
Design Space Exploration and System Optimization with
SymTA/S - Symbolic Timing Analysis for Systems

Arne Hamann, Marek Jersak, Kai Richter, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig / Germany

{hamann|jersak |richter |ernst }@ida.ing.tu-bs.de

ABSTRACT

The increasing complexity of heterogeneous SoC and
distributed systems confronts the system designer with
problems how to determine reasonable design alternatives
leading to well functioning systems. Ideally, a designer
would try all possible system configuration and choose the
best one regarding specific system requirements. Unfortu-
nately, such an approach is not possible because the high
number of design parameters in complex systems leads
to a very large design-space, prohibiting an exhaustive
search. Consequently, good search techniques are needed
to find optimal, or at least good, design alternatives. In this
paper, we present a design space exploration framework
for system optimization using SymTA/S, a software tool for
formal performance analysis. In contrast to many previous
approaches, our approach takes the hierarchical structure
of the design space of heterogeneous SoC and distributed
systems into account, allowing the designer to control the
exploration process. A main technique in our approach is
systematic system optimization using traffic shaping.

I. I NTRODUCTION

A major problem during the design of complex hetero-
geneous embedded systems is that it is not obvious which
design alternatives make sense and lead to good system
behavior. For this reason it is important to evaluate a large
number of alternative architectures and implementation
alternatives. Ideally, the designer would try all possible
alternatives and choose the best regarding specific system
requirements. Unfortunately, this is not possible because
the high number of design parameters in complex systems
leads to a very large design-space, prohibiting an exhaus-
tive search. Consequently, good exploration techniques are
needed to find optimal, or at least good, design alternatives.

Manual design space exploration heavily reduces design
productivity. It is highly desirable to automate at least
part of the process. Of course, even automatic exploration
cannot search the whole design space in reasonable time.
Therefore, it is important to find an appropriate sub search
space containing good solutions. Restriction of the search
space to crucial system parameters is necessary to allow
an efficient search for good design alternatives.

In this paper we present a framework for design space
exploration and system optimization using SymTA/S. An

important aspect in our approach is the introduction of traf-
fic shaping as search parameter. Traffic shaping weakens
functional and non-functional performance dependencies
and allows to find working system configurations which
are not possible without traffic modulation.

Our exploration framework provides the designer with
the possibility to perform several exploration steps in
locally restricted search spaces. This approach allows
him to control the exploration process and provides him
insight to system-level performance dependencies. Based
on this knowledge the designer can identify interesting
design sub-spaces, worthy to be searched in-depth or even
completely. An a priori global exploration does not permit
such a flexibility and neglects the structure of the design
space, giving the designer no possibility to modify and
select the exploration strategy. In the worst-case, when
the composition of the design space is unfavorable, this
can lead to nonsatisfying results with no possibility for
the designer to intervene. In many approaches the only
possibility for the designer in such a case consists in
restarting the exploration, hoping for better results.

The remainder of this paper is structured as follows.
After an overview of related work we will give a brief
introduction into the formal core of SymTA/S [6], a soft-
ware tool for formal performance analysis. Afterwards, we
will review the theoretical background of the traffic shap-
ing mechanism used in SymTA/S. We will then explain
how SymTA/S is used to conduct user controlled design
space exploration. Finally, we describe a synthetical SoC
example and perform several exploration steps in order to
optimize its performance.

II. RELATED WORK

There is a large body of work in the area of design
space exploration for system optimization. However, nearly
all approaches concern specific domains or focus on a
small set of system parameters and optimization objectives.
Moreover, the underlying analysis techniques often limit
the supported system architectures.

The approach described in [21] introduces an analysis
technique to estimate end-to-end packet delays and queu-
ing memory in network processor architectures. Based on
this information a measure is defined to characterize the
performance of such architectures under different usage

scenarios. By means of design space exploration pareto-
optimal architectures are searched trading good perfor-
mance under several usage scenarios versus cost. In [11]
the authors treat the reverse problem. Instead of deter-
mining worst-case buffer requirements and output stream
properties for given input streams and scheduling policies,
the authors search for the input stream rates that can
be supported by a given stream processing architecture
without violating on-chip buffer constraints. The authors
propose the integration of this technique into a tool for
automated design space exploration for fast performance
evaluation of different stream processing architectures.

[4] presents a heuristic algorithm for priority assign-
ments in distributed hard real-time systems to optimize
end-to-end deadlines. The algorithm iteratively decom-
poses the global deadlines into artificial local deadlines
and then assigns deadline monotonic priorities on each
resource. This approach is thus not applicable to more
general priority assignments or other types of scheduling
policies.

The approach in [15] focuses on bus access optimization
(TDMA and static priority preemptive) in multi-cluster
embedded systems interconnected via gateways. Thereby,
the application structure is feed-forward. Optimization
objectives are end-to-end deadlines. The authors propose a
partitioning and mapping heuristic and a heuristic adjusting
TDMA slot sizes in time-triggered clusters. For the pri-
ority assignments in event-triggered clusters the heuristic
presented in [4] is used. The heuristics work well for
the considered feed-forward applications. However, it is
not yet published how they perform for more complex
application structures.

[5] describes thePlatune framework allowing perfor-
mance and power tuning of a specific parameterized SoC
platform. For a given application to be mapped on the
target SoC,Platune determines all sets of architectural
parameter values representing pareto-optimal solutions re-
garding power and performance. The detection of all
pareto-optimal solutions is achieved effectively by clus-
tering the search space into independent parts, for which
pareto-optimal solutions can be determined separately.

