
Synergetic effects in cache related preemption delays

Jan Staschulat, Rolf Ernst
Technical University of Braunschweig

Institute of Computer and Communication Network Engineering (IDA)
D-38106 Braunschweig, Germany
{staschulat,ernst}@ida.ing.tu-bs.de

Abstract

Cache prediction for preemptive scheduling is
an open issue despite its practical importance.
First analysis approaches use simplified models for
cache behaviour or they assume simplified preemp-
tion and execution scenarios that seriously impact
analysis precision. We present an analysis ap-
proach for m-way associative caches which consid-
ers multiple executions of processes and preemp-
tion scenarios for static priority periodic schedul-
ing. The results of our experiments show that
caches introduce a strong and complex timing de-
pendency between process executions that are not
appropriately captured in the simplified models.

1. Introduction and motivation

Caches are needed to increase processor perfor-
mance but they are hard to use in real-time sys-
tems because of their complex behaviour. While
it is already difficult to determine cache behaviour
for a single process, it becomes really complicated
if preemptive process scheduling is included. Pre-
emptive process scheduling means that process ex-
ecution can be interrupted by higher priority pro-
cesses. In this case, cache improvements can be
strongly degraded by frequent exchange of cache
blocks.

There are several approaches to make caches
more predictable and efficient. One approach is to
partition the cache sets and to reserve these parti-
tions for individual processes. This has been in-
vestigated in [8]. The advantage is that cache lines
do not have to be reloaded after interrupts and be-
tween consecutive executions of the same process.
Also, cache behaviour becomes (partly) orthogonal
for processes and therefore more predictable. In
[4] process layout techniques are suggested which
aim at minimising the inter-process interference in
the instruction cache. Another approach [10] is to

lock frequently used cache lines. While cache par-
tition and lock strategies are certainly a very use-
ful add-on to improve cache predictability and ef-
ficiency, they do not solve the general cache be-
haviour problem which is critical for larger systems
of processes.

Simplified approaches extend the known RMA
with fixed context switch costs [1], while recent ap-
proaches use data flow analysis of the preempted
and preempting process to bound the number of
replaced cache blocks [7] [9]. However, these ap-
proaches model only a single process activation as-
suming an empty cache at process start neglect-
ing that cache blocks (CB) might be available for
later executions. Pre-runtime scheduling heuris-
tics which take the effects of process switching on
processor cache into account have been presented
in [6]. However, only non-preemptive scheduling
based on earliest deadline first strategies is con-
sidered which is much easier than the preemptive
case. If a process is preempted several times the
total number of cache blocks replaced drops, be-
cause a cache block of preempted process can only
be replaced once. Such preemption scenarios are
not considered in classical CRPD analysis.

This paper is organized as follows. Section 2 re-
views related work. In Section 3 we present a new
analysis approach to determine the cache related
preemption delay (CRPD) for m-way associative
instruction caches which considers multiple execu-
tions of processes as well as preemption scenarios.
We show the results in Section 4, before we con-
clude in Section 5.

2. Related work

The data flow analysis by [7] determines the
CRPD when a processτ1 preempts processτ0 by
intersecting the number of useful CBs ofτ0 and
with the number of used CBs ofτ1 assuming an
empty cache at process start. Then, a complex
analysis follows analysing all possible combina-



tions of preemptions. The number of preemptions
is determined by integer linear programming (ILP)
and process phasing based on worst case and best
case response time (BCRT) of processes. How-
ever, the BCRT analysis is a complicated problem
where only approximative solutions have been pro-
posed for the general case [5]. Multiple process
executions is not considered and multiple preemp-
tions are simplified by multiplying the maximum
CRPD cost by the number of preemptions. For di-
rect mapped instruction caches [9] refine the data
flow analysis of [7] by modeling the cache content
as astateinstead of a set. All possible cache states
of the preempting and preempted process are in-
tersected to find the maximum CRPD. Preemption
scenarios are not considered and an empty cache is
assumed at process start.

Current approaches either model only the num-
ber and cost of preemptions for a single process
execution or the cache effects of multiple process
execution without preemptions, but none models
both. Only the combination provides sufficient ac-
curacy as we will see in our experiments.

