In Proceedings of the 7th International Workshop on Hardware/Software Codesign (CODES '99),

Rome, Italy, pages 173-177, May 3-5, 1999.

Scheduling Har dwar e/Softwar e Systems Using Symbolic Techniques

Karsten Strehl and Lothar Thiele

Computer Engineering and Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland

Abstract

In this paper, a scheduling method for heterogeneous enshesiygs-
tems is developed. At first, an internal representation modbed
FunStates presented which enables the explicit representatioroof n
determinism and scheduling using a combination of funstamd state

Dirk Ziegenbein and Rolf Ernst

Institute of Computer Engineering (IDA)
Technical University of Braunschweig
Braunschweig, Germany

Jurgen Teich

Computer Engineering Lab (DATE)
University of Paderborn
Paderborn, Germany

with increasing degrees of non-determinism. Moreoverctiraplexity
of the models of computation and communication greatlyaases the
danger of system deadlocks or queue overflows, see, e.§., [10
Results are available which partly deal with above problefis
overcome drawbacks of either puredtatic or dynamicscheduling ap-
proaches and to combine their advantages, Lee proposedh@idee

machines. The new scheduling method is able to deal with dnixecalledquasi-staticscheduling [8]. Similarly to static scheduling, most

data/control flow specifications and takes into accounerhfit mecha-
nisms of non-determinism as occurring in the design of erdeddys-
tems. Constraints imposed by other already implementedgooamts
are respected. The scheduling approach avoids the exgfioihera-
tion of execution paths by using symbolic techniques andaniaes
to find a deadlock-free and bounded schedule if one exists. gem-
erated schedule consists of statically scheduled bastk®Mhich are
dynamically called at run time.

1 Introduction

One of the major sources of complexity in the design of embddys-
tems is related to their heterogeneity. On the one hand,péeifica-
tion of the functional and timing behavior necessitates x afidiffer-

ent basic models of computation and communication whichecfsom

transformative or reactive domains. In addition, we arefhwith an
increasing heterogeneity in the implementation. This mb¢ concerns
the functional units which may be implemented in form of detid
or programmable hardware, microcontrollers, domain djgeor even
general purpose processors. In addition, these units caoncate with
each other via different media, e.g., busses, memoriegonies, and
by using many different synchronization mechanisms.

This heterogeneity caused a broad range of schedulingig®lic
hardware and software implementations. Two extreme pititisib are
static schedules like those developed $gnchronous datafloSDF)
models [9], and EDFdarliest deadline firgtschedules developed for
dynamically changing task structures. Many intermediatesibilities
have been developed over the years.

Recently, a methodology has been defined to deal with the limgde
problem of complex embedded systems for the purpose of sthgd
[16, 17]. The model SPIsfystem property intervdlas defined here is
a formal design representation internal to a design systecombines
the representation of communicating processes with @igelopera-
tion modes, the representation of non-determinate behadifferent
communication mechanisms such as queues and registers;laedul-
ing constraints.

The present paper is concerned with a scheduling procedamed
to this kind of internal representation. Problems which augical
for the design of complex embedded systems are, e.qg., @iffdinds
of non-determinism such as partially unknown specificatiorbe re-
solved at design time), data-dependent control flow (to belved at
run time), or unknown scheduling policy (to be resolved anpie
time), and dependencies between design decisions forealiffsystem
components. These properties necessitate new schedplimgaghes
as the number of execution paths to be considered grows erpiatly

Permission to make digital or hard copies of part or all o thiork for
personal or classroom use is granted without fee providetttibpies are not
made or distributed for profit or commercial advantage aiadl tbpies bear
this notice and the full citation on the first page. Copyrigtar components
of this work owned by others than ACM must be honored. Absittgavith
credit is permitted. To copy otherwise, to republish, totmmsservers or to
redistribute to lists, requires prior specific permissionl/ar a fee.

of the scheduling decisions are made during the design gsppeovid-
ing only few run-time overhead and partial predictabilitpnly data-
dependent choices—depending on the value of the data olitimgsu
from a reactive, control-oriented behavior—have to be paséd until
run time. Techniques related to quasi-static scheduling baen devel-
oped using, e.g., constraint graphs [7, 4], dynamic datafiaphs [2],
actors with data-dependent execution times [5], and frexee Petri
nets [12].

