
SymTA/S - Symbolic Timing Analysis for Systems
Arne Hamann, Rafik Henia, Razvan Racu,

Marek Jersak, Kai Richter, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig / Germany

{hamann|henia |racu |jersak |richter |ernst }@ida.ing.tu-bs.de

ABSTRACT

SymTA/S is a performance and timing analysis tool based
on formal scheduling analysis techniques and symbolic simu-
lation. The tool supports heterogeneous architectures, complex
task dependencies, context aware analysis, and combines
optimization algorithms with system sensitivity analysis for
rapid design space exploration. This paper gives an overview
of the current and future research interests in the SymTA/S
project.

I. I NTRODUCTION

Although there are countless approaches for formal per-
formance and timing analysis known from real-time system
research, only very few have been adopted in design of
heterogeneous SoCs and distributed systems. The SymTA/S
approach enables a completely new view on system level anal-
ysis and supports explicitly the combination and integration of
heterogeneous subsystems.

In the first part of the paper we will give a brief overview
about the formal core of SymTA/S. Afterwards, we will
shortly introduce current research interests in the SymTA/S
project. These are context aware analysis, optimization, and
sensitivity analysis. We conclude the paper with an example
demonstrating the relevance of these aspects.

II. T HE SYM TA/S APPROACH

SymTA/S [1] is a software tool for formal performance
analysis of heterogeneous SoCs and distributed systems. The
core of SymTA/S is our recently developed technique to couple
scheduling analysis algorithms using event streams [9], [11].
Event streams describe the possible I/O timing of tasks and
are characterized by appropriate event models such as periodic
events with jitter or bursts and sporadic events. At the system
level, event streams are used to connect local analyses accord-
ing to the systems application and communication structure.

In contrast to all known work, SymTA/S explicitly supports
the combination and integration of different kinds of analysis
techniques known from real-time research. For this purpose, it
is essential to transition between the often incompatible event
stream models resulting from the dissimilitude of the local
techniques. This kind of incompatibility appears for instance
between an analysis technique assuming periodic events with
jitter and an analysis technique requiring sporadic events.
In SymTA/S we useevent model interfaces (EMIFs)and
event adaptation functions (EAFs)to realize these essential
transitions [9].

However, integration of heterogeneous systems is not the
sole domain of application for EMIFs and EAFs. In SymTA/S
so-called shapers can be connected with any event stream.
Shapers are basically EMIF-EAF combinations which ma-
nipulate an event stream and thus the interaction between
two components. More precisely, they provide control about
the timing of exchanged events and data. Consequently, they
enable the user to model buffering and perform traffic shaping.
This is important because buffering and traffic shaping break
up non-functional dependency cycles and can tremendously
reduce transient load peaks in dynamic systems [10]. In other
words, due to the event model transformation provided by
EMIFs and EAFs SymTA/S is able to analyze many real world
examples that holistic approaches [12], [8] cannot handle.

In order to perform a system level analysis, SymTA/S
locally performs existing scheduling analysis (e.g. RMS,
TDMA, Round Robin, etc.) and propagates their results to the
neighbouring components. This analysis-propagate mechanism
is repeated iteratively until all components are analyzed, which
means that all output streams remained unchanged.

The above discribed basic SymTA/S approach has been re-
cently extended to support multi-rate systems, multiple inputs
and functional cycles [2], [4]. These major extensions enable
SymTA/S to cope with complex applications. Furthermore,
SymTA/S is able to consider inter and intra context informa-
tion to tighten analysis bounds [3].

III. SYSTEM CONTEXTS

We define as a system context all kinds of correlations
between activating events that go beyond the possible timing
of consecutive events in one event stream.Inter event stream
contexts, initially introduced by Tindell [13] and general-
ized by Palencia and Harbour [7], consider possible phases
between events in different event streams, thus allowing to
calculate a tighter number of interrupts of a task by other
tasks sharing the same component.Intra event stream contexts,
initially introduced by Mok and Chen [6], consider correlations
between successive computation or communication requests,
thus allowing to calculate a tighter load for a number of
successive activations of a task. Both types of contexts lead
to the calculation of shorter worst-case, and longer best-case
response times. Our contribution lies in the generalization of
intra event stream contexts, the combination of both types of
contexts during analysis, and explicit distinction between dif-
ferent types of events on one hand, and different task behaviors

Fig. 1 - SYM TA/S WITH SYSTEM ON CHIP EXAMPLE

on the other [3]. The latter is crucial for subsystem integration
and compositional performance analysis, since different types
of events are a property of the sender, while different behaviors
are a property of the receiver.