The Spacewalker[20], part of thePICO project from
HP Labs, pursuits a similar approach. For given applica-
tions, it searches for pareto-optimal embedded computer
systems. The search space is explored using a divide-and-
conquer approach. In the first step different subsystem are
explored independently. From the sets of obtained pareto-
optimal subsystems, global systems are constructed and
evaluated. This hierarchical exploration approach seems
to work well for the architecture presented in the pa-
per. However, for performance dependent subsystems the
combination of local pareto-optima rarely leads to global
pareto-optima.

III. T HE SYM TA/S APPROACH

SymTA/S [6] is a software tool for formal performance
analysis of heterogeneous SoCs and distributed systems.
The core of SymTA/S is our recently developed tech-
nique to couple scheduling analysis algorithms using event
streams [16], [18]. Event streams describe the possible I/O
timing of tasks and are characterized by appropriate event
models such as periodic events with jitter or bursts and
sporadic events. At the system level, event streams are
used to connect local analyses according to the systems
application and communication structure.

In contrast to previous work, SymTA/S explicitly sup-
ports the combination and integration of different kinds
of analysis techniques known from real-time research.
For this purpose, it is essential to transition between the
often incompatible event stream models resulting from
the dissimilitude of the local techniques. This kind of
incompatibility appears for instance between an analysis
technique assuming periodic events with jitter and an anal-
ysis technique requiring sporadic events. In SymTA/S we
useevent model interfaces (EMIFs)and event adaptation
functions (EAFs)to realize these essential transitions [16].

However, integration of heterogeneous systems is not
the sole domain of application for EMIFs and EAFs.
In SymTA/S so-called shapers can be connected with
any event stream. Shapers are basically EMIF-EAF com-
binations which manipulate an event stream, and thus
the interaction between two components. They provide
control about the timing of exchanged events and data
and consequently also about performance dependencies.
We have shown in [17] that this is especially important to
break up non-functional dependency cycles and to reduce
transient load peaks in dynamic systems. In other words,
due to the event model transformation provided by EMIFs
and EAFs, SymTA/S is able to analyze many real world
examples that holistic approaches [24], [14] cannot handle.

In order to perform a system level analysis, SymTA/S
locally performs existing scheduling analyses (e.g. RMS,
TDMA, Round Robin, etc.) and propagates their results
to the neighbouring components. This analysis-propagate
mechanism is repeated iteratively until all components are
analyzed, which means that all output streams remained
unchanged.

The above described basic SymTA/S approach has been
recently extended to support multi-rate systems, tasks with
multiple activating inputs (OR- or AND-concatenated),
conditional communication and functional cycles [7], [9].
These major extensions enable SymTA/S to cope with
complex applications.

Furthermore, SymTA/S is able to consider system con-
text information to tighten analysis bounds. We define as a
system context all kinds of correlations between activating
events that go beyond the possible timing of consecutive
events in one event stream.Inter event stream contexts,
initially introduced by Tindell [25] and generalized by Pa-
lencia and Harbour [13], consider possible phases between

events in different event streams, thus allowing to calculate
a tighter number of interrupts of a task by other tasks
sharing the same component.Intra event stream contexts,
initially introduced by Mok and Chen [12], consider corre-
lations between successive computation or communication
requests, thus allowing to calculate a tighter load for a
number of successive activations of a task. Both types
of contexts lead to the calculation of shorter worst-case,
and longer best-case response times. In [8] we presented
the generalization of intra event stream contexts, the com-
bination of both types of contexts during analysis, and
explicit distinction between different types of events on one
hand, and different task behaviors on the other. The latter
is crucial for subsystem integration and compositional
performance analysis, since different types of events are
a property of the sender, while different behaviors are a
property of the receiver.

IV. T RAFFIC SHAPING

Scheduling and data dependent behavior induce jitter
to the input-output timing of processes and communi-
cation [17]. Such jitters accumulate in the system and
can lead to event bursts. Both effects increase timing
uncertainty and worst-case peak load.

Such peak loads caused by bursty streams can be
controlled by modulating the maximum number of events
per time, called traffic shaping. Traffic shaping reduces
the impact of an event stream on other streams at the
cost of a potentially increased latency of the controlled
stream. The shaping effects are rather complex and require
special modeling considerations that will be explained in
the following.

A bursty event stream is defined by three parameters,
an average periodT, a maximum allowed jitterJ, and a
minimum event distanced− during bursts. As a popular
measure of system load in scheduling analysis, theη+(∆t)
function determines the maximum number of eventsη+

for a given interval of time∆t. Small time intervals are
dominated by bursty behavior, where the system load is
only limited by the minimum event distanced−. Larger
observation intervals reveal the generally periodic nature
of the event stream. Thearrival curve [23] in figure 1
illustrates the two different regions. Theη+ function of
the stream is the minimum of both regions:

η+
in(∆t) = min

(⌈
∆t
d−

⌉
,

⌈
∆t +J

T

⌉)
. (1)

Using time-out buffers, designers can deliberately en-
force an additional bound on the minimum event distances.
Such time-out buffers representtraffic shapersthat are in-
serted in the design between two application components.
The time-out mechanism buffers incoming events such that
no two successive events are released earlier in time than
d−time out.

According to the extended real-time calculus approach
of Thiele et. al. [22], the shaper defines a sporadic upper-

bound service curve[23] with η+
time out(∆t) =

⌈
∆t

d−time out

⌉
.