The approach taken in this paper is based on symbolic tegbsiq
which use a combination of efficient representations oéstptices and
transition models andymbolic model checkingrinciples in order to
avoid the explicit enumeration of execution paths. Beshieary deci-
sion diagramgBDDs) [1] and their derivativesnterval diagram tech-
nigues—usinginterval decision diagram@DDs) andinterval mapping
diagrams(IMDs)—have shown to be convenient for efficient formal
verification of, e.g., process networks like the above-noaed SPI
model [13], Petri nets [14], or timed automata. There exishe ap-
proaches to apply symbolic methods to control/data pataduding for
high-level synthesis. BDDs are used to describe scheduabingtraints
and solution sets either directly [11] or encapsulatefinite state ma-
chine(FSM) descriptions [3, 6].

In [15], a common representation callétinStateis presented
which unifies many different well-known models of computati sup-
ports stepwise refinement and hierarchy, and is suited tcesept
many different synchronization, communication, and saliad poli-
cies. Based on this model, we present an approach to synsobikciul-
ing using interval diagrams techniques. In particular féilewing new
results are described in the paper:

e A refinement of the SPI model of computation [16, 17] called
FunStatds presented which enables the explicit representation of
different mechanisms of non-determinism and schedulinggus
a mixture of functional programming and state machines.

¢ A scheduling method for heterogeneous embedded systeras is d
veloped which takes into account these different kinds af-no
determinism and constraints imposed by other already imple
mented components and which deals with mixed data/control
flow specifications.

e The resulting scheduling automaton is optimized with respe
the length of static blocks and the number of states.

e The approach is illustrated using a hardware/softwareémph-
tation of a fast molecular dynamics simulation engine.

2 FunState and Scheduling

Mainly in the fields of embedded systems and communicatiecten-
ics, common forms of representation for mixed control/eaianted
systems have gained in importance. Therefore, the Fun&atel-
ism has been developed which combines dataflow propertibgiwite
state machine behavior [15]. It refines the SPI model of cdatjmn
[16, 17] by introducing internal states, e.g., for modelsaheduling
policies. FunState can be used as an internal represantatibe de-
sign phase.

173

2.1 The Model of Computation

In this paper, only the aspects of FunState related to stingdare de-
scribed. The reader is referred to [15] for a formal intratie. In Fig-

ure 1, a simple example FunState model is shown. It condistger

components; each of them has two parts: an upper, data:edipart—
depicting dataflow by functional units (rectangles) and &l§ueues
(circles)—and a lower, control-oriented part—describgdliinite state
machine.

Figure 1. Example FunState model.

The queues in the data-oriented part store data items @eldigtto-
kens, while the functional units perform computations andhata. The
functions have consumption and production rates for eacimexted
edge which are depicted only for values different from 1. €kecution
of the functions of each component is controlled by the apoading
state machine described in a statechart-like manner.

The labels of the state machine transitions indicate coatizins
of a condition and an action (e.ggy‘> 3/f3"), meaning that the re-
spective transition, and thereby the action, may be exdaurdy if the
condition is satisfied (i.e., if the queue labeled wgthcontains at least
three data items). If the above transition is taken, fumcfipis executed
and consumes three tokens from quegend produces one token for

queuegs.

efficient or even incorrect schedules. The state machired#scribes
that its functions always are executed in the orfidp f1 f, ... Hence, it
is guaranteed that after each firingfaf f, is executed and vice versa.

The state machine @& shown in Figure 1 describes a specification
of possible schedules f@. This specification should be used to find
a feasible schedule which respects the additional infaonatoncern-
ing other components. All transitions starting in a darkedd state
represent desigalternativeswhich may be chosen during schedule de-
velopment. In contrast to this, a light-shaded state coataconflict
concerning its outgoing transitions. The conflict can belkex] only
at run time, hence, no design decision is possible. Confhotsir, for
instance, when decisions depending on the value of datassoamen-
tal circumstances have to be taken. White states in the Bten8todel
are states which either have only one outgoing transitioof avhich
all transitions have disjoint predicates. Thus, the ttamsibehavior of
these states @eterminate Note that in componei@ the state with two
outgoing transitions is determinate for this reason.

