Analysis

For path analysis techniques [13], a program is typically
divided into basic blocks. Then, the program structure is
represented as a directed program flow graph with basic
blocks as nodes. For each basic block the execution time
is determined. The longest and shortest path analysis on the
program flow graph is used to identify a global execution
time interval. This procedure does not provide sufficient
accuracy. For acceptable analysis precision feasible paths
of a program have to be identified. A feasible program path
is a path in this flow graph corresponding to a possible se-
quence of basic blocks when the program is executed. A
program segment is a sequence of nodes in a program flow
graph.

Program properties can be exploited to simplify path
analysis for the determination of the execution time through
basic block sequences [18]. Large parts of typical embed-
ded system programs have a single program path only. An
FIR filter is a simple and a Fast Fourier Transform is a
more complex one. There is only one path executed for
any input pattern, even though this path may wrap around
many loops, conditional statements and even function calls.
A program segment has a single feasible path (SFP) when
paths through this segment are not depending on input data.
Most practical systems also contain non-SFP parts. These
parts have multiple feasible paths (MFP).

For the identification of SFP and MFP segments, the in-
put program is mapped to its syntax graph. A depth first
search algorithm on the syntax graph can be used to deter-
mine input data dependencies of conditions while storing
the data in a symbol table. Every control structure which
does not contain an input data dependent condition is a SFP.
If conditions depend on input data, the syntax tree nodes are
classified as MFP.

3.2. Execution Time Model

The execution time model in [13] is established as a stan-
dard model for static approaches which is called sum-of-
basic-blocks model. In previous work [18] we have ex-
tended this concept to program segments. Let a program
consist of N program segments withxi the execution count

2



of program segmentsi andci the execution time. Then the
program execution time is determined by:C = ∑N

i ci · xi .
For the execution countsxi , the designer provides func-
tional constraints, such as loop bounds or implicit descrip-
tion of possible paths by means of linear equations. Struc-
tural constraints define another set of equations: The exe-
cution count inflow of a segment equals its execution count
outflow. These equations for the upper and lower execution
bound are mapped to two integer linear optimization prob-
lems (ILP).

3.3. Architecture Modeling

The execution time of a program segment can be deter-
mined by instruction time addition or program segment sim-
ulation [18]. Instruction time addition adds up the execution
time for each instruction. Host tracing is used while execu-
tion times are taken from a table. This approach only works
for simple architectures without pipelines and caches where
instruction execution is independent. A second approach is
program segment simulation. Program segments are simu-
lated on a cycle accurate processor simulator using known
input data or the segments are executed directly on the target
architecture.

4. Context Sensitive Analysis

Often the designer is interested in a context dependent
process behavior. Here, context is defined to be a subset of
input data and/or a subset of possible process states, often
called process modes.

In each context, only a subset of paths through a pro-
gram segment can be executed. This potentially means re-
duced time bounds which could be exploited for analysis.
Global process representation models [19] can support pro-
cess modes, such that the distinguishable contexts are con-
sidered in scheduling analysis [8].

The next subsection describes how to define context in-
formation and Section 4.2 describes how to specify them in
a generic way to be useful for a static timing analysis. In
Section 4.3 we describe the extensions of Symta/P to ana-
lyze context information, and give an overview of the gen-
eral tool flow in Section 4.4.

4.1. Context Definition

Automotive control systems are typically designed in
graphical models, such as the development environment
ASCET/SD or Matlab/Simulink. The source code for the
software is automatically generated from hierarchical block
diagrams and state machines. Simulation is state-of-the-art
to test functional behavior. A complete path coverage is not
possible for complex software because of the exponential

number of test data. Therefore testing is prioritized by func-
tional importance: for critical paths more intensive testing
is required than for less critical ones.

if (a<10)

c = 1; c = 0;

if (X<5)

c = c+1; c = c+10;

if (Y>10)

d = c; d = c+10;

…

…

Figure 1. Example control flow graph

The application is analyzed on each hierarchical level.
Consider a software moduleml on level l which calls sev-
eral functions on higher hierarchy and is called from lower
levels. The top level function level is 1 and the level in-
creases by one for every hierarchy top down. Then a func-
tional software test requires input data to reach moduleml

through all hierarchical levels smaller thanl . For a function
call to a higher level, not every path is tested, instead only
one arbitrary path is chosen. This functional testing strategy
can be adapted for static timing analysis and the test pattern
can be used for a context definition.

