
Multiple Process Execution in Cache Related Preemption
Delay Analysis

Jan Staschulat, Rolf Ernst
Technical University of Braunschweig

Institute of Computer and Communication Network Engineering
D-38106 Braunschweig, Germany
{staschulat,ernst}@ida.ing.tu-bs.de

ABSTRACT
Cache prediction for preemptive scheduling is an open issue
despite its practical importance. First analysis approaches
use simplified models for cache behavior or they assume sim-
plified preemption and execution scenarios that seriously im-
pact analysis precision. We present an analysis approach
which considers multiple executions of processes and pre-
emption scenarios for static priority periodic scheduling. The
results of our experiments show that caches introduce a
strong and complex timing dependency between process exe-
cutions that are not appropriately captured in the simplified
models.

Categories and Subject Descriptors: B.3.3: Worst-case
analysis.
General Terms: Algorithms, Measurement, Performance,
Verification.
Keywords: Worst Case Execution Time Analysis, Cache,
Embedded Systems, Scheduling.

1. INTRODUCTION
Caches are needed to increase processor performance but

they are hard to use in real-time systems because of their
complex behavior. While it is already difficult to determine
cache behavior for a single process, it becomes really compli-
cated if preemptive process scheduling is included. Preemp-
tive process scheduling means that process execution can be
interrupted by higher priority processes. In this case, cache
improvements can be strongly degraded by the frequent ex-
change of cache blocks.

There are several approaches to make caches more pre-
dictable and efficient. One approach is to partition the
cache sets and to reserve these partitions for individual pro-
cesses. This has been investigated in [21]. The advantage
is that cache lines do not have to be reloaded after inter-
rupts and between consecutive executions of the same pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

cess. Also, cache behavior becomes (partly) orthogonal for
processes and therefore more predictable. In [6] process lay-
out techniques are suggested which aim at minimizing the
inter-process interference in the instruction cache. Another
approach is to lock frequently used cache lines. Such tech-
niques have been investigated by [14] [5] . Both approaches
come at an area and power cost as they require a sufficient
cache associativity to become effective. Therefore, hetero-
geneous memory architectures with caches and scratch-pad
SRAM have been introduced [12], where the scratch-pad can
hold frequently used cache lines. [19] has proposed compiler
techniques for such architectures.

While cache partition and lock strategies are certainly a
very useful add-on to improve cache predictability and effi-
ciency, they do not solve the general cache behavior problem
which is critical for larger systems of processes.

Simplified approaches extend the known RMA with fixed
context switch costs [3], while more recent approaches use
data flow analysis of the preempted and preempting pro-
cess to bound the number of replaced cache blocks [16] [18].
However, these approaches model only a single process acti-
vation and assume an empty cache at process start thereby
neglecting that cache blocks might be available for later ex-
ecutions. Pre-runtime scheduling heuristics which take the
effects of process switching on processor cache into account
have been presented in [13]. However, only non-preemptive
scheduling based on the earliest deadline first strategy is
considered, which is much easier than the preemptive case.

Those approaches that do take multiple preemptions into
account, e.g. [18] [16] [26], bound the cache related delay for
multiple preemptions pessimistically by the product of the
maximum preemption cost and the number of preemptions.
Our own experiments have shown that the actual cost for
such a preemption scenario is much smaller than found by
such approximations [24].

In this paper, we present a new analysis approach to de-
termine the cache related preemption delay (CRPD) which
considers multiple executions of processes as well as preemp-
tion scenarios for instruction caches. The approach supports
hard real-time system analysis, but can also be useful for
rapid design space exploration.

This paper is organized as follows. Sec. 2 describes the
cache effects due to a preemption and Sec. 3 reviews related
work. In Sec. 4 we describe our new refined analysis for mul-
tiple executions of processes and an integrated analysis for
multiple preemptions. Experiments are presented in Sec. 5,
before we conclude in Sec. 6.

2. PROBLEM DESCRIPTION
This work considers a single processor system with pre-

emptive scheduling. In Figure 1 a process P2 is activated and
finishes execution without preemption. Then a lower prior-
ity process P3 executes and P2 is activated again. Another
process P1, which has a higher priority than P2 preempts
P2. P1 finishes execution, and P2 resumes.

useful CB of P2 used CB of P1
Time

CRPD

0 1 2 3 4 5 6 7 8 9 0 a b c d e

P1

P2

P3

Time

Figure 1: Scheduling of three tasks P1, P2 and P3.
The upper portion displays teh preemption of task
P2 by P1 and the lower portion shows the cache
contents.

This preemption can take place anytime during execution
of P2. In rate monotonic scheduling shorter processes have a
higher priority which lead to multiple preemptions of a lower
priority process, such as P2. In the lower part of Fig. 1, a di-
rect mapped cache with 16 cache blocks is shown. The cache
behavior during the preemption is described in Sec. 2.3. In
this paper we only analyze instruction caches.

2.1 Application domain
Current analysis techniques, which are reviewed in Sec. 3,

model each process in isolation and assume pessimistically
an empty cache at process start. The WCET of the process
is overestimated, because compulsory cache misses might
not be necessary for the next activation.

This might possibly be acceptable for processes with com-
putation intensive loops such as those found in large filter al-
gorithms, MPEG decoding or sorting algorithms. However,
typical automotive real time applications, such as engine
control, consist of linear code without loops that are acti-
vated periodically by the operating system. This property
is not limited to automotive applications, as those gener-
ated from Matlab/Simulink, Petri-nets or ASCET/SD often
posses this property.

