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Abstract

During real-world design of embedded real-time sys-
tems, it cannot be expected that all performance data re-
quired for scheduling analysis is fully available up front.
In such situations, sensitivity analysis is a promising ap-
proach to deal with uncertainties that result from incom-
plete specifications, early performance estimates, late fea-
ture requests, and so on. Sensitivity analysis allows the sys-
tem designer to keep track of the flexibility of the system,
and thus to quickly assess the impact of changes of individ-
ual hardware and software components on system perfor-
mance. In this paper we integrate sensitivity analysis into
our system-level performance analysis framework SymTA/S
and show its benefits during the design of complex, net-
worked multi-processor embedded real-time systems.

1. Introduction

Scheduling analysis for real-time embedded sys-
tems has grown beyond single-processor problems and can
now cover heterogeneous, networked multi-processor sys-
tems. This extension of scope is a major step towards
applicability of scheduling analysis for increasingly com-
plex real-world problems. However, several issues re-
main to be solved before scheduling analysis can achieve
widespread acceptance in industries such as automo-
tive, telecommunication or consumer electronics.

A key issue is sensitivity analysis. In a real-world design
flow with tight time-to-market pressure, ever changing re-
quirements, and complex supply-chains including platform-
based design, subsystem integration and IP-reuse, it cannot
be expected that all performance data required for schedul-
ing analysis is fully available up front. Instead, design-
ers must work with incomplete specifications, early perfor-
mance estimates, numbers asserted by suppliers in contracts
but not yet proven, and so on. Additionally, designer must

keep future modifications in mind, in particular late feature
requests, product variants and the next product generation.

Sensitivity analysis is a promising approach to deal with
those design uncertainties. It allows the system designer
to keep track of the flexibility of the system, and thus to
quickly assess the system-level impact of changes in per-
formance properties of individual hardware and software
components. For example, variations in the implementa-
tion of different application parts, functional extensions, or
changes of timing at subsystem or system interfaces are is-
sues that can turn a previously conforming system into one
that violates performance constraints. These and many other
variations are only too common in a realistic design-flow.

In this paper we propose a system-level sensitivity anal-
ysis technique based on a binary search algorithm. It is im-
portant to emphasize that, contrary to previous work, we
concern ourselves with the effects of local variations on
global system properties which are constrained. In partic-
ular we consider end-to-end deadlines, workload on differ-
ent resources, maximum permissible output jitter and max-
imum available memory for communication buffers. We
focus on variations of task core execution times and re-
source speeds. However, the proposed algorithm can be eas-
ily adapted to almost any system parameter. Our approach
has been implemented in SymTA/S, a tool for performance
analysis of heterogeneous multi-processor real-time sys-
tems.

The paper is structured as follows: in Section 2 we give
an overview of existing sensitivity analysis approaches and
their limitations. Section 3 presents the SymTA/S tool and
gives details about our compositional system-level analy-
sis approach. Our sensitivity analysis algorithm is described
in Section 4. In Section 5 and Section 6 we apply the
proposed sensitivity analysis algorithms to a hypothetical
multi-processor system-on-chip example. Furthermore, we
perform a set of experiments to evaluate the complexity of
the proposed algorithms. Finally, we conclude and derive
some future research ideas.
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2. Related Work

Most analysis techniques known from literature give a
pure Yes/No answer regarding the timing behavior of a spe-
cific system with respect to a set of timing constraints de-
fined for that system. Usually the analyses consider a pre-
defined set of input parameters and determine the response
times, and thus, the schedulability of the system.

However, in a realistic system design process it is impor-
tant to get more information with respect to the effects of
parameter variations on system performance, as such varia-
tions are inevitable during implementation and integration.
Capturing the bounds within which a parameter can be var-
ied without violating the timing constraints offers more flex-
ibility for the system designer and supports future changes.
These bounds show how sensitive the system or system
parts are to system configuration changes.

In 1973, Liu and Layland [10] defined the utiliza-
tion bound on a resource that guarantees the schedulabil-
ity of a task set under a rate monotonic scheduling policy.
The proposed algorithm is limited by specific system con-
figurations: periodically activated tasks, tasks with dead-
lines at the end of the period, and tasks that do not
share common resources (like semaphores) or that do not
inter-communicate.