The shapers output arrival curve can be calculated from
both, input arrival curveη+

in(∆t) and shaper service curve
η+

time out(∆t). The calculations are usually very complex
and their general application to arbitrary arrival and service
curves, as proposed in [22], is extremely doubtful. In case
of traffic shapers, however, the complex real-time calculus
equations can be easily reduced to

η+
shaped(∆t) = min

(
η+

timeout(∆t),η+
in(∆t)

)
= min

(⌈
∆t

d−timeout

⌉
,

⌈
∆t

d−in

⌉
,

⌈
∆t +J

T

⌉)
.

The larger value ofd−in and d−time out will dominate the
other, and we can further reduce theη+

shaped(∆t) function to
theη+ function of an event stream with burst as introduced
by equation 1. In case ofd−time out≤ d−in , the shaper does not
actually represent an additional constraint. In other words,
the shaper is “inactive”, no events are buffered and the
output arrival curve equals the input arrival curve.

Obviously more interesting is the case ofd−time out> d−in .
Input events are buffered and the shaper “flattens” the burst
slope of the output arrival curve according tod−time out:

η+
shaped(∆t) = min

(⌈
∆t

d−time out

⌉
,
⌈∆t+J

T

⌉)
. Figure 2 illustrates

this behavior. The arrival curve with a minimum distance
of d−in is above the service curve with a minimum event
distance ofd−time out. The block arrows indicate buffering.
Thiele et. al. already recognized that the vertical distance
between the arrival and the service curve captures the so

0

η(∆t)

3
4

5

6

7

1
2

∆t

8

9

10

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ∆
=∆ −

+

d
tt)(burstη

⎥⎥
⎤

⎢⎢
⎡ +∆

=∆+

T
Jtt)(burstnon η

non-bursty stream behavior burst

T

−d

Fig. 1 - EVENT ARRIVAL CURVE OF INCOMING EVENT STREAM

0

η(∆t)

3
4

5

6

7

1
2

∆t

8

9

10 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥⎥
⎤

⎢⎢
⎡ +∆

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ∆
=∆ −

+

T
Jt

d
tt ,min)(inη

−
out timed

−d

T

non-bursty stream behavior
input burst

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∆⎥

⎥

⎤
⎢
⎢

⎡ ∆
=∆ +

−
+)(,min)(in

out time
out time t

d
tt ηη

buffer processing

shaping interval

Fig. 2 - EVENT ARRIVAL CURVE OF INCOMING EVENT STREAM

called backlog [23], i. e. the number of buffered events at a
given point in time:backlog(∆t) = η+

in(∆t)−η+
time out(∆t).

The vertical distance between the curves, i. e. the length
of the arrows in the figure, represents the delay of the
corresponding event. The calculations are slightly more
sophisticated than thebacklog, although the specialties of
traffic shaping reduce the complexity of the general real-
time calculus theory [23]. We recently introduced another
function δ−(n) that determines the minimum distance
betweenn successive events [19]. Roughly speaking,δ−(n)
is the inverse ofη+(∆t) since it returns the earliest time∆t
at which thenth event (n≥ 2) can arrive after the first one.
For the bursty arrival curve and the sporadic service curve,
these are given byδ−in(n) = max

(
(n−1)d−in ,(n−1)T−J

)
andδ−time out(n) = (n−1)d−time out. Hence, the delay is given
by: delay(n) = δ−time out(n)−δ−in(n).

The sought-after maxima of backlogmax =
max∆t>0backlog(∆t) anddelaymax= maxn≥2delay(n) can
be calculated through linearization of the discreteη+ and
δ− functions. Details can be found in [19]. For this paper,
the following qualitative explanation shall be sufficient.
It should not surprise that the worst-case buffering and
delay situation appears at the end of the input burst. At
that time, the most eventsare stored “waiting” for being
processed until the buffer is empty and the behavior
returns to “non-bursty”. And clearly the last event of the
input burst has towait longest.

Compared to full synchronization, traffic shapers pro-
vide promising peak load reduction and load balancing ca-
pabilities with smaller buffers and delays. And shapers al-
low to trade-off different design objectives. Largerd−time out
values result in more balanced system load and better
schedulability, while they increase delays and buffering
requirements along task chains (or paths). In this paper,
the shapers time-out value is subject to system-level opti-
mization.

V. DESIGN SPACE EXPLORATION INSYM TA/S

In this section we will give an overview of the com-
positional design space exploration framework used in
SymTA/S which is based on evolutionary optimization
techniques. We will first describe system parameters which
can be subject to optimization and how they can be
composed to define the search space. Then we will give
some examples of metrics expressing desired or undesired
system properties, i.e. the optimization objectives. Finally,
we will explain the iterative design space exploration
performed in SymTA/S.

A. Search Space

We see the entire system as a set of independent
chromosomes, each representing a distinct subset of system
parameters. A chromosome carries the variation operators
necessary for combination with other chromosomes of its
type. In SymTA/S we currently use the standard operators
mutation and crossover which are independently applied

to the chromosomes. The scope of a chromosome is
arbitrary, it reaches from one single system parameter to
the whole system. Examples for reasonable independent
chromosomes are:

• priority assignments of tasks on one or several
priority-scheduled resources

• time slot sizes of tasks on one or several TDMA or
round robin scheduled resources

• speed / throughput of one or several resources
• traffic shaping
Traffic shaping is included because it increases the

design space and allows to find solutions which are not
possible without traffic modulation. This shall be shown
with a small example.

We consider the task set in table I scheduled according
to the static priority preemptive policy. All tasks are
activated periodically exceptT0 which has a very large
jitter leading to the simultaneous arrival of 3 activations in
the worst case.