A context Cis defined as a subset of all input data vari-
ablesI which have predefined values. Variables of the setC
are calledcontextvariables and all other variablesI \C are
called free variables. The static timing analysis is simpli-
fied because several paths are excluded, and consequently,
the total number of input data is reduced.

Fig. 1 shows an example control flow graph with three
if-conditions wherea,X,Y are (unknown) input variables.
Suppose the designer wants to test the left branch of the
first if-condition. Thena is a context variable andX,Y are
free variables.

To define contexts from graphical models, variables of
some hierarchy levell are useful for context definition. In
this paper we assume that one context corresponds to one
hierarchical levell as a first approach. All variables on
higher and lower levelsi 6= l are classified as context vari-
ables and all variables of moduleml are free variables. If
a context spans over several hierarchies the input variables
from different levels have to be considered also. Note, that
different contexts can share code segments.

3



The next subsection describes how to specify a context
from an abstract specification model and how to provide
context information as an interface to a static timing analy-
sis, such as Symta/P.

4.2. Context Specification

From the graphical specification environment AS-
CET/SD a logical context is defined on the functional level.
For a cruise control a context might be keeping the speed
while driving uphill or accelerating to a given speed. This
is translated into a table of input data variables with the cor-
responding values for every context. To specify context and
free variables in a flexible way the language XML is used.
Further on, the precise input data values for the measure-
ment need to be specified.

In Table 1 the contents of the XML structure is given
with context variablea and free variablesX andY. Two
combinations of test patterns for the free variables are suf-
ficient to execute all feasible branches of the program of
Fig. 1 for this context.

Field Value

contextVar a
freeVar X Y
testCase 1 a=1; X=1; Y=12;
testCase 2 a=1; X=6; Y= 1;

Table 1. Example of XML Specification

4.3. Extentions of Symta/P to Contexts

Current approaches for static timing analysis assume that
input data is unknown and additional information has to be
specified by the user, such as loop bounds [13] [6]. Context
information, as described in Section 4.2, are specified by
the predefined variables. The path analysis is extended by
classifying context variables as input data independent.

This is done by extracting the names of the context vari-
ables from the XML structure. In the initialization step,
a symbol table is filled with these variables and classified
as input data independent. Whenever a context variable is
used in other expressions the input data classification is sim-
ply propagated. As a result, the program is structured into
larger segments according to the context specification. No
changes are necessary for architecture modeling and ILP
formulation because context dependent control flow is in-
dependent of the target architecture.

4.4. Overall Tool Flow

Fig. 2 shows the tool flow for the context sensitive per-
formance analysis. Rectangular shapes denote tools or user
actions and circular shapes denote input, intermediate or
output files. The analysis starts with the c file and the con-
text specification in the upper left corner. From the ab-
stract model context definitions are extracted and specified
in Context using the XML interface, as described in Sec-
tion 4.2. Together with the source filef.c the path anal-
ysis identifies input data dependent control flows, classifies
the source code into segmentsf.seg and outputs the con-
trol flow graphf.cfg . According to architecture specific
measurement instructionsSyntax and the segment classi-
fication the source code is instrumented for measurement
f.path.c and forf.instrum.c branch identification.

f.c

Context Path Analysis Instrumentation

f.cfg
f.seg

f.instrum.cf.path.c

Measurement

Syntax

f.costs
ILP 

WCET BCET

Context Def. 

Context

Figure 2. Overall Tool Flow of Symta/P

The instrumentation syntax contains instructions specific
for target architectures to measure the execution time or
other properties like power consumption of a program seg-
ment. The syntax of the instrumentation depends on the
measurement strategy. When processor simulators are used
an instrumentation consists of debugging commands, such
as stopping the execution and reading the system timer.
For direct measurement on target architecture of automo-
tive software, an instrumentation might be a CAN message.

For input dependent control structures the branch identi-
fication is used to determine which branch is taken during
the execution of a given set of input data. This is also nec-
essary for back annotation of the execution time. The in-
strumentation for branch identification also depends on the
architecture modeling strategy. For example, the line num-
bers of the executed branch could be recorded in a local
variable or written out by a CAN message.

Given theContext specification and the instrumented
source code, the execution time is measured either by cy-
cle accurate processor simulator or by direct measurement
on an evaluation board. Using the branch identification the
times for every segment are back annotated. TheContext
file in the upper left and lower right corner have the same
content and are shown twice for notational convenience.