This linearity leads to a fundamentally different cache be-
havior. A cache does not speed up linear code, since memory
lines are executed sequentially and only once. The speed-
up is gained only if the cache holds memory lines from an
earlier process activation. In the best case, all memory lines
are present in the cache and a second activation requires no
further instruction cache misses.

The second drawback of current approaches is that only

higher priority processes are considered in CRPD- and schedul-
ing analysis. But this simplification is only acceptable if an
empty cache is assumed at every process start. It is not ac-
ceptable for processes with linear code which are activated
multiple times: the worst case response time will be over-
estimated and unsuitable for the design and verification of
realistic embedded systems. Therefore we developed a new
approach, which considers the cache state at process start.

Consider Fig. 1. After the first activation of P2, some
cache blocks can be replaced by the lower priority process
P3 and available cache blocks for the second activation of P2

reduce the number of compulsory cache misses.
Preemptive scheduling analysis has to consider the WCET,

direct context switch costs of the operation system and the
indirect cache related preemption delay. The CRPD de-
pends on the frequency and location of preemptions as well
as the additional time delay for reloading replaced cache
blocks.

2.2 Preemption frequency and location
The number of preemptions depends essentially on the

scheduling strategy and the operating system. In this paper
we consider only static priority periodic scheduling and as-
sume the number of preemptions to be known a priori. This
is not a limitation, since the approach can be coupled with
an iterative response time analysis, as proposed for a wide
range of scheduling strategies, for example [4].

Preemptions can take place anytime. Therefore a lower
priority process can be preempted anywhere except where
preemptions are explicitly disabled, such as in protected pro-
gram segments. The space of possible preemption points is
given by the control flow graph (CFG) of the process, where
nodes represent basic blocks of the process and edges the
control flow dependency. In this work we assume at most
one preemption at each basic block, as in [15]. We argue in
Sec. 4.1 why this is correct, even though several preemptions
might take place in long basic blocks.

2.3 Preemption cost
The time delay for one preemption depends on the pre-

empted process P2, the preempting process P1, and the in-
struction cache state at the start of process P2.

Only useful cache blocks can lead to additional cache misses,
where a useful cache block at an execution point is defined as
a cache block that contains a memory block that may be re-
referenced before being replaced by another memory block
[16]. For example, it is possible that the replaced mem-
ory block is one that is no longer needed or one that will
be replaced without being re-referenced, even when there
were no preemptions. The number of useful cache blocks
depends on the control flow structure. All cache blocks that
hold memory blocks of a loop body are useful, provided that
the entire loop body fits in the cache. The number of useful
cache blocks within a basic block of a sequential process is
at most one at every execution point if an empty cache is as-
sumed at process start. Additionally, one cache miss occurs
if a preemption replaces the cache block, which contains the
instructions of the current basic block.

The second influence is induced by the preempting pro-
cess. Only the cached memory blocks of process P1 replace
cache blocks of process P2. The execution path of P1 that
uses the maximum number of cache blocks has been consid-
ered as the worst case for the preempting process [26].

The worst case CRPD for one preemption is given by the
intersection of the maximum number of useful cache blocks
of process P2 and the used cache blocks of process P1 multi-
plied by the constant cache refill time at a given preemption
point p1. In our example the preemption cost CRPDP1

P2
(p1)

where process P1 preempts P2 at preemption point p1 is
defined by

CRPDP1
P2

(p1) = trefill · |UCBP2(p1) ∩ UBP1 | (1)

where trefill denotes the cache refill time, UCBP2(p1) the
set of useful cache blocks of process P2 at p1 and UBP1 the
set of used cache blocks of process P1.

Fig. 1 presents the cache contents for P1 and P2. Cache
blocks 0 -9 are useful cache blocks (CB) of P2 at the preemp-
tion point and CB 5 - c are the used cache blocks of P1. The
intersection (CB 5-9) are the cache blocks that are reloaded
when P2 resumes execution. In this case the CRPD is five
cache misses. Then, for a given number n of preemptions,
the total CRPD assumed by [16] [18] [26] is given by

n ·maxpiCRPDP1
P2

(pi) (2)

The drawback of such a pessimistic model is using the max-
imum time delay for every preemption. This greatly over-
estimates the actual preemption cost. We have seen in ex-
periments that the preemption cost tends to drop signifi-
cantly for multiple preemptions [24]. Consider two preemp-
tion points p1 and p2 with the same number of useful cache
blocks (not shown in the figures). If a preemption at p1

replaces them all then a preemption at p2 cannot replace
even one, because all useful cache blocks have already been
replaced. So the preemption cost at p2 is zero. In general,
the preemption cost of the nth preemption depends on the
replaced cache blocks of all n−1 previous preemptions. This
will be further analyzed in Sec. 4.3. Before we present our
approach in Sec. 4 we review related work.

3. RELATED WORK
Early work on cache behavior for a single process does not

take preemption into account [17] [9] [28] [27]. First propos-
als for cache modeling and timing analysis use simplified
cache models. [2], [3] and [20] extend the known RMA by a
fixed context switch cost. [15] uses data flow analysis to de-
termine the CRPD when a process P1 preempts process P2

by analyzing the number of useful cache blocks of P2. Then,
a complex analysis follows, analyzing all possible combina-
tions of preemptions. The cost of multiple preemptions is
determined by the sum of the n most expensive preemptions
assuming all useful cache blocks to be replaced. They refine
their approach in [16], by intersecting the number of useful
cache blocks of P2 with the number of used cache blocks
of P1. However, to cope with the computational effort of
their complex preemption model the computation of multi-
ple preemptions is simplified to multiplying the maximum
preemption cost by the number of preemptions. The num-
ber of preemptions is determined by integer linear program-
ming (ILP) and process phasing based on worst case and
best case response time (BCRT) of processes. However, the
BCRT analysis is a complicated problem where only approx-
imative solutions have been proposed for the general case
([11] [10]) and the BCRT determination is not described by
the authors. Unfortunately, they don’t publish experiments
showing the accuracy of this model. Furthermore, both ver-
sions assume an empty cache at process start and analyze

each preemption separately. Thus, the important case of
multiple process executions is not considered.