Suppose thaB andC execute sufficiently often (they are “faster”
than the preceding component) such that there are no unbdundn-
bers of tokens simultaneously éa andqgp or in gz andgga, respectively.
An important issue of schedule development are feasilaility correct-
ness of the resulting schedule. A possible schedul® déscribed by
the specification i$f4| f5)(f4|f5) ..., wherefs and f5 are executed al-
ternatively and iteratively—thus ignorinfs. But this schedule is not
feasible as the queue contentsmqfand q4 are not bounded. If we
had choserf3(f4|fs) f3(f4| f5) ...—f3 is executed, theffy or fs5 is exe-
cuted, etc.—, this would result in an incorrect behavio€afs fg could
attempt to read too much tokens frappafter some time.

In contrast to this, the schedulé,| f5) f3(f4| f5) f3... is valid with
respect to specification and componéntand it is feasible. An im-
plementation of this schedule can profit from the fact thamay be
executed only iff4 has been executed immediately before. From the
behavior ofA follows that for the execution off; no condition is neces-
sary agy; always contains enough tokens. Thus, the resulting scaedul
may be implemented more efficiently by considering only ssaey
conditions as less queue contents have to be determined.

Using the symbolic scheduling techniques proposed belbw, t
above issues are taken into account. Intuitively, the sdiveglis per-
formed by replacing dark-shaded states by white statesingaleci-
sions and thus removing design alternatives. In this papeconsider
only software scheduling using a uniprocessor. Extensionfiard-
ware scheduling under resource constraints or schedutingdveral

In the scope of this paper, we use only a simple subset of BtBSt 5cessors are easily possible.

suitable for scheduling. While the transition predicategéneral may
be also on values of data items, we allow only predicategjugue

contents—the numbers of tokens in queues. We ignore explicit timin

properties (execution times, timing constraints, etc.he Toncurrent
execution of state machines of different components isasypmous
and interleaved.

2.2 The Problem

Consider a constellation of components mapped onto diffeénaple-
mentational units and communicating via queues in a digeith par-
allel setting. The components have both data and control flmper-
ties. Non-determinisms may exist resulting from incomplgpecifica-
tions or data dependencies resolved only at run time. Inpiger, we
deal with the problem of finding feasibleschedule for the components
mapped onto one implementational unit respecting comgsrgiven by
other components. In this context, feasible means thatdhedsile is
deadlock-free and guarantees bounded queue contents.

To precise this, we consider a simple example. Assume timat co 3

92.3 FunState and Symbolic Methods

With regard to formal verification, the techniques for syriibonodel
checking of process networks based on interval diagranmtquhs as
described in [13] are directly applicable to FunState asttaesition
behavior of FunState is very similar to that of the consideneod-
els of computation. Thus, using FunState to model a mixed-har
ware/software system enables its formal verification caosipy the
whole well-known area of symbolic model checking concegriime de-
tection of errors in specification, implementation, or stilng. Prop-
erties as the correctness of a schedule may be affirmed byngrtve
boundedness of the required memory and the absence ofiattiéad-
locks. In the scope of this paper, symbolic methods basedtenval
diagram techniques are used not only to analyze but evenvilage
scheduling policies for FunState models.

Interval Diagram Techniques

ponentB of the example FunState model of Figure 1 represents a pro-

cessor transforming data streams between the compoAemsC. Let

For formal verification of, e.g., process networks [13],rPeéts [14],

A andC be components mapped onto hardware such as an input or o@- imed automata, interval diagram techniques—usingrvatedeci-

put device, respectively, or an interface to a sensor, a,amtanother
processor.

sion diagrams (IDDs) and interval mapping diagrams (IMDBave
shown to be a favorable alternative to BDD techniques. Téssilts