Finally the ILP problem is formulated using the con-
trol flow graphf.cfg the segment classificationf.seg

4



and the execution time filef.costs and solved by an ILP
solver. The solutions for the WCET and the BCET are now
available for the software if all program segments have been
reached. If not, the user has to supply additional test cases
for this context in theContext XML file and the analysis
continues.

5. Experiments

The context sensitive analysis described in Section 4 has
been applied to modules of a cruise control software for a
TriCore architecture with 75 MHz clock frequency.

5.1. Experimental Setup

The cruise control consists of several moduls and was
designed with ASCET/SD’s graphical environment and the
source code was generated automatically from it. Then,
Symta/P has been used to analyze the source code and to
extract the control flow graph (CFG). From the ASCET/SD
model and from the CFG the contexts have been defined
by specifying the free and context variables as XML for-
mat. Table 2 shows the size of the software modules in C
lines without considering the size of sub-functions and the
number of free and context variables. The real names of
the modules had to be removed because of non disclosure
agreements.

Context. #cLines #freeVar #contextVar

A 57 4 9
B 33 7 12
C 27 4 12
D 34 6 12
E 33 5 12

Table 2. Context Specification

The testing-environment is a Triboard, equipped with
a variety of peripherals for connecting the environment
and a TriCore microcontroller. The TriCore is a 32-bit
microcontroller-DSP architecture for real-time embedded
systems. Binaries are created with GNU Cross-Compiler
toolchain for TriCore. Hard real-time debugging requires
close interaction with the processor. JTAG OCDS (On-
Chip Debug Support) offers direct access to microcon-
trollers with an OCDS module. It provides a direct se-
rial interface to the controller-internal functional units (reg-
isters, busses, control unit etc.) to make accurate mea-
surements of execution time and path identification feasi-
ble in real time. The JTAG OCDS is connected via flat
ribbon with the UAD (Universal Access Device). UAD

is a high-speed communication hardware for interconnec-
tion between microcontroller-boards and desktop PCs. On
PC-side the UDE (Universal Debug Engine), a debugging-
software for microcontrollers, is used. For reproductional
purposes and to achieve the best cycle performance using
the TriCore non-cached memory, both the program code
and data are allocated in the internal scratch pad memory.
When the instrumented program segment starts and stops,
the cycle information of the actual timestamp and the c-line
number is saved in an array. This array is allocated in the
non-cached internal memory. Start time is the time stamp
when the segment starts and stop time is the time stamp
when the segment ends. Thus, the difference between these
two time stamps represents the time taken by the run of the
program segment.

5.2. Results

Several test cases were specified for a complete branch
coverage for every context. Table 3 shows the number of
test cases for each context. The number of test cases ranged
from 14 for small modules to 47 for larger ones.

Then for these modules the execution time was deter-
mined by high level simulation using the existing functional
testing equipment. In this experiment the complete module
was tested by inserting an instrumentation point only at the
beginning and at the end of the module. Table 3 summarizes
the best case and worst case execution times. The execution

Context #test BCET WCET range
cases [clk] [clk] [clk]

A 47 840 1152 312
B 20 324 336 12
C 18 342 450 108
D 14 126 156 30
E 14 102 156 54
no cont. 113 156 1152 996

Table 3. Context sensitive analysis using sim-
ulation

time interval without considering context is between 156
and 1152 cycles, a range of 996 cycles, whereas the largest
range is 312 cycles for context A and the smallest is 12 cy-
cles for context B.

For simulation, software modules were chosen which
could easily be tested. As a second experiment, more com-
plex software modules were statically analyzed by consid-
ering context information. Table 4 shows the execution time
for the worst and best case. Each context corresponds to a
module that contains several function calls. For example,
context G consists of 14 function calls to other modules and
has a total of 161 lines of code.

5



Context BCET WCET range
[clk] [clk] [clk]

F 72 794 722
G 72 320 248
H 72 1896 1824
I 72 1686 1614
J 156 156 0
K 72 616 544
no cont. 72 1896 1824

Table 4. Context sensitive analysis using the
static timing analysis

In almost all cases the best case execution time is 72 cy-
cles because the software module consists of a sequence of
if-then-else structures and in thethen branch there
is a return statement. In the best case the function exe-
cutes only the firstif condition and exits. The range with-
out context information is 1824 cycles that is the same range
as for context H. However, the ranges for context F, G and
K are much smaller (248 - 722). In context J no input de-
pendent flow leads to the same execution time for best and
worst case.