Name Activating Event Model CET Deadline

T0 P (100) + J (200) + d(10) 4 8
T1 P (100) + J (0) + d(0) 8 12
T2 P (100) + J (0) + d(0) 5 21
T3 P (100) + J (0) + d(0) 3 24

TABLE I - SIMPLE TASK SET

We conduct two experiments. The first one with the
original activating event models and the second one using
a shaper at the input ofT0 extending the minimum
distance to 12. In the first experiment we do not find
a priority assignment leading to a system fulfilling all
constraints. However, in the second experiment we find
the priority assignmentT0 > T1 > T2 > T3 leading to a
working system. The reason for this is that extending the
minimum distance of successive activations ofT0 relaxes
the impact of the burst and leads to more freedom for
the lower priority tasks to execute. This results in less
preemption and thus earlier completion forT1, T2 andT3.
Figures 3(a) and 3(b) visualize this effect by showing the
worst-case scheduling scenarios for the priority assignment
T0 > T1 > T2 > T3 with minimum distances 10 and 12.

Note that in the general case concerning distributed
systems with complex performance dependencies, opti-
mization through traffic shaping is not applicable in such
a straight forward manner. Nevertheless, traffic shaping
can broaden considerably the solution-space by restricting
event streams, leading to increased freedom on cross-
related event streams. The example in section VII will
underline this by means of a small but realistic example.

The designer defines the current search space, by select-
ing and configuring the set of chromosomes representing
the desired search space. System parameters not included
inside the selected chromosomes remain immutable.

Figure 4 shows this principle.
The set of chromosomes representing the search space

serves as blueprint for specificindividuals (phenotypes)

(a) Minimum Distance 10

(b) Minimum Distance 12

Fig. 3 - WC SCHEDULING SCENARIOST0 > T1 > T2 > T3

Fig. 4 - SEARCH SPACE DEFINITION

used during exploration. The variation operators (i.e.
crossover and mutation) for these individuals are applied
chromosome-wise.

There are two reasons why we have chosen independent
encoding and variation. First, it is easier to establish
a constructively correct encoding on a small subset of
design decisions. Such an encoding scheme ensures that
all chromosome values correspond to valid decisions such
that any chromosome variation is constructively valid. This
improves the optimization process as it greatly reduces the
effort of checking a generated design for validity. It allows
to use the analysis engine of SymTA/S which requires
correct design parameters to apply analysis (e.g. sum of
time slots no longer than the period, legal priority setting).
Secondly, it is easy to add and remove design parameters
to the optimization process, even dynamically, which we
exploit in our approach.

Chromosomes can be defined arbitrarily fine or coarse
grain. This enables the designer to define the search
space very precisely. She can limit certain parameters
locally while giving others a more global scope. This way
of defining the search space represents a compositional
approach to optimization and allows to scale the search
process. The designer can conduct several well directed
exploration steps providing her insight into the system’s
performance dependencies. Based on this knowledge she
can then identify interesting design sub-spaces, worthy to
be searched in-depth or even completely. An a priori global
exploration does not permit such a flexibility and neglects
the structure of the design space, giving the designer no
possibility to modify and select the exploration strategy.
In the worst-case, when the composition of the design
space is unfavorable, this can lead to nonsatisfying results
with no possibility for the designer to intervene. In many
approaches the only possibility for the designer in such a
case consists in restarting the exploration, hoping for better
results.

One important precondition for this approach to design
space exploration is the on-line configurability of the
search space. Our framework allows the designer to redi-
rect the exploration in a new direction without discarding
already obtained results. She can for example downsize
the search space by fixing parameters having the same
values in (nearly) all obtained pareto-optimal solutions, or
expand it with parameters not yet considered. Note that this
methodology is more flexible than separate local parameter
optimization and subsequent recombination.

B. Optimization Objectives

Optimization objectives can be any kind of metric de-
fined on desired or undesired properties of the considered
system. Note that some metrics only make sense in combi-
nation with constraints. Each individual is associated with
a fitness vector containing one entry for every concurrent
optimization objective. We use the following notation:
R - maximum response time of a task or

maximum end-to-end latency along a path
D - deadline (task or end-to-end)
ω - constant weight> 0
k - number of tasks or

number of constrained tasks/paths in the system
and define following example optimization objectives
available in our framework:

1) minimization of the (weighted) sum of completion
times

k

∑
i=1

ωi ∗Ri

2) minimization of the maximum lateness

max(R1−D1, . . . ,Rk−Dk)

3) maximization of the minimum earliness

min(D1−R1, . . . ,Dk−Rk)

4) minimization of the (weighted) average lateness

k

∑
i=1

ωi ∗ (Ri −Di)

5) maximization of the (weighted) average earliness

k

∑
i=1

ωi ∗ (Di −Ri)

6) minimization of end-to-end latencies
7) minimization of jitters
8) minimization of the sum of communication buffer

sizes
The choice of the metric for optimization of a specific

system is very important to obtain satisfying results. Ex-
ample metrics 4 and 5, for instance, express the average
timing behavior of a system with regard to its timing
constraints. They might mislead an evolutionary algorithm
and prevent him from finding system configurations fulfill-
ing all timing constraints, since met deadlines compensate
linearly for missed deadlines. For systems with hard real-
time constraints, metrics with higher penalties for missed
deadline and less rewards for met deadlines can be more
appropriate, since they lead to a more likely rejection of
system configurations violating hard deadline constraints.
Following example metric penalizes violated deadlines in
an exponential way and can be used to optimize the timing
properties of a system with hard real-time constraints:

k

∑
i=0

cRi−Di
i , ci > 1 constant

Performing a multi-objective optimization in SymTA/S
usually leads to the discovery of severalpareto-optima.
Pareto-optima are best solutions with respect to a particular
parameter. More precisely, given a setV of k-dimensional
vectorsv ∈ Rk. A vectorv ∈ V dominates a vectorw ∈ V
if for all elements 0≤ i < k we havevi ≤wi and for at least
one elementl we havevl < wl . A vector is called pareto-
optimal if it is not dominated by any other vector inV.