Let the behaviors oA andC be specified by the respective state from the fact that for this kind of models of computation, tin@nsi-

machine. Not considering these additional constraints leay to less

tion relation has a very regular structure that IMDs can eomently

174

represent. While BDDs have to represent explicitly all jjgssstate They often outperform both ILP and heuristic methods whikdding

variable value pairs before and after a certain transititfDs store exact results. Furthermore, all possible solutions to argscheduling
only thestate distance-the difference between the state variable val-problem are computed simultaneously such that additiooas$ttaints
ues before and after the transition. In this paper, we onlg gibrief, may be applied to find optimal schedules. In this paper, wequiea
informal summary of structure and properties of IDDs and idhd symbolic approach to the scheduling of systems represastEdnState

the methods required for scheduling. models. The approach based on interval diagram techniqaédsahe
explicit enumeration of execution paths by using these sjimbech-
3.1 Interval Decision Diagrams niques.

IDDs are a generalization of BDDs and MDDsnuilti-valued decision a1
diagrams—allowing diagram variables to be integers and child nodes t
be associated with intervals rather than single valuesidorE 2a), an As mentioned in Section 1, quasi-static and related scheglup-

Conflict-Dependent Scheduling

example IDD is shown. It represents the Boolean functieanpv,w) = proaches, e.g., [8, 4], try to combine the advantages dtsiatl dy-
(USB)A(V>6)V (u>4)A(w<7) with u,v,w € [0,0). namic scheduling methods. To achieve this, the resolutfatata or
environment dependent control is done at run time whereagatbks

a) S b) T that need to be executed as a consequence of a run-timeoteaisi

scheduled statically. The aim is to make most of the scheglueci-

sions at compile time, leaving at run time only choices tbaf,, depend

on the value of data. As mentioned in Section 2.2, we call ldtis

ter kind of run time choicesonflictsand the corresponding scheduling

techniquesonflict-dependentThe former design decisions at compile

time are namedlternatives As we ignore explicit timing properties in

the scope of this paper, the resulting schedule—similarlscheduling

of, e.g., marked graphs—consists of sequences of funckecutions.
Initially, the given FunState model contains@hedule specification

automatorwhich extends the FSM part such that all possible schedule

behaviors are modeled. This FunState model representsiléy tdy-

namic scheduling behavior and is used to perform the symbohiedul-

ing procedure as described below. The result of this praeetuthe

schedule controller automatamhich restricts the scheduling behavior

to be only conflict-dependent. This automaton may replaeespec-

Figure 2: Interval decision diagram and interval mappirggdam. ification automaton of the original FunState model, e.gr,dalysis

purposes such as verification. Finally, the controller maton may be

_ Equivalent to BDDs, IDDs have a reduced and ordered form, proyansformed into program code to implement the controller.
viding a canonical representation of a class of Boolean tians—

which is important with respect to efficient fixpoint comptidas often
necessary for formal verification, and also for the symbstibeduling

techniques considered here. IDDs are used to represeaisstatduring A conflict in our understanding is a non-determinism in thecsfication

4.2 Conflicts and Alternatives

scheduling. which may not be resolved as a design decision, but of whigboaki-
ble execution traces have to be taken into account duringahedule.
3.2 Interval Mapping Diagrams Thus, the multi-reader quewg in Figure 1 does not represent a con-

. . . . flict as both following functions may read all tokensaqfindependent
IMDs represent valid state transitions, for instance, thecation of ot iheir value or possible external circumstances.

functions depending on predicates on queue contents. INHDE—}QI’G- In contrast to that, the quewgg in Figure 3a) is a multi-reader queue
sented by graphs similar to IDDs. Their edges are labeleld fuitc- 5t may contain tokens which only one of the queue’s reatieasd
tions mapping intervals onto intervals. The graph containly one f3 consumes (depending, e.g., on the token data) but the atbetaes

terminal node. Figure 2b) shows an example IMD. With regarlan- o - Besides such data-dependent conflicts, conflicts dépgon en-
sition relations, IMDs work as follows. Each edge is labeltéith a \ironmental circumstances may occur.

condition—thepredicate interval-on its source node variable and the
kind and amount of change—tlaetion operatorand theaction inter-
val—the variable is to undergo. Each path represents a possifie
transition which is executable if all edges along the pa¢hesmabled.