Another approach [26] concentrates on the analysis of used
cache blocks of preempting process P1 using an ILP tech-
nique and classifies all cache blocks of the preempted process
P2 as useful. Multiple preemptions are not considered and
a cold cache is assumed at process start. [18] refines the
data flow analysis of [16] and extend the approach of [26]
by modeling the cache content as a state instead of a set.
All possible cache states of the preempting and preempted
process are intersected to find the maximum CRPD. Multi-
ple preemptions are not considered and an empty cache is
assumed at process start.

[22] uses the same worst case assumption based on cache
analysis by [9] but uses a more precise context switch model,
including deep pipeline scheduling. A simulation based method
is suggested in [7], which uses live cache frames to bound the
number of replaced cache blocks. Again, an empty cache at
process start and a single delay for all preemptions is con-
sidered.

Currently the preempting and preempted process are ac-
curately analyzed by data flow analysis enhanced by con-
sidering several paths in the control flow graph. However,
above approaches assume an empty cache at process start.
This is very pessimistic, since processes in real time embed-
ded systems are activated multiple times. Existing cache
blocks from earlier executions can reduce the number of
cache misses in later executions substantially. Current ap-
proaches either model only the number and cost of preemp-
tions or multiple process execution without preemption de-
lay, but no approach models both situations. Only the com-
bination of both effects provides sufficient accuracy, as we
will see in the experimental results.

4. REFINED APPROACH
The refined approach addresses two aspects in cache re-

lated preemption delay analysis: (1) the cost of preemption
scenarios and (2) the cache state at process start, to con-
sider multiple process activations. A preemption scenario
(P2, P1, {p1, · · · , pn}) is a 3-tuple of the preempted process
P2, the preempting process P1 and the set of preemption
points {p1, · · · pn}. A preemption point pi is a basic block
in the CFG of the process P1, like in [16].

The assumptions of our approach are summarized in Sec. 4.1.
The analysis of a single preemption is described in Sec. 4.2
for direct mapped and m-way set associative caches. Sec. 4.3
describes our approach for preemption scenarios and Sec. 4.4
for multiple process activations. Finally the computation of
the worst case preemption scenario is presented in Sec. 4.5.

4.1 Assumptions
Our approach has five main assumptions:

1. The worst case scenario does not contain two preemp-
tions in the same execution of a basic block. This
simplification can be justified by the following consid-
eration. Suppose thee are m preemptions during the
execution of a large basic block bi. The total preemp-
tion cost is then bounded by

C = maxCRPD(bi) + m (3)

cache misses. That is, the maximum cache related
preemption delay of bi plus m cache misses for the m

preemptions of the block that possibly require reload
of the current cache block when that basic block is
continued. The reason is that a basic block consists
only of sequential code and at most one cache block
is useful at any time during its execution. Therefore,
the maximum CRPD for each additional basic block
preemption is equal to or less then any other preemp-
tion in the process. As long as there are still basic
blocks that have not been preempted, this assumption
does not change the maximum preemption cost. This
assumes that there are more basic blocks than preemp-
tions by another process, which we consider to be true
for real-life control flow graphs. It is obviously easy
to detect situations in which this assumption does not
hold and equally easy to add the corresponding 1 cache
miss per additional preemption. So, this assumption
is not a limitation.

2. The number of preemptions is given a priori, but this
number can formally be bounded by the response time
analysis for scheduling algorithms other then fixed pri-
ority periodic scheduling, e.g. [4] [3].

3. All processes of the system run between two process
activations. This is the worst case for multiple process
activations. Future research is necessary for a more
precise bound.

4. The system uses an m-way associative instruction cache
with a deterministic refill strategy (LRU, FIFO) but
not a random strategy. In this paper we only analyze
the instruction cache.

5. A constant delay time trefill is assumed for a cache
miss.

4.2 Single preemption cost
To calculate the CRPD for a process, we intersect the set

of useful cache blocks of the preempted process with the set
of used cache blocks of the preempting process by extending
the cache state approach of [18].

4.2.1 Direct mapped caches
This subsection describes the approach of [18] for direct

mapped caches. A cache state denotes the contents of all
cache blocks. For a direct mapped cache with n blocks,
a cache state is a vector of n elements, where c[i] = m if
cache block i contains memory block m. A reaching cache
state RCSB at a basic block B of a process is the set of
possible cache states when B is reached via any incoming
program path. The live cache states at a basic block B,
denoted LCSB , are the possible first memory references to
cache blocks via any outgoing program path from B. A
least fixed point algorithm computes the values of these sets.
To compute RCS, the quantities RCSIN

B and RCSOUT
B are

computed and we set RCSB = RCSOUT
B if the fixed point is

reached. Initially RCSIN
B = ∅ and RCSOUT

B = genB , where
genB holds all memory blocks introduced into the cache by
basic block B. The iterative equations are as follows:

RCSIN
B =

[
p∈predecessor(B)

RCSOUT
p (4)

RCSOUT
B = {r � genB |r ∈ RCSIN

B } (5)

m�m′ =

m′ if m′ 6=⊥
m otherwise

(6)

Similarly LCS is computed by an iterative fixed point al-
gorithm. RCSB captures the possible cache states when P
is preempted and LCSB captures the possible cache usages
when P resumes execution. The intersection of both sets
is the set of useful cache blocks of basic block B. The used
cache blocks of a preempting process P ′ is given by RCSend,
assuming end is the last basic block of P ′. Finally the CRPD
at a basic block B is computed by the intersection of used
cache blocks and useful cache blocks.