Later on, Lehoczky et al [9] extended this approach to
systems with arbitrary task priority assignment. He defined
the critical scaling factor ∆∗ as the largest possible scal-
ing factor for task execution times that still guarantees the
schedulability of the entire task set. However, his approach
does not go beyond the limitations mentioned above.

His concept is used later by Katcher et al [8] to de-
fine a breakdown utilization for the schedulability analy-
sis of fixed-priority task sets considering the influences of
the scheduling kernel. He evaluated and compared differ-
ent scheduling implementations, but the models he used are
still limited to periodically activated tasks with D = T .

Steve Vestal [24] proposed the first approach regarding
the sensitivity analysis of fixed-priority task sets. He in-
troduced slack variables into the inequalities proposed by
Lehoczky [9] in order to transform them into equalities and
solve them to obtain the maximum limit of each task core
execution time. His approach considers blocking times as
well as task sets with linear execution time models. Again,
only periodic tasks with deadlines at the end of the period
are subject for the analysis.

Yerraballi [25] proposed a similar algorithm in order to
identify the sensitivity of schedulability analysis with re-
spect to task execution times. Later on, Cottet and Babau [2]
provided a graphical approach to determine the system sen-
sitivity to variations of activation periods, deadlines and re-
lease times. The analyses are still constrained by the model
used in [10].

The analysis given by Punnekkat [15] uses a combina-
tion of a binary search algorithm and a modified version of
the response time schedulability tests proposed by Audsley
and Tindell [1][23]. However, no details are given regarding
the system models that can be investigated and no mathe-
matical support is provided together with the binary search
algorithm. Moreover, the presented set of experiments are
still restricted to periodic task with deadlines less than peri-
ods.

In [16] Regehr introduced a binary search algorithm in
order to determine systems that, on one hand, offer a high
flexibility with respect to task execution times and, on the
other hand, they guarantee a minimum number of threads
required to run a given task set.

Recently, ETAS and Live Devices developed the RTA-
OSEK [11] product that has a built-in sensitivity analysis
engine for embedded systems based on OSEK-OS.

3. The SymTA/S Approach

3.1. Overview

SymTA/S [4] is a software tool for formal perfor-
mance analysis of heterogeneous SoCs and distributed sys-
tems. The core of SymTA/S is our recently developed
technique to couple scheduling analysis algorithms us-
ing event streams [18, 21]. Event streams describe the
possible I/O timing of tasks and are characterized by ap-
propriate event models such as periodic events with jit-
ter or bursts and sporadic events. At the system level,
event streams are used to connect local analyses accord-
ing to the systems application and communication struc-
ture.

In contrast to previous work, SymTA/S explicitly sup-
ports the combination and integration of different kinds of
analysis techniques known from real-time research. For this
purpose, it is essential to transition between the often in-
compatible event stream models resulting from the dissimil-
itude of the local techniques. This kind of incompatibility
appears, for instance, between an analysis technique assum-
ing periodic events with jitter and an analysis technique re-
quiring sporadic events. In SymTA/S we use event model in-
terfaces (EMIFs) and event adaptation functions (EAFs) to
realize these essential transitions [18].

However, integration of heterogeneous systems is not
the sole domain of application for EMIFs and EAFs.
In SymTA/S so-called shapers can be inserted into any
event stream. Shapers are basically EMIF-EAF com-
binations which manipulate an event stream, and thus,
the interaction between two components. They pro-
vide control about the timing of exchanged events and
data and consequently also about performance depen-
dencies. We have shown in [20] that this is especially
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important to break up non-functional dependency cy-
cles and to reduce transient load peaks in dynamic sys-
tems. In other words, due to the event model transfor-
mation provided by EMIFs and EAFs, SymTA/S is able
to analyze many real world examples that holistic ap-
proaches [23, 14] cannot handle.

In order to perform a system level analysis, SymTA/S
locally performs existing scheduling analyses (e.g. RMS,
TDMA, Round Robin, etc.) and propagates their results
to the neighboring components. This analysis-propagate
mechanism is repeated iteratively until all components are
analyzed, which means that all output streams remained un-
changed.

The above described basic SymTA/S approach has been
recently extended to support multi-rate systems, tasks with
multiple activating inputs (OR- or AND-concatenated),
conditional communication and functional cycles [5, 7].
These major extensions enable SymTA/S to cope with com-
plex real-world applications.