3. Refined approach

Our CRPD analysis considers multiple activa-
tions of processes and preemption scenarios. A
preemption scenario consists of one preempted
processτi and of a processτj which preemptsτi

during a single executionn times. We represent
the process by its control flow graph (CFG), where
each node is a basic block and assume a preemp-
tion point at each node.

To reduce the exponential combinations ofn
preemption points (CFG nodes) we use a branch
and bound algorithm. It first determines then most
expensive preemption points by analyzing the cost
of a single preemption at each node. Then it contin-
ues to compare the cost of the combinations of two
nodes until the costCn for a preemption scenario
with n nodes is found. The algorithms bounds at a
combination if the current cost plus the cost for fu-
ture preemptions is smaller thanCn. For sequential
code this is straight forward, but forn preemtions
within loop body this modeling would lead to un-
rolling the loop. Therefore we abstract from pre-
emption points of different loop iterations by es-
timating the preemption point with the maximum
cost of the loop body and multiplying it byn. This
estimation is exact ifI ≥ n, whereI is the max-
imum loop iterations and conservative ifI < n.
The costCn of a preemption scenario is calculated
by considering the useful CBs of the preempted
processτi and the used CBs of the preempting pro-

cessτj . For the analysis of each preemption cost a
data flow model is needed.

We base our analysis form-way associative
caches on the cache state analysis of [9]. But de-
fine a cache state for each cache set withm blocks.
A reaching cache stateRCSB at a basic blockB
of a process is the set of possible cache states when
B is reached via any incoming program path. The
live cache states at a basic block B, denotedLCSB ,
are the possible first memory reference to CBs via
any outgoing program path fromB. A least fixed
point data flow algorithm computes the values of
these sets. The cache behavior including replace-
ment strategy (e.g. LRU) is simulated by preload-
ing the cache stateRCS of the predessor node and
executing the instruction sequence of basic block B
by cache simulation. The resulting cache state rep-
resents the RCS of basic block B. The intersection
of RCS and LCS is the set of useful CBs at basic
block B. The used CBs of preempting processτj is
given byRCSend, assumingend is the last basic
block of τj . Finally, the CRPD at basic block B
is computed by the intersection of the used cache
blocks ofτj and the useful CBs ofτi.

3.1. Preemption scenarios

We extend this general modelling for preemtion
scenarios as follows. The cost of the first preemp-
tion atBk is calculated by the data flow algorithm
of [9]. For a second preemption we insert afterBk

n nodes in the CFG ofτi, if the preempting pro-
cessτj finishes withn different RCSs. Figure 1
shows part of the CFG ofτi with four basic blocks.
To model a preemption at nodeB3, and assuming
three RCSs atτj last node, we insert three preemp-
tion nodesP1, P2 andP3. Now the iterative data

B2 B3

B4

B1

B2 B3

B4

B1

Preemption

P1 P2 P3

Figure 1. Modeling of a preemption by
τj with three nodes P1, P2 P3 in CFG of
preempted process τi

flow analysis is applied again and the RCS of all
other nodes are recalculated. This models the fact
that useful CBs might be overwritten by a preemp-
tion and thus cannot be replaced again. After recal-
culating the RCSs the CRPD is recalculated at the



next preemption point. This procedure is applied
for every preemption point.

The complexity of this accurate modelling ofn
preemptions for a single process execution is expo-
nential with the number of RCS states of the pre-
empting task, because then RCS states are prop-
agated in the CFG of the preempted process and
increase the number of cache states.

3.2. Multiple process execution

Many automotive control applications consist of
sequential code without loops. A cache will not
speed up a single execution because of the high
cache miss penalty. A cache architecture is only
well desigend if the cache is large enough that CBs
of a single process can be reused in later execu-
tions. For simplicity we assume that no processes
run between two activations of a processτi. We
model a warm cache cache like in Subsection 3.1
by insertingn nodes in the CFGbefore the first
node forn differentRCSend sets of processτi.