Control flow graph
P1 (preempting)P2 (preempted)

bb1

bb2 bb3

bb4

bb1

bb2 bb3

bb4

cb 5-8, b-c

cb 5-6, 9-ccb 3-6

cb 1-3

cb 8-9

cb 7-8

Cache states

CRPD 1

U: 3

U: -

U: 8

U: 8

RCSend(P1):

Figure 2: Analysis of useful and used cache blocks

Fig. 2 shows a small control flow graph of process P1 and
P2, where memory lines for basic block 3 map to cache lines
7 - 8 and memory lines from basic block 4 map to cache
lines 8 - b. Therefore at b3 cache line 8 is useful. We assume
that cache line 8 is also useful at b4. On the right side the
used cache blocks of process P1 are shown. In this case two
RCSend states are possible at the last control flow node of
P1. Because cache line 8 is used and useful at node b3 one
cache miss would occur, if a preemption takes place at node
b3.

4.2.2 Extention for n-way associative caches
A n-way set associative caches contains sets with n cache

blocks each. The RCS and LCS are defined for each cache
set. The usefulness of a cache block is determined by com-
paring the contents of both RCS and LCS. Unlike a direct-
mapped cache, in a n-way set associative cache a memory
line can be placed in n different positions in a set. Hence
only the cache blocks within a cache set are compared. For
example, the content of the first (second, third, ...) block in
set 1 in RCS is compared with the contents of all n blocks
in set 1 in LCS and so on.

4.3 Multiple preemption cost
We extend the path based CRPD analysis of [18] for pre-

emption scenarios. Suppose that S = {P2, P1, {b3, b4}} de-
notes the preemption scenario at basic block b2 and b4 where
P1 preempts P2. At process start we assume an empty cache
for now. Fig. 3 shows this preemption scenario.

The cost of the first preemption is calculated by the least
fixed point algorithm as described in Sec. 4.2. For all further
preemptions we procede as follows: To capture the effect of

P1

useful CB of P2 used CB of P1

P2

Time

0 1 2 3 4 5 6 7 8 9 0 a b c d e

Figure 3: Second preemption of process P2 by P1

a preemption at basic block bi by Pj on later preemptions, a
data flow analysis is performed for the preempting process.

The cache states of basic block bi are inserted at the first
CFG node of Pj . Then the data flow analysis determines
all reaching cache states of Pj . The cache states of the last
CFG node of the preempting process Pj , RCSend, is the set
of used cache blocks of Pj .

For each cache state CSk of RCSend, we insert after bi a
new basic block node in the CFG of the preempted process
and also insert the cache state CSk. If the preempting pro-
cess Pj finishes with n different reaching cache states then
n nodes are inserted. For the inserted node Nk, we define
genNk = RCSk, where RCSk is the kth reaching cache state
of the last basic block of Pj .

For our example in Fig. 1, we see in Fig 3 that only the
cache block (CB) of P2 is useful and CB 5 - c are used by P1.
Figure 4 shows a preemption at basic block b3 which uses
CB 7 and 8. The preempting process has two cache states
at its last node, hence two nodes are inserted. The resulting
CRPD is one, because only CB 8 is useful.

Then the iterative data flow analysis is applied and the
RCS of all other nodes are calculated again. This models
the fact that useful cache blocks might be overwritten by
a preemption and thus cannot be replaced again. However,
the LCS property is not recalculated, because otherwise it
would be possible to consider the preempting process’ cache
blocks as useful cache blocks. After recalculating the RCSs,
the CRPD is calculated for the next preemption point of
the preemption scenario. This procedure is applied for every
preemption point of the preemption scenario.

For loops this analysis is very complex, because several
iterations have to be modeled. We can simplify the analysis
by considering the number of iterations L and the total num-
ber of preemptions n . For the empty cache at process start,
the maximum preemption cost will occur within a loop. If
L ≥ n then we can precicely calculate the maximum cost by
n·CRPDloop, because all replaced cache blocks are reloaded
in the next iteration. CRPDloop denotes the maximum pre-
emption cost within the loop body. If L ≤ n we can at least
conservatively approximate it with n · CRPDloop. A more
accurate analysis would have to unroll the loop L times and
consider all possible preemption scenarios, thus increasing
the number of possible combinations.

CFG of P2

…

…

cb 8-9

cb 7-8

cb 5-8, b-c cb 5-6, 9-c

U: -

U: 8

CRPD: 1
cache states
RCSend of P1

no more useful cache blocks!

Figure 4: Insertion of nodes in CFG of process P1

4.4 Multiple process execution
In the previous sections we assumed an empty cache at

process start. However, some cache blocks might be present
in cache when the process is activated a second time. This
effects the core execution time of the process itself as well
as the CRPD.

At first we assume that no processes run between two
activations of process Pi. We model a cache state like in
Sec. 4.2 by inserting new nodes, but now we insert before
the first node in the control flow graph k nodes for k different
RCSOUT

end values of process Pi.

bb1 bb4…
…

CFG of P2

bb1 bb6…
…

CFG of P3

bb1 bb4…
…

CFG of P2

cs j

cs i

cs j

cs i

cs l

cs k

cs m

cs l

cs k

cs m

Cache states:

Figure 5: Multiple process activation

It is important to consider the processes which run be-
tween two activations. In this paper we assume the con-
servative approximation that all higher priority and lower
priority processes of the system can execute. This is new to
CRPD analysis, as current techniques consider only higher
priority processes.