Furthermore, SymTA/S is able to consider system con-
text information to tighten analysis bounds. We define as
a system context all kinds of correlations between activat-
ing events that go beyond the possible timing of consecu-
tive events in one event stream. Inter event stream contexts,
initially introduced by Tindell [22] and generalized by Pa-
lencia and Harbour [13], consider possible phases between
events in different event streams, thus allowing to calculate
a tighter number of interrupts of a task by other tasks shar-
ing the same component. Intra event stream contexts, ini-
tially introduced by Mok and Chen [12], consider corre-
lations between successive computation or communication
requests, thus allowing to calculate a tighter load for a num-
ber of successive activations of a task. Both types of con-
texts lead to the calculation of shorter worst-case and longer
best-case response times. In [6] we presented the general-
ization of intra event stream contexts, the combination of
both types of contexts during analysis, and explicit distinc-
tion between different types of events on one hand, and dif-
ferent task behaviors on the other. The latter is crucial for
subsystem integration and compositional performance anal-
ysis, since different types of events are a property of the
sender, while different behaviors are a property of the re-
ceiver.

SymTA/S additionally features a powerful design-space
exploration engine [3] which currently employs evolution-
ary algorithms. The designer defines the search-space, for
example valid priority assignments, maximum buffer sizes
or valid mappings of tasks to resources. He defines op-
timization criteria which the algorithm then uses to find
pareto-optimal solutions. During the search, the best solu-
tions found so far are displayed. The designer can stop ex-
ploration at any time, take a closer look at particular solu-
tions, or modify the search-space or optimization criteria.

3.2. Analysis model

A task is activated due to an activating event. Activat-
ing events can be generated in a multitude of ways, in-
cluding expiration of a timer, external or internal interrupt,
and task chaining. In order to execute, a task needs to be
mapped on a computation or a communication resource. A
task mapped on a computation resource is called computa-
tion task or sometimes process. Similarly, a task mapped on
a communication resource is refered as communication task
or sometimes channel. The task core execution time repre-
sents the time a computation/communication task needs to
complete assuming the resource was exclusively assigned to
it, i.e no interruption occurs during execution. Since the in-
ternal execution time of a task is usually not constant, it is
generally expressed in form of a [best − case,worst − case]
interval. As multiple tasks can share the same resource, a
scheduler grants the resource to a specific task, out of the
set of active tasks, according to a particular scheduling pol-
icy. In SymTA/S, scheduling analysis calculates both worst-
case and best-case task response times, i.e. the time be-
tween task activation and task completion, for all tasks shar-
ing a resource under the control of a scheduler. Scheduling
analysis guarantees that all observable response times will
fall into the calculated [best − case,worst − case] interval.
Therefore, we say that scheduling analysis is conservative.

Figure 1. Example of a system modeled with
SymTA/S

Figure 1 shows an example of a system modeled with
SymTA/S. The system consists of 2 resources, each with 2
tasks mapped on it. S0 and S1 are the sources of activat-
ing events at the external system inputs. CPU0 and CPU1
are both assumed to be priority scheduled. Task T2 has the
highest priority on CPU0 while T1 has the highest priority
on CPU1. The possible timing of activating events is cap-
tured by so-called event models, which are explained in de-
tail in [19] and [20].

The compositional performance analysis methodology
used in SymTA/S alternates local scheduling analysis and
event model propagation during system-level analysis. This
technique requires the possible timing of output events in
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order to determine the activation of the next scheduling
component. The event models used in SymTA/S allow to
specify simple rules to obtain output event models that can
be described with the same set of parameters as the in-
put event models. The output event model period obviously
equals the activation period. The output event model jitter
is obtained by adding the difference between maximum and
minimum response times (the response time jitter) to the ac-
tivating event model jitter (equation 1).

Jout = Jact +(Ri − ri) (1)

The maximum and minimum response times, Ri and ri,
are calculated by scheduling analysis as a function of all ac-
tivating event models for tasks mapped on that resource, and
the worst-case respectively best-case core execution times
of those tasks.

In the following we explain the compositional analysis
approach using the system example in Figure 1. Initially,
only the activating event models of T 0 and T 3 are known.
At this point the system cannot be analyzed, because on ev-
ery resource an activating event model for one task is miss-
ing. We need to calculate the response times on CPU0 to be
able to analyze CPU1. On the other hand, we cannot ana-
lyze CPU0 before analyzing CPU1. We call this problem a
cyclic scheduling dependency.