Pareto-optimal solutions represent a certain trade-off
between two or more objectives, leaving it to the designer
to decide which solution to adopt. In our case, individuals
with pareto optimal fitness vectors represent the different
system design trade-offs.

C. Design Space Exploration Loop

Figure 5 shows the design space exploration loop per-
formed in SymTA/S. TheOptimization Controlleris the
central element. It is connected to SymTA/S, which per-
forms the analysis of the individuals, and to an evolution-
ary multi-objective optimizer. The latter is responsible for
the problem-independent part of the optimization problem,
i.e. elimination of individuals and selection of interest-
ing individuals for variation. Currently, we use FEMO
(Fair Evolutionary Multiobjective Optimizer) [10] and
SPEA2 (Strength Pareto Evolutionary Algorithm 2) [26]

for this part. Both are coupled via PISA (Platform and
Programming Language Independent Interface for Search
Algorithms) [1]. Note that the problem-specific part of
the optimization problem is coded in the chromosomes
and their variation operators. An example for a variation
operator isorder crossover[2]. It is applicable for priority
assignments coded as lists, in which each entry corre-
sponds to the priority of a specific task. The offspring
inherits the priority assignments of the tasks between two
randomly chosen positions in the priority list from the
first parent. The remaining priorities are inherited from the
second parent, beginning at the first position of its priority
list, starting from the second chosen position and skipping
over all priorities already assigned in the offspring.

Fig. 5 - DESIGN SPACE EXPLORATION LOOP

Before the exploration loop is started, SymTA/S is
initialized with the immutable part of the system architec-
ture. In order to analyze a design alternative represented
by an individual, its chromosomes are transformed into
commands and applied to SymTA/S. This completes the
system design which can then be analyzed by SymTA/S.
After analysis the optimization controller requests the sys-
tem parameters necessary to determine the fitness values
according to the optimization objectives. This procedure
is performed for every individual currently considered.
The individuals and their fitness vectors are then sent to
the evolutionary multi-objective optimizer. On the basis
of the fitness values the optimizer creates two sets. One
set contains individuals selected for elimination, the other
contains individuals selected for variation (mutation and
crossover). These sets are communicated to the optimiza-
tion controller, which deletes eliminated individuals and
performs the requested mutation and crossover operations.
The next iteration is then started with the surviving and
newly created individuals.

After each iteration the designer can choose to modify
the search space. This consists, like explained in section V-
A, in adding/removing chromosomes to/from the individ-
uals. The reevaluation of the fitness values is performed
automatically and the next iteration is then started.

Note that the selection of individuals for elimination
and variation depends on the used multi-objective opti-
mizer. For instance FEMO [10], eliminates all dominated

individuals in every iteration and pursuits a fair sampling
strategy, i.e. each parent participates in the creation of the
same number of offsprings. This leads to a uniform search
in the neighborhood of elitist individuals.

VI. SYSTEM ON CHIP EXAMPLE

The system in Fig. 6 represents a SoC consisting of a
micro-controller (uC), a digital signal processor (DSP) and
dedicated hardware (HW), all connected via an on-chip bus
(BUS). The HW acts as an interface to a physical system.
It runs one task (sysif) which issues actuator commands
to the physical system and collects routine sensor readings.
sysif is controlled by controller taskctrl, which evaluates
the sensor data and calculates the necessary actuator com-
mands.ctrl is activated by a periodic timer (tmr) and by
the arrival of new sensor data (AND-activation in a cycle).

Fig. 6 - SYSTEM ON CHIP EXAMPLE

The physical system is additionally monitored by 3
smart sensors (sens1 - sens3), which produce data spo-
radically as a reaction to irregular system events. This
data is registered by an OR-activated monitor task (mon)
on the uC, which decides how to update the control
algorithm. This information is sent to taskupdon theDSP,
which writes the updated controller parameters into shared
memory.

The DSPadditionally executes a signal-processing task
(fltr), which filters a stream of data arriving at input
sig in, and sends the processed data via outputsig out.
All communication (with the exception of shared-memory
on theDSP) is carried out by communication tasksc1 -
c5 over the on-chipBUS.

Computation and communication tasks shall have the
core execution times listed in table II (i.e. assuming no
interrupts). We assume the event models at system inputs
specified in table III. In order to function correctly, the
system has to satisfy the path latency constraints and the
maximum jitter constraint atsig out listed in tables IV(a)
and IV(b). In the following we assume that theDSP as

well as theBUSare scheduled according to a static priority
preemptive policy.

computation task core execution time

mon [10,12]
sysif [15,15]
fltr [12,15]
upd [5,5]
ctrl [20,23]

communication task core communication time

c1 [8,8]
c2 [4,4]
c5 [4,4]
c3 [4,4]
c4 [4,4]

TABLE II - CORE EXECUTION TIMES

input event model

sens1 sporadic,Ps1 = 1000
sens2 sporadic,Ps2 = 750
sens3 sporadic,Ps3 = 600
sig in periodic,Pin = 60
tmr periodic,Ptmr = 70