We model the cache behavior of these intermediate exe-
cution of Pi, Pj1 , · · · , Pjk , Pi as a sequence of process execu-
tions. The sets of RCSOUT

end of the preceding process Pjm are
inserted as start nodes of process Pjm+1 . The last process is
the next instance of Pi. Note, that the CRPD at the second
activation of process Pj is independent of the order and the

frequency of intermediate processes. (See [25]).
Fig. 5 shows two activations of P2 and one intermediate

lower priority process P3 corresponding to Fig. 1. The two
cache states csi, csj at the end of process P2 are propagated
to the first node of the P3s CFG node. Then the usual data
flow analysis determines the RCS states for all nodes. The
cache states at the last node csk, csl, csm are again propa-
gated to the beginning of P2.

4.5 Worst case preemption scenario
This section describes how we find the preemption sce-

nario with the maximum cache related preemption delay.
We assume that the preempted process P2, the preempting
process P1 and the number of preemptions n by P1 during
execution of P2 is given. The analysis is based on the con-
trol flow graph which is constructed by SymTA/P for every
process.

SymTA/P is a tool to determine the WCET of processes
by analyzing feasible pathes on the source code level and
is currently being developed at our institute. The archi-
tecture can be modeled by an off-the-shelf cycle accurate
processor simulator or by measurments on an evaluation
board. Further on, a cache analysis determines the worst
case cache behavior for m-way associative instruction caches.
The longest execution path is found by solving a linear op-
timization problem based on the control flow graph of the
process. For details refer to [27].

Because the total preemption cost for n preemption nodes
is not additive it has to be computed as described in Sec. 4.3.
However, the sum of each preemption cost serves as an upper
bound for the total preemption cost.

4.5.1 Branch and bound algorithm
Given a control flow graph with m nodes there are

`
n
m

´
possible combinations of preemption points for n preemp-
tions, assuming one preemption at each node. The max-
imum preemption cost problem is solved as a global opti-
mization problem. We use Branch and Bound as a very
flexible and efficient algorithm.

We define C(ni) as the cache related preemption cost at
node i, which represents a basic block. This cost C(ni)
is calculated as described in Sec. 4.2. The calculation for
the cache related preemtion delay of node ni+1, where pre-
emptions that occur at the nodes n1 · · ·ni, are denoted by
Cn1,··· ,ni(ni+1). The calculation of this term is described in
Sec. 4.3.

The branch and bound algorithm starts with the com-
putation of C(ni) for all nodes in the control flow graph.
The nodes are sorted by the cost C(ni) descendently. We
index the list using i, e.g. L[i], is the i’th most expensive
preemption node.

Next, a tree is constructed, where nodes are the preemp-
tion nodes ni and the depth represents the number of pre-
emptions. Nodes on the same level k are possible candidates
for the kth preemption. A path from the start-node to a
leaf node represents a preemption scenario. To initialize the
tree, all nodes ni of the CFG, ordered by the cost C(ni), are
inserted at the same level after the empty start node.

Assuming that the total cost for i preemptions C̃(n1, · · · , ni)

is given, the total cost C̃(n1, · · · , ni, ni+1) for i + 1 preemp-
tions is computed by

C̃(n1, · · · , ni, ni+1) = C̃(n1, · · · , ni) + Cn1,··· ,ni(ni+1) (7)

E.g., the total cost of all i previous preemptions C̃(n1, · · · , ni)
plus the preemption cost for node ni+1 assuming preemp-
tions at the nodes n1, · · · , ni.

The quality of this algorithm depends on the branch-
and bound conditions. Branching is controlled by the sin-
gle preemption cost C(ni). For a new candidate a node is
chosen, which is not taken, e.g., not on this path on the
higher levels of the search tree, and has maximum cost, e.g.
{nk|C(nk)maximum, nk ∈ L}. The initial bound B of the
CRPD for n preemptions is given by iterating equation 7
exactly n times and choosing the most expensive node that
is not yet taken.

A sub-tree is bounded if the estimated cost after n + 1
preemption points, Ci+1

total of eq. 8, is smaller than the current
bound B. This means no preemption node is inserted and
the search continues at the i− 1th level.

Ci+1
total = C̃(n1, · · · , ni, ni+1)+

n−i−1X
k=1

C({L\{n1 · · ·ni+1}[k])

(8)
The cost Ci+1

total denotes the sum of the cost of previous pre-

emptions including the current one, C̃(n1, · · · , ni, ni+1), and
the upper bound of the cost of subsequent preemptions, e.g.,
the sum of the most expensive n − i − 1 preemption nodes
which are not yet taken. If Ctotal ≥ B then the node ni+1

is inserted at the node ni on the i+1th level and the search
continues until n preemption points are chosen. At the nth
node, the leaf node, the current bound B is replaced by
Cn

total, if it is larger than B.

4.5.2 Multiple process activations
For multiple process activation at first the reaching cache

states of the preempted process and the intermediate pro-
cesses is analyzed as described in Sec. 4.4. Then the worst
case preemption scenario for n preemptions is computed as
described in Sec. 4.5.1.

4.6 Algorithmic complexity
This section summarizes the complexities of the proposed

algorithms. The data flow analysis of Sec. 4.3 to com-
pute the number of useful cache blocks for multiple preemp-
tions may increase exponentially with the number of inserted
cache states RCSout of the preempting process. The analy-
sis for the preempting process is also cache state based, so
there are as many RCS states as paths with different cache
behavior. This is a critical issue of our approach and we are
currently developing approximation heuristics.

For multiple process activations, the complexity does not
grow because only a fixed number of cache states are inserted
at the start node.