One solution to this problem is to initially propagate all
external event models along all system paths until an ini-
tial activating event model is available for each task [17].
This approach is safe, since, on one hand, scheduling cannot
change an event model period. On the other hand, schedul-
ing can only increase an event model jitter [23]. Since a
smaller jitter interval is contained in a larger jitter interval,
the minimum initial jitter assumption is safe.

After propagating external event models, global system
analysis can be performed. A global analysis step consists
of two phases [20]. In the first phase local scheduling analy-
sis is performed for each resource and output event models
are calculated. In the second phase, all output event mod-
els are propagated. It is then checked if the first phase has
to be repeated because some activating event models are no
longer up-to-date, meaning that a newly propagated output
event model is different from the output event models that
was propagated in the previous global analysis step. Analy-
sis completes if either all event models are up-to-date after
the propagation phase, or if an abort condition, e. g. the vi-
olation of a timing constraint has been reached.

4. Sensitivity Analysis in SymTA/S

In this section we give an overview about the sensitiv-
ity analysis framework used in SymTA/S which is based on
a combination of a binary search technique and the compo-
sitional analysis model presented in Section 3.2. First, we

will describe the metrics and the objectives we use for the
sensitivity analysis, then we will give some mathematical
issues regarding the applicability of the binary search al-
gorithm in the SymTA/S analysis model. Finally, we will
present the algorithm implementation for different analysis
metrics.

4.1. Metrics

The system designer usually wants to know the flexibil-
ity of the system behavior with respect to changes in the
SW-part as well as in the HW-part. Variations in the imple-
mentation of different application parts, functional exten-
sions, or changes of requirements such as external activa-
tion patterns are only some examples that can turn a previ-
ously conforming system into one that violates performance
constraints. These and many other variations are only too
common in a realistic design-flow. Therefore, it is desirable
to have permanent control of the system reserves through-
out the design process.

In this paper, we consider the following metrics for sen-
sitivity analysis:

1. Maximum permissible increase of the core execution
time of a task without violating system constraints or
system schedulability.

2. Minimum speed factor of a resource without violating
system constraints or system schedulability.

These objectives are currently implemented in
SymTA/S. Other reasonable metrics for the sensitiv-
ity analysis would be:

1. Variations of different external event model parame-
ters, e. g. periods or jitters.

2. Variations of internal event models by means of traffic
shaping.

It is important to emphasize that, contrary to previous
work, we focus on the effects of local variations on global
system properties which are constrained. In particular, we
consider end-to-end deadlines, workload on different re-
sources, maximum permissible output jitter and maximum
available memory for communication buffers.

4.2. Binary search technique

As mentioned in Section 2, different approaches were
proposed for the sensitivity analysis of different system pa-
rameters. However, most of them can perform only a local
resource analysis, as they are bounded by local constraints
(tasks deadlines). Due to a fast increase of system complex-
ity and heterogeneity, the current distributed systems usu-
ally have to satisfy global constraints rather than local ones.
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End-to-end deadlines or global buffer limits are an exam-
ple of such constraints. Hence, the formal approaches used
for the sensitivity analysis at resource level cannot be trans-
formed and applied at the system level, as this implies huge
effort and less flexibility.

Binary search is known as a simple and fast searching
algorithm used to determine a specific value within an or-
dered set of data. Our analysis framework is based on a bi-
nary search algorithm that determines the sensitivity of the
system behavior with respect to changes of different system
parameters. As already mentioned in Section 4.1, the task
core execution time is an important objective for the sensi-
tivity analysis. Changes of its values directly affects a set of
system parameters, like buffer sizes, response times, work-
load on different resources. Due to system-level dependen-
cies, the effects of these changes are further propagated in
the whole system.

Suppose that the worst-case core execution time of task
T1 in Figure 1 increases. As T1 has the highest priority
on CPU1, the worst-case response time of T3 will also in-
crease and, consequently, its output event model jitter as
well. Since the activation timing of T2 is determined by the
output event model of T3, the scheduling on CPU0 will be
affected, too. The different activating event model for task
T2 may change the worst- and best-case response times of
T0. Hence, the change of only one system parameter turned
into a long sequence of changes of other system properties.

We use binary search to determine the maximum value
of a system parameter that still leads to a conforming sys-
tem configuration, i.e. all constraints are satisfied and all
tasks in the system are schedulable.

We first vary worst-case task execution times. The worst-
case response time Ri of any task Ti in the system shown in
Figure 1 can be determined using the response time analy-
sis presented in [1].