6. Summary and Conclusion

This paper has proposed a methodology to define and
characterize context information to give a basis for a perfor-
mance validation of software modules. Our formal analysis
approach has been extended by context specification and a
general tool flow with context sensitive analysis has been
described.

The approach was applied to an industrial automotive
control application. The experiments show that our ap-
proach is easy to use and flexible enough for complex ap-
plications. Timing bounds by simulation and by applying
the static timing analysis lead to tighter timing intervals for
each software module.

To conclude, context sensitive analysis makes formal
performance analysis approaches feasible for software
modules. Input data dependent control flow can systemati-
cally be restricted to software modules reducing the number
of necessary input patterns. Further work will involve au-
tomatic generation of context information from functional
specification documents and ASCET/SD models and the
automation of the context sensitive timing analysis.

References

[1] Absint GmbH, www.absint.de.

[2] G. Bernat, A. Colin, and S. Petters. Wcet analysis of proba-
bilistic hard real-time systems. InRTSS, Real-Time Systems
Symposium, Austin, TX, USA, December 2002.

[3] G. Bernat, A. Colin, and S. Petters. pwcet: a tool for proba-
bilistic worst case execution time analysis of real–time sys-
tems. Technical report, University of York, Department
of Computer Science, York, YO10 5DD, United Kingdom,
Apr. 2003.

[4] Bound-t execution time analyser. www.bound-t.com.
[5] J. Engblom, A. Ermedahl, and F. Stappert. A worst case ex-

ecution time analysis tool prototype for embedded real time
systems. InRTTOOLS Workshop, Aalborg, Denmark, Au-
gust 2001.

[6] C. Ferdinand and R. Wilhelm. Efficient and precise cache
behavior prediction for real-time systems.Real-Time Sys-
tems, 1999.

[7] A. Jerraya, S. Yoo, D. Verkest, and N. Wehn, editors.Em-
bedded Software for SoC, chapter Formal Methods for Inte-
gration of Automotive Software, pages 11–24. Kluwer Aca-
demic Publishers, Aug. 2003.

[8] M. Jersak, R. Henia, and R. Ernst. Context-aware perfor-
mance analysis for efficient embedded system design. In
Proceeding Design Automation and Test in Europe, March
2004.

[9] M. Jersak, K. Richter, R. Ernst, J.-C. Braam, Z.-Y. Jiang,
and F. Wolf. Formal methods for integration of automotive
software. InDesigners Forum at Design, Automation and
Test in Europe Conference, pages 45–50, March 2003.

[10] R. Kirner and P. Puschner. Discussion of misconceptions
about wcet analysis. InWCET Workshop, TODO, 2003.

[11] R. Kirner, P. Puschner, and I. Wenzel. Measurement-based
worst-case execution time analysis using automatic test-data
generation. InProc. 4th Euromicro International Workshop
on WCET Analysis, Catania, Italy, June 2004.

[12] B. Lisper. Fully automatic, parametric worst-case execution
time analysis. InWCET Workshop, pages 85–88, 2003.

[13] S. Malik and Y.-T. S. Li.Performance Analysis of Real-Time
Embedded Software. Kluwer Academic Publishers, 1999.

[14] Symta/p. www.ida.ing.tu-bs.de/research/projects/symta.
[15] F. Wolf. Behavioral Intervals in Embedded Software.

Kluwer Academic Publishers, 2002.
[16] F. Wolf. Integrationsverfahren fuer Softwaresysteme im

Antriebsstrang. InElectronic Systems for Vehicles, Baden
Baden, 25.-26. Sept. 2003. VDI-Berichte 1789.

[17] F. Wolf and R. Ernst. Execution cost interval refinement
in static software analysis.Journal of Systems Architec-
ture, The EUROMICRO Journal, Special Issue on Modern
Methods and Tools in Digital System Design, pages 339–
356, April 2001.

[18] W. Ye and R. Ernst. Embedded program timing analy-
sis based on path clustering and architecture classificaton.
In Proceedings of the IEEE International Conference on
Computer-Aided Design (ICCAD ’97) San Jose, USA, pages
598–604, 1997.

[19] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele.
Combining multiple models of computation for scheduling
and allocation. InSixth International Workshop on Hard-
ware/Software Co-Design, pages 9–13, Seattle, 1998.

6