The estimation of the most expensive preemption scenario
is theoretically exponential, but our experimental results of
the branch and bound algorithm of Sec. 4.5.1 indicate that
the number of paths to be investigated can be bounded very
effectively.

Table 1 presents the number of preemption scenarios for
1 to 4 preemptions for two benchmarks, FFT with 28 ba-
sic blocks and FFT with 99 basic blocks. For 4 preemp-
tions the number of preemptions considered by branch and
bound compared with a all combinations is 1.65% for FIR
and 0.61% for FFT, which is promising for larger bench-
marks.

preemptions FIR FFT
n B&B

` n
28

´
B&B

` n
99

´
1 28 28 99 99
2 175 378 390 4851
3 222 3276 9516 156849
4 337 20475 23014 3764376

Table 1: Number of preemption scenarios for branch
and bound algorithm compared with total number
of combinations

5. EXPERIMENTS
In this section we present the accuracy and performance

of our CRPD analysis technique for multiple preemptions
and multiple activations.

5.1 Experimental setup

Name Mem[B] Description

sqrt 94 square root calculation [18]
dac 168 array calculation with loops [27]
linear1 172 sequence of 10 add instructions
linear2 652 sequence of 40 add instructions
nsich 804 car window lift control [23]
statemate 872 car window lift control [23]

Table 3: Benchmark name, memory size in Byte and
description

We select six different benchmarks for our experiments
(refer to Table 3). We use the ARM developer studio[1] for
processor simulation and Dinero[8] for cache simulation. All
benchmarks are compiled for ARM946 assembly language
with fixed four byte instruction width. The control flow
graph is generated from C code with SymTA/P. Given the
CFG and the ARM memory mapping file, our analyzer com-
putes the CRPD. The cache parameters, preempted process,
preempting process, number of preemptions and the pre-
emption scenario are defined by an XML description. sqrt

and dac are the only C programs with loops. nsich and
statemate were generated by STAtechart Real-time-Code
generator STARC, C-lab [23] which specifies an car window
lift control.

5.2 Multiple process activation
First we show the accuracy of our modeling for multi-

ple process activation. We choose dac, sqrt, linear2, and
statemate as higher priority tasks and linear and nsich

as higher priority tasks. Table 2 presents the total num-
ber of cache misses during the second activation of the pre-
empted task for different cache configurations. The first
column shows the cache parameters. A 2-way associative
256 Byte cache with block size 8, for example, is denoted as
512-8-2. For each preemption pair P1/P2 the results from
the conservative approximation Cnegi by [18], from our re-
fined analysis Cana, and from exhaustive simulation Csim is
given. For the first two pairs the preempted process contains
loops, for last two columns the preempted process contains
only linear code. Cnegi is calculated by

Cnegi = CMP1 + CRPDP2
P1

(9)

where CMP1 denotes the total number of cache misses of
task P1 during execution starting with an empty cache,
which is estimated by simulation. CRPDP2

P1
denotes the

cache related preemption delay. It is calculated by our re-
fined analysis with the empty cache at process start config-
uration. Cana is calculated by

Cana = CMP1P1 + CRPDP2
P1P1

(10)

where CMP1P1 denotes the number of cache misses during
the second activation of P1, supposing that P1 was executed
once before and is estimated by simulation. CRPDP2

P1P1
denotes the cache related preemption delay for the second
activation of P1 by P2 as the result of our approach in Sec-
tion 4.4. For simplicity we assume that no process runs
between two process activations of P1.

The results show that our approach is very close to the
actual number of cache misses determined by simulation.
The conservative approximation by [18] is for some cache
architectures 100% inaccurate. This is because an empty
cache is assumed for every process activation. The conser-
vative approach is also highly innacurate for larger caches,
where all applications fit entirely in the cache. For linear
programs this is the case for 2KB caches and for programs
with loops it is the case for the 2-way 1KB and 2-way 2KB
cache. The performance of our analysis for the benchmarks
was between 30 seconds and 8 minutes on3.4 GHz Pentium
4 processor and 2 GB RAM.

Let us now consider the effect of of multiple preemptions
regarding the response time of the preempted process. Ta-
ble 4 presents the response time for different cache architec-
tures and benchmarks in terms of clock cycles (clk). With
the ARM simulator we determine the core execution time
tP1 , tP2 of process P1 and P2 respectively. tnegi

resp and tana
resp

are given by equation 12 and 13.

X = tP1
core + tP2

core + I1 + I2 + CMP2(Pm − 1) (11)

tnegi
resp = X + Cnegi(Pm − 1) (12)

tana
resp = X + Cana(Pm − 1) (13)

where I1 and I2 are the number of executed instructions of
P1 and P2 and Pm the cache miss penalty (not shown in
Table 4). Cnegi and Cana are defined by equation 9 and 10.
The response time is calculated by adding the core execution
times and the time for cache hits and misses for preempted
process P1 and cache hits and misses for preempting process
P2. The term I1 + Cnegi(Pm − 1) for tnegi

resp is the delay of
cache misses (Cnegi ·Pm) and cache hits (I1−Cnegi · 1). For
our experiments we assumed one clock cycle for a cache hit
and Pm = 20 clock cycles for a cache miss.

The results show that the response time is pessimistically
overestimated by Negi’s approach. The last column presents

the performance loss P negi
loss =

tnegi
resp−tsim

resp

tsim
resp

, which could be

gained with a more accurate analysis. The inaccuracy grows
with the cache size. For example, the performance loss in
case of a 1KB and 2KB cache for sqrt/linear is 70% and for
statemate/nsich even 83% for the 2KB cache. The results
for our refined analysis is in most cases exact to the simu-
lated response time, the maximum error is 4% in the case of
sqrt/linear for direct mapped 512 instruction cache.