3.3 Image Computation

Similarly to formal verification like symbolic model checlg, an oper-
ation namedmage computatiois fundamental for symbolic schedul-
ing techniques. The imagen(S,T) of a setS of system states with
respect to transition relatiof represents the set of all states that may
be reached after exactly one valid transition from a statseirS. In
[13], an efficient algorithm is described to perform forwardback-
ward image computation using an |ID&EXfor the state set and a IMD

for the transition relation, resulting in an ID8 representing the image
state set.

4 Symbolic Scheduling Figure 3: FunState model of conflict and transition relatidiD.

Symbolic methods for control-dependent scheduling haeeveto be The states of the FSM part of FunState models are dividedlinte
effective techniques to perform control/data path schiadule.g., [6]. types. According to Section 2.2, light-shaded states dtecceonflict

175

states dark-shaded states aaiernative stateanddeterminate states
are white. While the property of a state to be determinateeiived
directly from its transition predicates, the non-deteratenstates have
to be divided explicitly into conflict states and alternatstates as both
are semantical properties. All transitions leaving anraliéve state
represent design choices which may be made during the sehddu
velopment. In contrast to that, all transitions leaving aftict state
represent decisions which may not be taken at compile tintayhich
keep their non-determinate character until run time.

Determinate states with only one outgoing transition ardeda
static as there exists only one possibility to quit them. Detert@na
states with more than one transition, alternative stated, @nflict

state already visited during the search. One of these (pggaultiple)
shortest paths—representing or at least containing a-eyislselected
as the basis of the following scheduling procedure.

All states of the selected path corresponding to conflicestaeed
further investigation as no conflict decision may be takeringuthe
schedule design. Hence, beginning with the successos stftiee con-
flict states again a breadth-first search is performed usdithing any
state visited yet. Additional conflict states visited dgrthis search are
also treated as described above.

The schedule is complete when each successor state of each vi
ited conflict state has been considered. Thus, it is guagdriteat any
conflict alternative during run time may be treated by prowda static

states are namattiynamicbecause they represent a dynamic executiorschedule until the next conflict to be resolved. The resgibichedule is

behavior with several traces depending, e.g., on queuestor data.

4.3 Schedule Specification Automaton

To model the above-mentioned conflicts, a schedule speaicau-
tomaton is built which represents all possible conflict vétis and
thus specifies all valid schedules. The lower part of Figuag shows
the specification automaton used to describe the aboveignedtcon-
flict behavior concerning, and f3 with regard tog;. When one of the

marked by bold arcs in Figure 4.

If no schedule has been found while traversing one of the iconfl
paths, another shortest path is selected to repeat theidigedroce-
dure. If all shortest paths have been checked without findicgmplete
schedule, longer paths are selected. By introducing a hingrmbx on
the state space, the search space may be restricted. Thausrrfina-
tion of the algorithm is guaranteed. Furthermore, if a deeklifree and
bounded schedule exists, the above procedure will find it.

functions is enabled-¢; contains at least one token—, the automatory g gchedule Controller Generation

can make a transition from the initial alternative statehte tonflict
state. Then, after executing eitheror f3 it returns to the alternative
state.

Besides the variables for the queue contents, a state ieaddbr
the FSM states has been introduced. Figure 3 b) shows thevahte
mapping diagram representing the transition relation ef BunState
model of Figure 3a). This IMD is used for symbolic state trae¢as
explained below.

4.4 Performing Symbolic Scheduling

The aim of the described scheduling process is to sequigstiainc-
tions specified as concurrent while preserving all giverflatiralterna-
tives. The resulting schedule has to be deadlock-free anddsal as
mentioned in Section 2.2.

Figure 4, shows theegular state transition graplof the FunState
model in Figure 3. It represents all valid state transitiohshe Fun-
State model with regard to the total state space consisfitigeaqueue
contents of the dataflow part and the discrete system sththe 5SM
part. At each coordinate pair 64,0y), both possible states of the FSM
part are shown.