TABLE III - INPUT EVENT MODELS

constraint # path maximum latency

1 sensi → upd 70
2 sig in → sig out 60
3 cycle (e.g.ctrl → ctrl) 140

(a) Path latency constraints

constraint # output event model jitter

4 sig out Jout,max= 22

(b) Maximum jitter constraint at
sig out

TABLE IV - CONSTRAINTS

VII. D ESIGN SPACE EXPLORATION

In this section, we explore the given SoC example. We
will do this in several steps, extending the search space
gradually. First we will perform a local optimization on
the BUSaltering only the priorities of the communication
channels. Afterwards, we will extend the search space by
allowing shapers at reasonable positions. During these two
steps we will assume the following priority assignment on
the DSP: upd> f ltr > ctrl . Finally, we will optimize the
system globally, i.e. the priority assignment on theBUS
and theDSPas well as traffic shaping. Optimization objec-
tives are the minimization of the path latencies (constraint
1-3) and the jitter at outputsig out (constraint 4).

For this relatively simple architecture an exploration
loop of 15 iterations with a population size of 50 in-
dividuals found all pareto-optimal solutions in almost
every experiment. This exploration takes approximately 20
seconds on a Pentium 4 at 2400 MHz.

A. Optimizing the BUS

The first step in our design space exploration is local
optimization of theBUS. Although there are only five
communication channels on theBUS, it is not intuitive for
the designer which priority assignments lead to systems
that meet all constraints. Local exploration of theBUSwill
give us a first feeling about the systems behaviour, and thus
a deeper understanding of its performance dependencies.
Table V shows the obtained solutions.

BUS tasks DSP tasks con. 1 con. 2 con. 3 con. 4

1 c2,c1,c3,c4,c5 upd,fltr,ctrl 55 42 120 18
2 c2,c1,c4,c3,c5 upd,fltr,ctrl 59 42 112 18
3 c2,c4,c1,c3,c5 upd,fltr,ctrl 59 46 108 22
4 c1,c2,c4,c5,c3 upd,fltr,ctrl 63 42 96 18
5 c2,c4,c1,c5,c3 upd,fltr,ctrl 63 46 92 22

TABLE V - PARETO-OPTIMAL SOLUTIONS: LOCAL OPTIMIZATION

ON THE BUS

As we can see there are five priority assignments
for the communication channels on theBUS leading to
functioning systems. These solutions are pareto-optimal,
which means that they represent a certain trade-off between
multiple objectives, leaving it to the designer to decide
which solution to adopt.

We observe that channelsc1 andc2 have high priorities
in all obtained solutions, whereas channelc5 has through-
out the lowest or second lowest priority.

B. Traffic shaping

In the second step we want evaluate the optimization
potential of selective traffic shaping (see section IV) for the
given architecture. We extend our search-space by using
shapers at the output of taskmon. It is making sense to
perform traffic shaping at this location, because the OR-
activation of mon can lead in the worst-case scenario to
bursts at its output. That is, if all three sensors trigger at
the same time,monwill send three packets over theBUS
with a distance of 10 time units, which is its minimum
core execution time. This transient load peak affects the
overall system performance in a negative way. A shaper is
able to increase this minimum distance in order to weaken
the global impact of the worst-case burst. Exploration over
the minimum distance of successive packets enforced by
the inserted shaper is subject of this exploration step.

We observed in the previous experiment that commu-
nication channelc5 was always assigned the lowest or
second lowest priority. Even in the lowest case, the cycle
constraint (constraint 3) was easily met. Therefore, we
will fix channel c5 to the lowest priority on the bus.
This narrows the search space considerably, the number of
possible priority assignments on the bus is reduced from
5! = 120 to 4!= 24.

Table VI shows the additional pareto-optimal solutions
found using shapers at the output ofmon extending the
minimum distance of successive events to between 11 and
20 time units. Solutions which are dominated by the results
obtained in the previous section are not listed.

BUS tasks DSP tasks δ− con. 1 con. 2 con. 3 con. 4

6 c3,c2,c1,c4,c5 upd,fltr,ctrl 13 51 45 120 21
7 c3,c2,c1,c4,c5 upd,fltr,ctrl 14 53 45 116 21
8 c3,c2,c1,c4,c5 upd,fltr,ctrl 16 57 45 112 21
9 c2,c3,c1,c4,c5 upd,fltr,ctrl 17 63 41 112 17
10 c3,c2,c1,c4,c5 upd,fltr,ctrl 20 65 40 104 16

TABLE VI - ADDITIONAL PARETO-OPTIMAL SOLUTIONS:

OPTIMIZING BUS AND TRAFFIC SHAPING AT MON OUTPUT

We observe that performing traffic shaping at the output
of monleads to several new interesting solutions. We found
new priority assignments on theBUS which, combined
with a certain shaper, result in better values for constraints
1,2 and 4. Solely the previously obtained values for con-
straint 3 are not reached, but the constraint remains fulfilled
by a large margin.

Only two different priority assignments,c2 > c3 >
c1 > c4 > c5 and c3 > c2 > c1 > c4 > c5, occur in the
solutions listed in table VI. Let us take a closer look on
the global impact of traffic shaping at the output ofmon.
Tables VII(a) and VII(b) show the performance of the
system with growing minimum distance of events at the
output of mon for these two priority assignments. Rows
containing pareto optimal solutions are emphasized. Note
that in this example a shaper extending the minimum
distance to a value between 11 and 20 time units needs
to store at most one packet at a time. To achieve larger
minimum distances, two packets need to be stored in the
worst-case.