IV. OPTIMIZATION

One strong point of performance analysis is that even
complex systems can be analyzed in very short time. This fact
provides the possibility to perform architecture exploration.
Exploration is needed, since manual optimization is very time
consuming for distributed systems due to the multitude of
complex hard to track performance dependencies between
tasks.

In SymTA/S we experiment with evolutionary algorithms to
optimize distributed systems. Thereby, the search space and
the optimization objectives can be multi-dimensional. Search
parameters include mapping of tasks onto different resources,
changing priorities on priority-scheduled resources, time slot
sizes on TDMA or round robin scheduled resources, and
modifying resource speed. Since shapers in SymTA/S allow
to control the timing of events and data between connected
components (see section II), additional optimization is possible
due to systematic traffic shaping.

Performing a multi-objective optimization inevitably leads

to the discovery of several pareto optima. More precisely, each
solution represents a certain trade-off between two or more
objectives, leaving it to the designer to decide which solution
to adopt.

V. SENSITIVITY ANALYSIS

The analysis techniques known from literature calculate
the timing behavior of a specific system considering a pre-
defined set of input parameters (core execution times of
tasks, activation periods, input jitters, etc). Such solutions are
sufficient for the verification of the performance of a given
system.

However, in a realistic system design process it is important
to understand the effects of small parameter variations on
system performance, as such variations are inevitable during
implementation and integration. Capturing the bounds within
which a parameter can be varied without violating constraints
offers more flexibility for the system designer and supports
future changes.

Different system parameters can be used as basis for the
sensitivity analysis [5], [14]. An example is an exact char-
acterization of the variation bounds of core execution times
or activation jitters, such that timing constraints are always
satisfied. Another example is the dependency between input

event model parameters and the buffers required to capture
activation back-logs.

VI. SYSTEM ON CHIP EXAMPLE

The system in Fig. 1 represents a SoC consisting of a micro-
controller (uC), a digital signal processor (DSP) and dedicated
hardware (HW), all connected via an on-chip bus (Bus). The
HW acts as an interface to a physical system. It runs one
task (sysif) which issues actuator commands to the physical
system and collects routine sensor readings.sysif is controlled
by controller taskctrl, which evaluates the sensor data and
calculates the necessary actuator commands.ctrl is activated
by a periodic timer (tmr) and by the arrival of new sensor data
(AND-activation in a cycle).

The physical system is additionally monitored by 3 smart
sensors (sens1 - sens3), which produce data sporadically as a
reaction to irregular system events. This data is registered by
an OR-activated monitor task (mon) on theuC, which decides
how to update the control algorithm. This information is sent
to taskupd on theDSP, which writes the updated controller
parameters into shared memory.

The DSP additionally executes a signal-processing task
(fltr), which filters a stream of data arriving at inputsig in,
and sends the processed data via outputsig out. All commu-
nication (with the exception of shared-memory on theDSP) is
carried out by communication tasksc1 - c5 over the on-chip
Bus.

Computation and communication tasks shall have the core
execution times listed in table I (i.e. assuming no interrupts).
We assume the event models at system inputs specified in
table II. In order to function correctly, the system has to satisfy
the path latency constraints and the maximum jitter constraint
at sig out listed in tables III and IV.

comp. task core exe. time comm. task core exe. time

mon [10,12] c1 [8,8]
sysif [15,15] c2 [4,4]
fltr [12,15] c5 [4,4]
upd [5,5] c3 [4,4]
ctrl [20,23] c4 [4,4]

TABLE I - CORE EXECUTION TIMES

input event model

sens1 sporadic,Ps1 = 1000
sens2 sporadic,Ps2 = 750
sens3 sporadic,Ps3 = 600
sig in periodic,Pin = 60
tmr periodic,Ptmr = 70

TABLE II - INPUT EVENT MODELS

A. Analysis

We will use static priority scheduling both on theDSP
and theBus. The priorities on theBus respectivelyDSP are
assigned as follows:c1> c2> c3> c4> c5 and f ltr > upd>
ctrl .