Jor—m

Figure 4: Regular state transition graph with schedule.

Using interval diagram techniques, the regular state ttianggraph
is traversed symbolically without constructing it expligi This is
achieved by iterative image computations as explained ¢ti@e3. An
interval mapping diagram such as shown in Figure 3b) reptesbe
transition relation, while interval decision diagrams ased to store in-
termediary state sets. The efficiency of these techniquebden shown
in [13].

In the following, the scheduling procedure in its simplestni is
explained with this graph. First, a symbolic breadth-fiesirgh is per-
formed to find the shortest paths from the initial state teliter any

The resulting schedule consists of paths of the regulae $tahsition
graph as shown in Figure 4. The corresponding subgraph iré&iga)

is the basis for the generation of the controller automatma conse-
guence of the scheduling process, all alternative states leen been
replaced by determinate states—taking decisions and émusving de-
sign alternatives. The predicapadentifies the run-time decision asso-
ciated to the conflict node.

Figure 5: State transition graph of schedule (famy, gz) and resulting
controller automaton.

In order to reduce the implementation effort, this statagion
graph may be simplified. Obviously, this process can be diiyemany
different objectives, for instance, minimizing the numbéstates in the
schedule automaton or keeping sequences of static nodes.

As an example, a procedure is described which minimizesuhe n
ber of states under the condition that sequences of statiesnare not
partitioned. This way, the number of dynamic decisions (at time)
is not increased in any execution trace. The optimizatimtedure is
based on well-known state minimization methods and usefotiosy-
ing equivalence relation:

¢ Two static states are equivalent iff for any input they halenti-
cal outputs and the corresponding next states are equivalen

¢ Two dynamic states are equivalent iff they are of the same typ
(conflict, alternative, or determinate) and they corresptmthe
same node in the non-scheduled state machine, i.e., theytiav
same state name but different queue contents associated.

This definition can be used to perform the usual iterativéiti@ming of
the state set until only equivalence classes are obtairteglambiguity
of the next states in the case of dynamic states is resolvextiiing
predicates to the outgoing edges. Figure 5b) shows theaitamtau-
tomaton as the result of this process. It may be transforrasilyento
program code as shown in Table 1 as pseudo code.

176

a: fq;
if pthen
fa;
if gg=0 then goto a;
el se fg;
fa;
goto a;

Table 1: Controller program code.

4.6 Molecular Dynamics Simulation Example

5 Summary and Conclusion

An approach for symbolic scheduling of mixed hardwareisafe sys-
tems has been presented. It is based on a FunState modelsybteen
and the scheduling constraints. Further work concentates<tending
the approach to hardware scheduling under more complexmesoon-
straints and on considering the timing behavior of the sy allow
for the specification of timing constraints.

References

The introduced approach has been applied to perform conflict[1] R. E. Bryant. Graph-based algorithms for boolean fusretinanipulation.
dependent scheduling for a molecular dynamics simulatymies.
As shown in Figure 6, the simplified fundamental algorithns baen
mapped onto a host workstatidd ¢st) linked to a special purpose hard-
ware accelerator serving as a coproces§wRro). In the figure, the
circles containing a square represent registers storita deherefore,
they do not introduce additional dependency constrairts. tfansition

labelsl,, ... |4 are depicted separately for reasons of space.

/HOST S

I;: DF>15/S
I,: CG26/D
I3 SV=6/V

Iy SUz4FV=30P | PP>100/U

/

Figure 6: Molecular dynamics model with specification auhbon.

The simulation mainly consists of repeated computationshén
feedback loop distributed among both processors where &ores
(AF) are computedK), added up $, and integrated!] to calculate
new atom coordinateAC, AR). After a variable number of iterations,
the central coordinates of slowly moving sub-moleculesedatharge
groups CG) are updated). Then, a new list of neighbors called pair

list (PL) is computed D, V, P, U).

As the moment when to start this pair list computation is wvim
until run time, this fact represents a conflict which is medelsing a
conflict state. The major issue of the schedule specificagitmat there
exists no cycle in the corresponding state transition gsapith does
not contain the conflict state. This is ensured by the fadttti@tran-

sition executing cannot be reached without visiting the conflict state.