Ri = Ci + ∑
j∈hp(i)

⌈
Ri

Tj

⌉
×Cj (2)

where Ci represents the worst-case core execution time of
task i, and Ti is its activation period. From Equation 2 it re-
sults that Ri is a function depending on the worst-case exe-
cution time of task i and of all tasks with a priority higher
than task i. It is obvious that Ri is a monotonically increas-
ing function of Ci and Cj, where j ∈ hp(i). Similar argu-
mentations can be given for other scheduling analysis tech-
niques.

As Jact and ri are not functions of Ci, it follows from
Equation 1 that the output jitter Jout is also a monotonically
increasing function of Ci. An increasing jitter may lead to an
increasing response time of the connected task or can deter-
mine a larger buffering delay in case of traffic shaping.

Since the maximum latency of a path is defined as the
sum of the worst case response times of all tasks along that

path plus the buffering delay, the paths latencies are also
monotonically increasing functions of a specific task core
execution time. This guarantees that any value smaller than
the maximum value found will also lead to a conforming
system configuration.

4.3. Algorithm implementation

A system can be in 2 different states with respect to its
current configuration and the constraints:

1. The system status is success if all constraints are satis-
fied and all tasks are schedulable.

2. The system status is fail if at least one constraint is vi-
olated or at least one task is not schedulable.

In both cases it is desired to determine the value of a spe-
cific system parameter that represents the bound between
the success-status and fail-status.

Algorithm 1 determines the sensitivity of the system with
respect to changes of a specific task core execution time. If
the system status is success, then the search interval is de-
termined by the current WCET value and the value corre-
sponding to a maximum load allowed on the resource.

The current load (utilization) on a resource is [10]:

Loadcurrent =
C1

T1
+

C2

T2
+ ...+

Ci

Ti
+ ...+

Cn

Tn
(3)

If we increase the load of task i by ∆ti, then the new load
is:

C1

T1
+

C2

T2
+ ...+

Ci + ∆ti
Ti

+ ...+
Cn

Tn
≤ Loadmax (4)

which must be smaller than the maximum load allowed
on the resource, Loadmax. Hence,

∆ti ≤ Ti × (Loadmax −Loadcurrent) (5)

If the system status is currently fail, then the search in-
terval is determined by the current WCET value and 0. The
system can remain in fail-status even if the algorithm re-
duces the WCET to 0.

During each iteration of Algorithm 1, a global analysis
loop is performed by SymTA/S until the system is stable,
i. e. the system parameters remain unchanged. After each
iteration of the algorithm, the proper half of the previous
search interval is taken, and the task WCET is set to the new
search interval middle value. If the system status is fail, then
a smaller value is required, and thus, the first half of the in-
terval becomes the new search interval. Otherwise, a larger
value is required and the second half of the interval is inves-
tigated. The algorithm terminates when the search interval
size becomes smaller than a predefined value ε.

A similar algorithm (2) is used to determine the mini-
mum speed of a resource that still leads to a success-status
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Algorithmus 1 Task execution time variation
Require: current WCET: C

current resource load: LoadR

maximum load: Loadmax

algorithm precision: ε
task activation period: T

Ensure: maximum WCET allowed: Cmax

1: Cinit = C
2: Loadcurrent = LoadR

3: Loadprev = 0
4: analyze system;
5: if (system success) then
6: low = C
7: high = C + T × (Loadmax−LoadR)
8: else
9: low = 0

10: high = C
11: end if
12: while (Loadcurrent −Loadprev) > ε do
13: middle = (high+ low)/2
14: C = middle
15: analyze system;
16: if (system success) then
17: low = middle
18: else
19: high = middle
20: end if
21: Loadprev = Loadcurrent

22: Loadcurrent = LoadR

23: end while
24: C = Cinit

25: Cmax = low

of the system. The core execution times of all tasks mapped
on a resource are inverse functions of the resource speed,
i.e. reducing the resource speed by a factor s f will increase
the WCETs of all tasks on that resource by the same fac-
tor and vice versa. If we modify the resource speed by s f ,
Equation 3 becomes:

1
s f

n

∑
i=1

Ci

Ti
≤ Loadmax (6)

The new load obviously has to be smaller than the max-
imum load allowed on the resource. Hence,

s f ≥ Loadcurrent

Loadmax
(7)

Similarly, the designer can define a minimum load and
the maximum value for s f . This factor corresponds to the
maximum clock frequency at which the resource can oper-
ate.