5.3 Multiple preemption cost
Now we consider multiple preemptions with an empty and

preloaded cache. Table 5 presents the preemption cost of

dac/linear sqrt/linear linear2/nsich statem./nsich
Cache-C. Cnegi Cana Csim Cnegi Cana Csim Cnegi Cana Csim Cnegi Cana Csim

256-8-1 20 12 12 60 38 30 83 83 83 100 100 100
256-8-2 16 6 6 60 48 42 83 83 83 100 100 100
512-8-1 20 12 12 52 22 19 83 83 83 100 100 100
512-8-2 12 0 0 52 22 19 83 83 83 100 100 100
512-16-1 13 9 8 28 11 10 43 44 43 51 53 51
512-16-2 8 0 0 22 9 9 43 44 43 51 53 51
1024-8-1 12 12 12 52 22 19 83 69 67 100 63 60
1024-8-2 12 0 0 42 0 0 83 70 68 100 85 84
2048-8-1 12 12 12 52 22 19 83 0 0 100 0 0
2048-8-2 12 0 0 42 0 0 83 0 0 100 0 0

Table 2: Number of total cache misses for one preemption at second process activation.

Benchmark C-size tP1
core [clk] tP2

core [clk] tnegi
resp [clk] tana

resp[clk] tsim
resp [clk] P negi

loss [%]

dac/linear 256-8-1 197 42 1193 1041 1041 15
dac/linear 512-8-1 197 42 1193 1041 1041 15
dac/linear 1024-8-2 197 42 1041 813 813 28
sqrt/linear 512-8-1 384 42 2119 1549 1492 42
sqrt/linear 1024-8-2 384 42 1929 1131 1131 70
sqrt/linear 2048-8-2 384 42 1929 1131 1131 70
linear2/nsich 1024-8-1 163 286 3336 3070 3032 10
linear2/nsich 2048-8-1 163 286 4269 2690 2690 58
linear2/nsich 2048-8-2 163 286 4269 2690 2690 58
statemate/nsich 512-8-1 241 286 4174 4174 4174 0
statemate/nsich 1024-8-1 241 286 4174 3585 3547 18
statemate/nsich 2048-8-1 241 286 4174 2274 2274 83

Table 4: Response time for a preemption during second activation for several benchmarks and cache sizes

five preemptions for four task sets with dac, sqrt, nsich,
and statemate as lower priority tasks and for simplicity we
choose the linear benchmarks linear and linear2 as higher
priority tasks. The results show that for an empty cache our

Empty Cache Preloaded Cache
LP / HP Task Cache Negi Ana Negi Ana

dac/linear 512-8-1 52 52 52 43
dac/linear 1024-8-1 52 52 52 40
dac/linear 1048-8-1 12 12 12 12
sqrt/linear 512-8-1 182 182 182 169
sqrt/linear 1024-8-1 47 47 47 1
sqrt/linear 2048-8-1 42 42 42 0
nsich/linear2 512-8-1 104 104 104 83
nsich/linear2 1024-8-1 104 104 104 74
nsich/linear2 2048-8-1 99 99 99 0
statemate/linear2 512-8-1 125 125 125 107
statemate/linear2 1024-8-1 125 125 125 97
statemate/linear2 2048-8-2 120 120 120 0

Table 5: Comparison of total number of cache misses
of Negi and our approach for 5 preemptions with
empty and preloaded cache for given lower priority
(LP) and higher priority (HP) tasks.

analysis does not improve the accuracy for processes with
or without loops. The reason is that the most expensive
preemption points are inside the loop body. In the above
benchmarks the number of loop iterations was greater than
five, therefore a all preemptions occurred in the loop body.

However, in the case of multiple activations our analysis
approach yield more accurate results because the effect of a
preemption is propagated in the control flow graph. For a
larger 2 KB cache the preemption cost is even zero for all

preemptions in benchmark nsich/linear2 and statemate

/linear2, in contrast to 99 and 120 cache misses in Negi’s
approach.

The performance of our analysis ranged from several min-
utes for dac/linear and sqrt/linear to several hours for
nsich/linear2 and statemate/linear2. The reason for the
long running time is the exponential number of states that
are propagated after inserting a preemption node.

6. CONCLUSION
In this paper we have proposed a refined cache related pre-

emption delay analysis which considers multiple process ac-
tivations and preemption scenarios. The proposed technique
extends the approach of [18] by propagating replaced cache
blocks in the control flow graph and extending the data flow
analysis for m-way associative instruction caches. Multiple
process activations are modeled by inserting an edge from
the last to the first node.

The results with a realistic processor architecture show
that cache effects lead to process interdependencies which
can easily outweigh individual process execution times. Such
cases are not covered by the classical performance analysis
approaches which are based on individual process execution
times plus independent blocking times (e.g. [4]).

Further research is necessary to develop less complex anal-
ysis algorithms for multiple preemptions, to analyze the set
of processes that execute between two process activations,
to consider data caches and to integrate the CRPD analysis
with the response time analysis.

Also, applications with loops behave better in other ap-
proaches. However, for automotive control applications lin-
ear code is very important (e.g. Matlab/Simulink generated

code). Here current approaches result in large overestima-
tions. On the other hand, cache parameters have a signifi-
cant influence on process interdependence. We can therefore
conclude that cache analysis should receive maximum atten-
tion in embedded system design, process systems should be
used as benchmarks rather than individual processes to con-
sider multiple process activation and that new models and
approaches are needed for performance analysis of systems
with caches.

7. REFERENCES
[1] ARM Developer Suite, (ADS) version 1.2.

http://www.arm.com/devtools.ns4/html/ADS.