constraint # path maximum latency

1 sensi → upd 70
2 sig in → sig out 120
3 cycle (e.g.ctrl → ctrl) 140

TABLE III - PATH LATENCY CONSTRAINTS

constraint # output event model jitter

4 sig out Jout,max = 18

TABLE IV - MAXIMUM JITTER CONSTRAINT

Table V shows the calculated response times of the com-
putation and communication tasks with and without taking
into account inter event stream contexts. We observe that
the exploitation of context information leads to much tighter
response time intervals in the given example. This in turn
reduces the calculated worst-case values for the constrained
parameters. Table VI shows that, in contrast to the inter
context blind analysis, all system constraints are satisfied
when performance analysis takes inter event stream context
information into account. In other words, a context blind
analysis would have discarded a solution which is in reality
valid.

comp task Respblind Respsens comm. tasks Respblind Respsens

mon [10,36] [10,36] c1 [8,8] [8,8]
sysif [15,17] [15,15] c2 [4,12] [4,4]
fltr [12,15] [12,15] c3 [4,16] [8,12]
upd [5,22] [5,22] c4 [4,28] [8,20]
ctrl [20,53] [20,53] c5 [4,32] [8,32]

TABLE V - CONTEXT BLIND AND SENSITIVE ANALYSIS

constraint # inter context-blind inter context-sensitiv

1 74 70
2 35 27
3 130 120
4 11 3

TABLE VI - CONSTRAINTS CONTEXT BLIND AND SENSITIVE

B. Optimizations

Let us now try to optimize our example architecture. Op-
timization objectives are the four defined constraints. We try
to minimize the latencies on paths 1-3 and the jitter at output
sig out.

In the first experiment our search space consists of the
priority assignments on theBUSand theDSP. Table VII shows
the existing pareto optimal solutions. In the first two columns,
tasks are ordered by priority, highest priority on the left. In
the last four columns, we give the actual value for all four
constrained values. The best reached values for each constraint
are emphasized.

As we can observe there are several possible solutions, each
with its own advantages and disadvantages. We also observe

Bus tasks DSP tasks con. 1 con. 2 con. 3 con. 4

1 c1, c2, c3, c4, c5 upd, fltr, ctrl 55 42 120 18
2 c1, c2, c4, c3, c5 upd, fltr, ctrl 59 42 112 18
3 c2, c1, c4, c5, c3 upd, fltr, ctrl 63 42 96 18
4 c1, c2, c3, c4, c5 fltr, upd, ctrl 70 27 120 3

TABLE VII - PARETO OPTIMAL SOLUTIONS

Bus tasks DSP tasks con. 1 con. 2 con. 3 con. 4

1 c2, c1, c3, c4, c5 upd, fltr, crtl 59 42 120 18
2 c1, c2, c4, c3, c5 upd, fltr, ctrl 63 42 112 18
3 c3, c2, c1, c4, c5 fltr, upd, ctrl 64 35 120 11
4 c2, c1, c5, c4, c3 upd, fltr, ctrl 67 42 96 18
5 c2, c3, c1, c5, c4 fltr, upd, ctrl 68 31 134 7

TABLE VIII - PARETO OPTIMAL SOLUTIONS: SHAPER AT MON OUTPUT

that in each solution one constraint is only barely satisfied.
A designer might want to find some alternative solutions
where all constraints are fulfilled with a larger margin to the
respective maximum values.

We extend our search space by using a shaper at the output
of task mon. This is a good place to perform traffic shaping,
because the OR-activation ofmon can lead in the worst-case
scenario to bursts at its output. More precisely, if all three
sensors trigger at the same time,monwill send three packets
over theBUS with a distance of 10 time units, which is its
minimum core execution time. This transient load peak affects
the overall system performance in a negative way.

Table VIII shows pareto optimal solutions using a shaper at
the output ofmonextending the minimum distance of events
at the output ofmon to 12 time units, and thus weakening the
global impact of the worst-case burst. The required buffer for
this shaper is minimal, because at most one packet needs to
be buffered at any time.

We observe that several new solutions are found. Not all best
values for each constraint from the first attempt are reached,
yet configurations 3 and 5 are interesting since they are more
balanced regarding the constraints.

C. Sensitivity analysis

We applied sensitivity analysis to the pareto optimal system
configurations obtained in Section VI-B. The∆ values show
the variation limits of core execution times when varying only
one task at a time. Tables IX and X present the values obtained
for the system configurations described in tables VII and VIII,
respectively. The emphasized values indicate the maximum
variation limits obtained.