We see that the value for constraint 1 is climbing
with growing minimum distance. This is not surprising
because the inserted shaper is creating additional latency
in the worst-case, depending on the desired minimum
distance. The longest minimum distance that does not lead
to violation of constraint 1 for the priority assignments
c2> c3> c1> c4> c5 andc3> c2> c1> c4> c5 are 20
and 22 respectively.

While the shaper leads to increased values for constraint
1, the rest of the system is profiting from the weakend
burst. Figures 7(a) and 7(b) give a concise graphical
overview of the system behaviour with growing minimum
distance.

C. Including the DSP

So far, we obtained ten solutions representing different
trade-offs for our example SoC by using local exploration
techniques. Now, we extend our search space by the prior-
ity assignment on theDSP. Since we already observed that
the cycle constraint is uncritical, we will fix the priorities
of communication channelsc4 andc5 to the second lowest
and lowest on theBUS respectively. Additionally, we fix
the priority of taskctrl to the lowest on theDSP.

In table VIII we see the new system configurations
found. Solutions which are dominated by the results ob-
tained in the previous sections are not listed.

The obtained solutions represent new interesting trade-
offs because they lead to a low jitter atsig out (con. 4).

δ− con. 1 con. 2 con. 3 con. 4

10 49 50 162 26
11 51 50 162 26
12 53 46 120 22
13 55 46 120 22
14 57 46 116 22
15 59 46 116 22
16 61 46 112 22
17 63 41 112 17
18 65 41 112 17
19 67 41 112 17
20 69 41 104 17

(a) c2 > c3 > c1 > c4 > c5

δ− con. 1 con. 2 con. 3 con. 4

10 45 54 162 30
11 47 54 162 30
12 49 50 120 26
13 51 45 120 21
14 53 45 116 21
15 55 45 116 21
16 57 45 112 21
17 59 45 112 21
18 61 45 112 21
19 63 45 112 21
20 65 40 104 16
21 67 40 104 16
22 69 40 104 16

(b) c3 > c2 > c1 > c4 > c5

TABLE VII - SYSTEM PERFORMANCE WITH TRAFFIC SHAPING AT

MON OUTPUT.

BUS tasks DSP tasks δ− con. 1 con. 2 con. 3 con. 4

11 c2,c1,c3,c4,c5 fltr,upd,ctrl 10 70 27 120 3
12 c3,c2,c1,c4,c5 fltr,upd,ctrl 12 64 35 120 11
13 c2,c3,c1,c4,c5 fltr,upd,ctrl 12 68 31 120 7
14 c3,c2,c1,c4,c5 fltr,upd,ctrl 14 68 35 116 11

TABLE VIII - ADDITIONAL PARETO-OPTIMAL SOLUTIONS: GLOBAL

OPTIMIZATION

This quality did not exist in any of the previously obtained
system configurations. However, the low jitter atsig out is
bought with high values for constraint 1.

D. Summary of results

Table IX gives an overview about all pareto-optimal
system configurations from which a designer can choose.
For example an attractive solution might be one where
all constraints are fulfilled with a healthy margin to the
respective maximum values. This is the case for solutions
4, 10, and 12 for instance. Figure 8 gives a graphical
overview of all solutions.

VIII. C ONCLUSION

In this paper we presented a framework for flexible
design space exploration and system optimization for het-
erogeneous SoC and distributed systems using SymTA/S
and evolutionary optimization techniques. The ambition

(a) c2 > c3 > c1 > c4 > c5

(b) c3 > c2 > c1 > c4 > c5

Fig. 7 - SYSTEM PERFORMANCE WITH TRAFFIC SHAPING AT MON

OUTPUT: GRAPHICAL OVERVIEW

BUS tasks DSP tasks δ− con. 1 con. 2 con. 3 con. 4

1 c2,c1,c3,c4,c5 upd,fltr,ctrl 10 55 42 120 18
2 c2,c1,c4,c3,c5 upd,fltr,ctrl 10 59 42 112 18
3 c2,c4,c1,c3,c5 upd,fltr,ctrl 10 59 46 108 22
4 c1,c2,c4,c5,c3 upd,fltr,ctrl 10 63 42 96 18
5 c2,c4,c1,c5,c3 upd,fltr,ctrl 10 63 46 92 22
6 c3,c2,c1,c4,c5 upd,fltr,ctrl 13 51 45 120 21
7 c3,c2,c1,c4,c5 upd,fltr,ctrl 14 53 45 116 21
8 c3,c2,c1,c4,c5 upd,fltr,ctrl 16 57 45 112 21
9 c2,c3,c1,c4,c5 upd,fltr,ctrl 17 63 41 112 17
10 c3,c2,c1,c4,c5 upd,fltr,ctrl 20 65 40 104 16
11 c2,c1,c3,c4,c5 fltr,upd,ctrl 10 70 27 120 3
12 c3,c2,c1,c4,c5 fltr,upd,ctrl 12 64 35 120 11
13 c2,c3,c1,c4,c5 fltr,upd,ctrl 12 68 31 120 7
14 c3,c2,c1,c4,c5 fltr,upd,ctrl 14 68 35 116 11

TABLE IX - ALL PARETO-OPTIMA

of our framework is not to perform a global black-box
optimization, but to give the designer control about the
exploration process. To ensure that, our framework allows
a very precise definition of the search space. This en-
ables the designer to perform multiple exploration steps,
adjusting the search space as his understanding of the
systems performance dependencies grows, in order to

Fig. 8 - ALL PARETO-OPTIMA: GRAPHICAL OVERVIEW

identify interesting design sub-spaces containing good so-
lutions. Thereby, arbitrary system properties can be subject
to optimization. We demonstrated a possible exploration
process in the given SoC example, extending the search
space with new system parameters while restricting others
in every iteration.