[2] Swagato Basumallick and Kelvin Nilsen. Cache issues in
real-time systems. In ACM SIGPLAN Workshop on
Language, Compiler and Tool Support for Real-Time
Systems, 1994.

[3] Jose Vicente Busquets-Mataix and Andy Wellings. Adding
instruction cache effect to schedulability analysis of
preemptive real-time systems. In Proceedings of the IEEE
Real-Time Technology and Applications Symposium, pages
204–212, June 1996.

[4] G. Buttazzo. Hard Real-Time Computing Systems.
Norwell, MA: Kluwer, 1997.

[5] Marti Campoy, A. Perles Ivars, and J. V. Busquets-Mataix.
Static use of locking caches in multitask preemptive
real-time systems. In IEEE Real-Time Embedded System
Workshop, December 2001.

[6] Anupam Datta, Sidharth Choudhury, Anupam Basu,
Hiroyuki Tomiyama, and Nikil Dutt. Satisfying timing
constraints of preemptive real-time tasks through task
layout technique. In Proceedings of 14th IEEE VLSI
Design, pages 97–102, January 2001.

[7] Harry Dwyer and John Fernando. Establishing a tight
bound on task interference in embedded system instruction
caches. In CASES’01, Atlanta, Georgia, USA, November
16-17 2001.

[8] Jan Edler and Mark D. Hill. Dinero IV Trace-Driven
Uniprocessor Cache Simulator.
http://www.cs.wisc.edu/ markhill/DineroIV.

[9] Christian Ferdinand and Reinhard Wilhelm. Efficient and
precise cache behavior prediction for real-time systems.
Real-Time Systems, 1999.

[10] J. C. Palencia Gutierrez, J. J. Gutierrez Garcia, and
M. Gonzalez Harbour. Best-case analysis for improving the
worst-case schedulability test for distributed hard real-time
systems. In Proceedings of 10th Euromicro Workshop on
Real-Time Systems, pages 35–44. IEEE Computer Society
Press, June 1998.

[11] William Henderson, David Kendall, and Adrian Robson.
Improving the accuracy of scheduling analysis applied to
distributed systems computing minimal response times and
reducing jitter. Real-Time Systems, 20(1):5–25, 2001.

[12] Infineon. Tricore 1 manual http://www.infineon.com/cgi
/ecrm.dll/ecrm/scripts/prod ov.jsp?oid=30926&cat oid=-
8362.

[13] Daniel Kästner and Stephan Thesing. Cache sensitive
pre-runtime scheduling. In ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Systems,
volume 1474 of Lecture Notes in Computer Science, pages
131–145. Springer, 1998.

[14] D. B. Kirk. Smart (strategic memory allocation for
real-time) cache design. In IEEE Real-Time Systems
Symposium, pages 229–239, 1989.

[15] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul
Min, Rhan Ha, Seongsoo Hong, Chang Yun Park, Minsuk
Lee, and Chong Sang Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.
IEEE Transactions on computers, 47(6):700–713, June
1998.

[16] Chang-Gun Lee, Kwangpo Lee, Joosun Hahn, Yang-Min
Seo, Sang Lyul Min, Rhan Ha, Seongsoo Hong, Chang Yun
Park, Minsuk Lee, and Chong Sang Kim. Bounding
cache-related preemption delay for real-time systems. IEEE
Transactions on software engineering, 27(9):805–826,
November 2001.

[17] Sharad Malik and Yau-Tsun Steven Li. Performance
Analysis of Real-Time Embedded Software. Kluwer
Academic Publishers, 1999.

[18] Hemendra Sigh Negi, Tulika Mitra, and Abhaik
Roychoudhury. Accurate estimation of cache-related
preemption delay. In CODES+ISSS’03, Newport Beach,
California, USA, October 1-3 2003.

[19] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru
Nicolau. Memory Issues in Embedded Systems-On-Chip:
Optimizations and Exploration. Kluwer Academic
Publishers,Norwell, MA, 1999.

[20] Stefan M. Petters and Georg Färber. Scheduling analysis
with respect to hardware related preemption delay. In In
Workshop on Real-Time Embedded Systems, London,
United Kingdom, December 3 2001. (Satellite Workshop of
The IEEE Real-Time Systems Symposium (RTSS 2001)).

[21] Isabelle Puaut and David Decotigny. Low-complexity
algorihtms ofr static cache locking in multitasking hard
real-time systems. In Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’02), 2002.

[22] Jörn Schneider. Cache and pipeline sensitive fixed priority
scheduling for preemptive real-time systems. In 21st IEEE
Real-Time Systems Symposium, pages 195–204, November
2000.

[23] Friedhelm Stappert. Wcet benchmarks. http://www.c-
lab.de/home/de/people/people.php?id=Stappert Friedhelm 00.

[24] Jan Staschulat and Rolf Ernst. Cache effects in multi
process real-time systems with preemptive scheduling.
Technical report, IDA, TU Braunschweig, Germany,
November 2003.

[25] Jan Staschulat and Rolf Ernst. Crpd independence for
multiple process execution. Technical report, IDA, TU
Braunschweig, March 2004.

[26] Hiroyuki Tomiyama and Nikil D. Dutt. Program path
analysis to bound cache-related preemption delay in
preemptive real-time systems. In ACM International
Symposium on Hardware Software Codesign (CODES),
2000.

[27] Fabian Wolf. Behavioral Intervals in Embedded Software.
Kluwer Academic Publishers, 2002.

[28] Fabian Wolf, Jan Staschulat, and Rolf Ernst. Hybrid cache
analysis in running time verification of embedded software.
Design Automation for Embedded Systems, 2002.