However, it is important to consider the pro-
cesses which run between two activations. In this
paper we assume the conservative approximation
that all higher priority and lower priority proceses
of the system execute. We model the execution of
these intermediate execution ofτi, τj1 , · · · , τjk

, τi

as a sequence of process executions. The cache
states ofRCSend of the preceding processτjm

are
inserted as start nodes in the CFG of processτjm+1 .
The last process isτi again. This assumes that the
CRPD at the second activation of processτi is in-
dependent of the order and the frequency of inter-
mediate processes which is shown in [11].

4. Experiments

We select six different benchmarks: a square
root calculationsqrt [9], array calculation with
loops dac [12], two sequential programs of add
instructionslin , lin2 and two linear programs
nsich andstatm , part of a car window lift con-
trol generated by STAtechart Real-time-Code gen-
erator STARC [3]. The memory size ranges from
94 Byte till 872 Byte. We use the ARM developer
studio for processor simulation and DINERO for
cache simulation. All benchmarks are compiled for
ARM946 assembly language with fixed four byte
instruction width. Given the CFG generated from
C code by [12], a tool for worst case execution time
analysis for single processes, and the ARM mem-
ory map file our analyzer computes the CRPD.

4.1. Multiple process execution

Table 1 shows the response time for different
cache architectures and benchmarks. A 2-way as-
sociative 1024 Byte cache with 8 Byte block size
is denoted as 1024-8-2. With the ARM simula-
tor we determine the core execution time of the
processes and the instruction trace.tnegi

resp denotes
the response time according to [9] assuming an
empty cache at process start andtana

resp the response
time calculated by our approach. In our experi-
ments we assumed one clock cycle for a cache hit
and a cache miss penalty of 20 clock cycles. The

Benchmark Cache-C. tnegi
resp tana

resp tsim
resp Pl[%]

dac/linear 256-8-1 1193 1041 1041 15
dac/linear 512-8-1 1193 1041 1041 15
dac/linear 1024-8-2 1041 813 813 28
sqrt/linear 512-8-1 2119 1549 1492 42
sqrt/linear 1024-8-2 1929 1131 1131 70
sqrt/linear 2048-8-2 1929 1131 1131 70
linear2/nsich 1024-8-1 3336 3070 3032 10
linear2/nsich 2048-8-1 4269 2690 2690 58
linear2/nsich 2048-8-2 4269 2690 2690 58
statm/nsich 512-8-1 4174 4174 4174 0
statm/nsich 1024-8-1 4174 3585 3547 18
statm/nsich 2048-8-1 4174 2274 2274 83

Table 1. Response time in clock cy-
cles for a preemption during second
activation for several benchmarks and
cache sizes

results show that the response time is pessimisti-
cally overestimated by [9]’s approach. The last col-

umn shows the performance lossPl = tnegi
resp−tsim

resp

tsim
resp

,

which could be gained with a more accurate analy-
sis. For example, the performance loss in case of a
1KB and 2KB cache forsqrt/linear is 70%
and for statm/nsich even 83% for the 2KB
cache. We see that the current approach is less ac-
curate for relevant larger caches.

The results for our refined analysis is in most
cases exact to the simulated response time, the
maximum error is 4% in case ofsqrt/linear
for direct mapped 512 Byte instruction cache.

4.2. Preemption scenarios

Now we consider multiple preemptions with an
empty and preloaded cache. Table 2 presents the
preemption cost of five preemptions for four task
sets. The results show that for an empty cache our
analysis does not improve the accuracy for bench-
marks with or without loops. The reason is that
the most expensive preemption points are inside



LP/HP Cache Empty Cache Preload. Cache
Task Config. Negi Ana Negi Ana

dac/lin 512-8-1 52 52 52 43
dac/lin 1024-8-1 52 52 52 40
dac/lin 1048-8-1 12 12 12 12
sqrt/lin 512-8-1 182 182 182 169
sqrt/lin 1024-8-1 47 47 47 1
sqrt/lin 2048-8-1 42 42 42 0
nsich/lin2 512-8-1 104 104 104 83
nsich/lin2 1024-8-1 104 104 104 74
nsich/lin2 2048-8-1 99 99 99 0
statm/lin2 512-8-1 125 125 125 107
statm/lin2 1024-8-1 125 125 125 97
statm/lin2 2048-8-2 120 120 120 0

Table 2. Comparison of total number
of cache misses of Negi et al. and
our approach for 5 preemptions with
empty and preloaded cache for given
lower priority (LP) and higher priority
(HP) tasks.

a loop body. However, in the case of multiple
activations with preloaded cache our analysis ap-
proach yield more accurate results. For a larger
2 KB cache the preemption cost is even zero for
all preemptions in benchmarknsich/linear2
andstatm/linear2 , in contrast to 99 and 120
cache misses in Negi et al.’s approach.