∆c1 ∆c2 ∆c3 ∆c4 ∆c5 ∆upd ∆ f ltr ∆ctrl ∆sys i f ∆mon

1 0 0 1.11 3.33 10 0 0 7 13 5
2 0 0 3.66 6 18 0 0 7 21 3.66
3 0 0 2.33 2.5 2.5 0 0 7 9 2.33
4 0 0 0 3.33 13.5 0 0 7 13 0

TABLE IX - SENSITIVITY ANALYIS : CORE TASK TIMES

∆c1 ∆c2 ∆c3 ∆c4 ∆c5 ∆upd ∆ f ltr ∆ctrl ∆sys i f ∆mon

1 0 0 1.11 3.33 10 0 0 7 13 3.66
2 0 0 3.66 4 18 0 0 7 21 2.33
3 0 4 0 3.33 13.5 1 3 3 13 2
4 0 0 0 0 0 0 0 5 5 1
5 0 2 0 5 0 1 2 3 3 0.66

TABLE X - SENSITIVITY ANALYIS : CORE TASK TIMES(WITH SHAPER)

VII. C ONCLUSION

In this paper we gave a brief overview about the SymTA/S
approach. We shortly reviewed the underlying coupling tech-
nique using event streams, enabling SymTA/S to combine
different kinds of analysis techniques known from real-time
research. Afterwards we introduced a SoC example containing
multiple inputs with AND- as well as OR-activation and
functional cycles. We analyzed the system and saw that the
consideration of system contexts can considerably tighten
analysis bounds. We then explored the optimization potential.
We found several pareto optimal solutions for different opti-
mization objectives. In the last part we analyzed sensitivity of
the pareto optimal solutions. We characterized their robustness,
and thus their flexibility for later system changes.

REFERENCES

[1] Arne Hamann, Rafik Henia, Marek Jersak, Razvan Racu, Kai Richter,
and Rolf Ernst. SymTA/S - Symbolic Timing Analysis for Systems.
http://www.symta.org/.

[2] M. Jersak and R. Ernst. Enabling scheduling analysis of heterogeneous
systems with multi-rate data dependencies and rate intervals. InProc.
40th Design Automation Conference, Annaheim, USA, June 2003.

[3] M. Jersak, R. Henia, and R. Ernst. Context-aware performance analysis
for efficient embedded system design. InProc. of Design, Automation
and Test in Europe (DATE’04), Paris, France, March 2004.

[4] M. Jersak, K. Richter, and R. Ernst. Performance analysis for complex
embedded applications.International Journal of Embedded Systems,
Special Issue on Codesign for SoC, 2004.

[5] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. InProc.
Real-Time Systems Symposiom, pages 166–171, IEEE Computer Society
Press, 1989.

[6] A.K. Mok and D. Chen. A multiframe model for real-time tasks.IEEE
Transactions on Software Engineering, 23(10):635–645, 1997.

[7] J. C. Palencia and M. G. Harbour. Schedulablilty analysis for tasks
with static and dynamic offsets. InProc. 19th IEEE Real-Time Systems
Symposium (RTSS’98), Madrid, Spain, 1998.

[8] P. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of
mixed time/event-triggered distributed embedded systems. InTenth
International Symposium on Hardware/Software Codesign (CODES’02),
Estes Park, Colorado, USA, May 2002.

[9] K. Richter and R. Ernst. Event model interfaces for heterogeneous
system analysis. InProc. of Design, Automation and Test in Europe
(DATE’02), Paris, France, March 2002.

[10] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for
heterogeneous multiprocessor SoC. InProc. 24th International Real-
Time Systems Symposium (RTSS’03), Cancun, Mexico, December 2003.

[11] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition
for scheduling analysis in platform design. InProc. 39th Design
Automation Conference, New Orleans, USA, June 2002.

[12] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems.Microprocessing & Microprogramming, 50(2-
3):117–134, April 1994.

[13] K. W. Tindell. Adding time-offsets to schedulability analysis. Technical
Report YCS 221, Univ. of York, 1994.

[14] Steve Vestal. Fixed-priority sensitivity analysis for linear compute time
models.IEEE Transactions on Software Engineering, 20(4), April 1994.