1
s f

n

∑
i=1

Ci

Ti
≥ Loadmin (8)

and thus,

s f ≤ Loadcurrent

Loadmin
(9)

If the system status is initially success, then the interval
between Loadcurrent

Loadmax
and the current speed factor is selected

for analysis. Otherwise the interval determined by the cur-
rent speed and the maximum speed factor is investigated.

Algorithmus 2 Resource speed variation
Require: current speed factor: SpeedR

current resource load: LoadR

maximum load: Loadmax

algorithm precision: ε
minumum load: Loadmin

Ensure: minimum speed allowed: Speedmin

1: Speedinit = SpeedR

2: Loadinit = LoadR

3: analyze system;
4: if (system success) then
5: low = Loadinit/Loadmax

6: high = SpeedR

7: else
8: low = SpeedR;
9: high = Loadinit/Loadmin

10: end if
11: while (high− low) > ε do
12: middle = (high+ low)/2
13: SpeedR = middle
14: analyze system;
15: if (system success) then
16: high = middle
17: else
18: low = middle
19: end if
20: end while
21: SpeedR = Speedinit

22: Speedmin = low

The ε value that appears in both algorithms represents
the precision of the computation. It determines how tightly
the result approximates the exact searched value.

5. System Example

The system in Figure 2 shows a hypothetical system
modeled in SymTA/S consisting of a micro-controller (uC),
a digital signal processor (DSP) and dedicated hardware
(HW), all connected via an on-chip bus (BUS). The physi-
cal system is monitored by 3 sensors (Sensor 1 - Sensor 3),
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which produce data sporadically as a reaction to irregular
system events. This data is registered by an OR-activated
monitor task (Monitor) on the uC, which decides how to up-
date the control algorithm. This information is sent to task
Update on the DSP, which writes the updated controller pa-
rameters into shared memory.

Figure 2. System Example

The HW acts as an interface to a physical system. It
runs one task (System IF) which issues actuator commands
to the physical system and collects routine sensor read-
ings. System IF is controlled by controller task Control,
which evaluates the sensor data and calculates the neces-
sary actuator commands. Control is activated by a periodic
timer (Timer) and by the arrival of new sensor data (AND-
activation).

The DSP additionally executes a signal-processing task
(Filter), which filters a stream of data arriving at input Sig-
nal in, and sends the processed data via output Signal out.
All communication (with the exception of shared-memory
on the DSP) is carried out by communication tasks C1 - C5
over the on-chip BUS.

Computation and communication tasks have core execu-
tion times as listed in Table 1. All numbers are given in ab-
stract time units.

We assume the event models given in Table 2 at system
inputs. In case of sporadic events, the period parameter P
denotes the maximum period or, in other words, the mini-
mum distance between events.

In order to function correctly, the system has to satisfy
the path latency constraints and the maximum jitter con-
straint at Signal out listed in Tables 3(a) and 3(b).

In the following, we assume that the DSP as well as the
BUS are scheduled according to a static priority preemptive

task core execution time

Monitor [10,12]
System IF [15,15]
Filter [12,15]
Update [5,5]
Control [20,23]
C1 [4,4]
C2 [4,4]
C3 [4,4]
C4 [8,8]
C5 [4,4]

Table 1. Tasks core execution times

input event model

Sensor 1 sporadic, PSensor 1 = 1000
Sensor 2 sporadic, PSensor 2 = 750
Sensor 3 sporadic, PSensor 3 = 600
Signal in periodic, Pin = 60
Timer periodic, PTimer = 70

Table 2. System input event models

# path maximum latency

1 Sensor i → Update 100
2 Signal in → Signal out 80
3 cycle(e.g. Control → Control) 140

(a) Path latency constraints

# output event model jitter

4 Signal out Jout,max = 40

(b) Maximum jitter constraint at Signal out

Table 3. System constraints

policy. We want to determine the sensitivity of the system to
local changes in task exceution times and resource speeds
for a given priority assignment. The priority assignments on
both DSP and BUS are given in Table 4.