The performance of our analysis ranged from
several minutes till several hours. The reason for
the long running time is the exponential number of
states that are propagated after inserting a preemp-
tion node.

5. Conclusion

In this paper we have extended the approach
of [9] to consider multiple process activations and
preemption scenarios for m-way associative in-
struction caches. The results with a realistic pro-
cessor architecture show that cache effects lead to
process interdependencies which can easily out-
weigh individual process execution times. Such
cases are not covered by the classical performance
analysis approaches which are based on individual
process execution times plus independent blocking
times (e.g. [2]). However, the complexity of the
proposed analyis is exponential with the number
of cache states of the preempting process. Future
research is necessary to develop less complex algo-
rithms.

Applications with loops behave better also in
other approaches. However, for automotive con-
trol applications linear code is very important (e.g.

Matlab generated code). Here current approaches
result high overestimations. On the other hand,
cache parameters have a significant influence on
process interdependence. We can therefore con-
clude that cache design should receive maximum
attention in embedded system design, use process
systems as benchmarks rather than individual pro-
cesses to consider multiple process activation and
that new models and approaches are needed for
performance analysis of systems with caches.

References

[1] J. V. Busquets-Mataix and A. Wellings. Adding in-
struction cache effect to schedulability analysis of
preemptive real-time systems. InIEEE Real-Time
Technology and Applications Symposium, pages
204–212, June 1996.

[2] G. Buttazzo.Hard Real-Time Computing Systems.
Norwell, MA: Kluwer, 1997.

[3] C-Lab. Wcet benchmarks. http://www.c-
lab.de/home/de/download.html.

[4] A. Datta, S. Choudhury, A. Basu, H. Tomiyama,
and N. Dutt. Satisfying timing constraints of pre-
emptive real-time tasks through task layout tech-
nique. InProceedings of 14th IEEE VLSI Design,
pages 97–102, January 2001.

[5] W. Henderson, D. Kendall, and A. Robson. Im-
proving the accuracy of scheduling analysis ap-
plied to distributed systems computing minimal re-
sponse times and reducing jitter.Real-Time Sys-
tems, 20(1):5–25, 2001.

[6] D. Kästner and S. Thesing. Cache sensitive pre-
runtime scheduling. InACM SIGPLAN Workshop
on Languages, Compilers and Tools for Embedded
Systems, volume 1474 ofLecture Notes in Com-
puter Science, pages 131–145. Springer, 1998.

[7] C.-G. Lee, K. Lee, J. Hahn, Y.-M. Seo, S. L. Min,
R. Ha, S. Hong, C. Y. Park, M. Lee, and C. S. Kim.
Bounding cache-related preemption delay for real-
time systems.IEEE Transactions on software en-
gineering, 27(9):805–826, November 2001.

[8] F. Mueller. Compiler support for software-based
cache partitioning. InWorkshop on Languages,
Compilers, and Tools for Real-Time Systems, La
Jolla, June 1995.

[9] H. S. Negi, T. Mitra, and A. Roychoudhury. Accu-
rate estimation of cache-related preemption delay.
In CODES+ISSS’03, Newport Beach, California,
USA, October 1-3 2003.

[10] I. Puaut and D. Decotigny. Low-complexity al-
gorihtms for static cache locking in multitasking
hard real-time systems. InProceedings of the 23rd
IEEE Real-Time Systems Symposium (RTSS’02),
2002.

[11] J. Staschulat and R. Ernst. Crpd independence for
multiple process execution. Technical report, IDA,
TU Braunschweig, March 2004.

[12] F. Wolf. Behavioral Intervals in Embedded Soft-
ware. Kluwer Academic Publishers, 2002.