A central aspect in our approach is traffic shaping. The
optimization potential through traffic shaping in complex
heterogeneous SoC and distributed systems is very high.
We saw in the described SoC example that inserting a
shaper in order to weaken a transient load peak consider-
ably improves system behavior, and consequently leads to
the discovery of interesting design alternatives.

ACKNOWLEDGEMENT

We would like to thank Lothar Thiele and his group
from the ETH Z̈urich for providing us with the PISA inter-
face and the corresponding algorithms for multi-objective
optimization.

REFERENCES

[1] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zit-
zler. PISA — a platform and programming language independent
interface for search algorithms.http://www.tik.ee.ethz.ch/pisa/.

[2] L. Davis. Applying adaptive algorithms to epistatic domains. In
Proc. of the 9th IJCAI, pages 162–164, Los Angeles, CA, 1985.

[3] K. Deb. Multi-objective optimization using evolutionary algorithms.
John Wiley, Chichester, 2001.

[4] J.J.G. Garcia and M.G. Harbour. Optimized priority assignment
for tasks and messages in distributed real-time systems. InProc.
Workshop on Parallel and Distributed Real-Time Systems, 1995.

[5] T. Givargis and F. Vahid. Platune: A tuning framework for system-
on-a-chip platforms. InIEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, v21, n11, pp 1317-1327,
2002.

[6] Arne Hamann, Rafik Henia, Marek Jersak, Razvan Racu, Kai
Richter, and Rolf Ernst. SymTA/S - Symbolic Timing Analysis
for Systems.http://www.symta.org/.

[7] M. Jersak and R. Ernst. Enabling scheduling analysis of heteroge-
neous systems with multi-rate data dependencies and rate intervals.
In Proc. 40th Design Automation Conference, Annaheim, USA,
June 2003.

[8] M. Jersak, R. Henia, and R. Ernst. Context-aware performance
analysis for efficient embedded system design. InProc. of Design,
Automation and Test in Europe (DATE’04), Paris, France, March
2004.

[9] M. Jersak, K. Richter, and R. Ernst. Performance analysis for com-
plex embedded applications.International Journal of Embedded
Systems, Special Issue on Codesign for SoC, 2004.

[10] M. Laumanns, L. Thiele, E. Zitzler, E. Welzl, and K. Deb. Running
time analysis of multi-objective evolutionary algorithms on a simple
discrete optimization problem.In Parallel Problem Solving From
Nature — PPSN VII, 2002.

[11] A. Maxiaguine, S. K̈unzli, S. Chakraborty, and L. Thiele. Rate
analysis for streaming applications with on-chip buffer constraints.
In Proc. Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 131–136, Yokohama, Japan, January 2004.

[12] A.K. Mok and D. Chen. A multiframe model for real-time
tasks. IEEE Transactions on Software Engineering, 23(10):635–
645, 1997.

[13] J. C. Palencia and M. G. Harbour. Schedulablilty analysis for tasks
with static and dynamic offsets. InProc. 19th IEEE Real-Time
Systems Symposium (RTSS’98), Madrid, Spain, 1998.

[14] P. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis
of mixed time/event-triggered distributed embedded systems. In
Tenth International Symposium on Hardware/Software Codesign
(CODES’02), Estes Park, Colorado, USA, May 2002.

[15] Paul Pop, Petru Eles, Zebo Peng, Viacheslav Izosimov, Magnus
Hellring, and Olof Bridal. Design optimization of multi-cluster
embedded systems for real-time applications. InProc. of Design,
Automation and Test in Europe (DATE’04), Paris, France, March
2004.

[16] K. Richter and R. Ernst. Event model interfaces for heterogeneous
system analysis. InProc. of Design, Automation and Test in Europe
(DATE’02), Paris, France, March 2002.

[17] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration
for heterogeneous multiprocessor SoC. InProc. 24th International
Real-Time Systems Symposium (RTSS’03), Cancun, Mexico, De-
cember 2003.

[18] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model
composition for scheduling analysis in platform design. InProc.
39th Design Automation Conference, New Orleans, USA, June
2002.

[19] Kai Richter. On the characterization of communication traffic and
task load models in performance verification and architecture eval-
uation. Technical Report TR-SPI-04-01, Institut für Datentechnik
und Kommunikationsnetze, Technische Universität Braunschweig,
2004.

[20] G. Snider. Automated design space exploration for embedded
computer systems. Technical Report HPL-2001-220, Hewlett-
Packard Laboratories, 2001.

[21] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A framework
for evaluating design tradeoffs in packet processing architectures. In
Proc. 39th Design Automation Conference (DAC), pages 880–885,
New Orleans, USA, 2002. ACM Press.

[22] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert.
Embedded software in network processors - models and algorithms.
In Proc. 1st Workshop on Embedded Software (EMSOFT), Lake
Tahoe (CA), USA, October 2001.

[23] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-
time calculus for scheduling hard real-time systems. InProceedings
International Symposium on Circuits and Systems (ISCAS), Geneva,
Switzerland, 2000.

[24] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems.Microprocessing & Micropro-
gramming, 50(2-3):117–134, April 1994.

[25] K. W. Tindell. Adding time-offsets to schedulability analysis.
Technical Report YCS 221, Univ. of York, 1994.

[26] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2:
Improving the Strength Pareto Evolutionary Algorithm. Technical
Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.