6. Sensitivity Analysis

In this section, we perform sensitivity analysis of the sys-
tem described in Section 5. In the first set of experiments,
we determine the maximum valid increase of the WCET for
each task while keeping all other values constant. Then we
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task priority mapping

Monitor 1 uC
System IF 1 HW
Update 1 DSP
Filter 2 DSP
Control 3 DSP
C1 5 BUS
C2 3 BUS
C3 4 BUS
C4 1 BUS
C5 2 BUS

Table 4. Tasks priority assignment

vary the speed of one resource at a time in order to find the
minimum resource speed scaling factor. In the second set of
experiments, we focus on algorithm complexity as a func-
tion of computation precision and different bounds of the
resource load.

6.1. Task core execution time

Table 5 shows the results corresponding to sensitivity
analysis of task core execution times. The third column con-
tains the maximum value allowed for task execution times if
we change only one task at a time. We performed the analy-
sis with a precision (ε) of 10−2 and a maximum load bound
of 98%.

task current WCET max WCET

C1 4.00 12.32
C2 4.00 14.00
C3 4.00 14.00
C4 8.00 15.00
C5 4.00 14.00
Monitor 12.00 23.00
System IF 15.00 38.00
Update 5.00 9.66
Filter 15.00 22.00
Control 23.00 37.00

Table 5. Maximum values of tasks WCETs

Figure 3 depicts the results presented in table 5. The
darker region in the bar diagrams represents the reserves
corresponding to each task core execution time. In this par-
ticular experiment, we observe that the reserves of the tasks
mapped on the same resource are about the same percent-
age of the current WCET values. This is an indication that
it is worth trying to clock down the resource, consequently

scaling all tasks core execution times with a common fac-
tor (Section 6.2).

Figure 3. Sensitivity analysis of tasks WCETs

6.2. Resource speed factor

We perform similar experiments in order to determine
the minimum speed factor of a resource. Table 6 shows that
the speed of HW and uC can be decreased by about 60% and
50% respectively, as both resources are running only one
task. The analysis was performed with a precision of 10−2

and a maximum load bound of 100%. The current speed
values correspond to a speed factor of 1. The values pre-
sented in the third column are the relative values of the cur-
rent speed factor.

resource current speed min speed

HW 1.00 0.40
DSP 1.00 0.78
BUS 1.00 0.67
uC 1.00 0.53

Table 6. Minimum values of resource speed
factors

The bar diagrams in Figure 4 show the minimum speed
with respect to current resource speed.

6.3. Algorithm complexity vs. precision of calcula-
tion

In this section, we perform a set of experiments in or-
der to determine the algorithm run-time when varying the
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Figure 4. Sensitivity analysis of resource
speed factors

precision of computation and the resource load bounds.
As already mentioned in Section 4.3, the ε value selects

the algorithm precision, and the Loadmax and Loadmin val-
ues specify the load bounds allowed on a resource. In our
experiments we vary the ε value between 10−3 and 10−1.
The Loadmax varies between 80% and 100%. Table 7 shows
the run-time of the binary search algorithm (values are ex-
pressed in ms) for different combinations of the predefined
values.

Maximum allowed load
ε 80% 90% 95% 97% 99%

0,1 9 13 18 21 61
0,01 12 15 26 31 193

0,001 14 18 236 - -

Table 7. Sensitivity analysis: algorithm run-
time (in seconds)

Figure 5 shows the values presented in Table 7.
We observe that for algorithm precisions smaller than

10−2 and load bounds above 97%, the run-time of the sensi-
tivity analysis algorithm drastically increases. This is due to
a large number of system analysis steps performed close to
100% load. At these load values on one hand the run-time of
local scheduling analysis algorithms increases, as the num-
ber of consecutive activations that have to be considered
grows. On the other hand, the number of system-level anal-
ysis steps increases in order to calculate the system-level
impact of growing output jitters. However, a resource load
above 97% is not realistic in practice due to variations of
the system clock frequency or other distorting factors, and

Figure 5. The run-time of the sensitivity anal-
ysis algorithm

because designers usually want to maintain a larger head-
room. Therefore, we feel that a load-bound around 95% is
realistic in practice. For such a value, our algorithms are ef-
ficient.

7. Conclusion

In this paper we presented a sensitivity analysis frame-
work based on a binary search technique. The sensitivity
analysis determines the system reserves and describes the
system flexibility during design phase while guaranteeing
the satisfiability of system constraints.

We derived algorithms for the sensitivity analysis of task
core execution times and resource speeds and we presented
a set of experiments that demonstrated the applicability of
these algorithms in a networked multi-processor system ex-
ample. We are currently working on similar algorithms for
other sensitivity analysis metrics and we investigate system
models with additional context information.
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