The result of the symbolic scheduling process—the schezhn&oller

automaton—is shown in Figure 7. It replaces the FSM part@ftost
component of Figure 6. It consists of two static cycles anarlict

state switching between them. The schedule is respectingpibcifica-
tion of CoPro. Note that even the schedule ©@bProis not static as it

depends on the content of queRE.

(Host o D

DF>0/S

/P
N

/C N
/D

Figure 7: Resulting controller automaton.

177

IEEE Transactions on ComputerS-35(8):667—-691, August 1986.

[2] J. T. Buck. Scheduling dynamic dataflow graphs with bounded memory
using the token flow moddPhD thesis, University of California, Berkeley,
1993.

[3] C.N. Coelho Jr. and G. De Micheli. Dynamic scheduling agdchroniza-
tion synthesis of concurrent digital systems under sydevel constraints.
In Proceedings of the IEEE/ACM International Conference om@ater-
Aided Design (ICCAD-94pages 175-181, 1994.

[4] M. Cornero, F. Thoen, G. Goossens, and F. Curatelli. &o# synthe-
sis for real-time information processing systems. In P. Watel and
G. Goossens, editor§ode Generation for Embedded Process@ages
260-279. Kluwer Academic Publishers, 1995.

[5] S. Ha and E.A. Lee. Compile-time scheduling of dynamiagtaucts in
dataflow program graphslEEE Transactions on Computerd6(7):768—
778, July 1997.

[6] S.Haynal and F. Brewer. Efficient encoding for exact spfitbautomata-
based scheduling. IRroceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD-9B)98.

[7] D.C. Kuand G. De Micheli. Relative scheduling under tigniconstraints:
algorithms for high-level synthesis of digital circuitédEEE Transactions
on Computer-Aided Desigi1(6):696—-718, June 1992.

[8] E. A. Lee. Recurrences, iteration, and conditionalstatisally scheduled
block diagram languages. In R. W. Brodersen and H. S. Mosg@dlitors,
VLSI Signal Processing llpages 330-340. IEEE Press, New York, 1988.

[9] E. A. Lee and D. G. Messerschmitt. Synchronous data flemceedings
of the IEEE 75(9):1235-1245, 1987.

[10] E. A.Lee and T. M. Parks. Dataflow process netwofkeceedings of the
IEEE, 83(5):773-799, 1995.

11] I. Radivojevit and F. Brewer. Ensemble representatiad techniques for
exact control-dependent scheduling. Rmoceedings of the 7th Interna-
tional Symposium on High-Level Synthepiages 60—65, 1994.

[12] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanimegntelli.
Quasi-static scheduling of embedded software using fregee Petri nets.
In Proceedings of the Workshop on Hardware Design and Petrs Net
(HPWN '98) 1998.

] Karsten Strehl and Lothar Thiele. Symbolic model clieglof process net-
works using interval diagram techniques.Aroceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICC2€), pages
686-692, San Jose, California, November 8-12, 1998.

[14] Karsten Strehl and Lothar Thiele. Interval diagrarmhtgiques for symbolic
model checking of Petri nets. IRroceedings of the Design, Automation
and Test in Europe Conference (DATE@@)nich, Germany, March 9-12,
1999.

[15] Lothar Thiele, Jurgen Teich, Martin Naedele, Karsttnehl, and Dirk
Ziegenbein. SCF—state machine controlled flow diagramschieal
Report TIK-33, Computer Engineering and Networks Lab (TIBiss
Federal Institute of Technology (ETH) Zurich, Gloriassas35, CH-8092
Zurich, January 1998.

[16] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L.&lai Combining
multiple models of computation for scheduling and allomatiln Proceed-
ings of the 6th International Workshop on Hardware/Sofev&odesign
(Codes/CASHE '98pages 9-13, Seattle, Washington, March 1998.

[17] D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L.€<i Represen-
tation of process mode correlation for scheduling. Pioceedings of the
IEEE/ACM International Conference on Computer-Aided BegICCAD-
98), San Jose, California, November 8-12, 1998.

