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ABSTRACT

High-end video and multimedia processing applications today re-
quire huge amounts of memory. For cost reasons, the usage of
conventional dynamic RAM (SDRAM) is preferred. However,
accessing SDRAM is a complex task, especially if multi-stream
access, different stream types and realtime capability are an is-
sue. This paper describes a multi-stream SDRAM controller IP
that covers different stream types and applies memory scheduling
to achieve high bandwidth utilization. Two different architectures
are presented and discussed, simulation results with a realistic ap-
plication configuration demonstrate up to 90% of maximum mem-
ory bandwidth utilization. The scheduler IP is suitable for FPGA
implementation and is flexible enough to be used in other applica-
tions.

1. INTRODUCTION

Dynamic RAM memories are important components in multime-
dia and embedded systems. For example, they are used to store
large frames in multimedia and video applications. In high-end ap-
plications, such as HDTV or electronic motion pictures, bandwidth
is critical. High resolution applications, widely used in motion pic-
ture and advertising industries require up to 2K1 resolutions that
translate to a data-rate of 2.1 Gbit per second and channel [2], [1].

The very high end of digital cinema (D-Cinema) applications
have grown in importance over the last couple of years with a bril-
liant resolution of 4K per frame [3] and even higher resolutions are
to be expected in the future. Real-time processing, such as filter-
ing for up-/and down-scaling, color keying, compression or trick
effects at this data rate and precision is beyond the scope of today’s
workstations and single DSP processors. The market volume for
such systems is very small, so ASICs are not economically viable
and therefore not an option. Therefore, we follow an FPGA-based
system approach as shown in figure 1.

The main problem of DRAM architectures is the long access
latency. Current DRAM architectures (DDRAM, DirectRambus,
. . . ) reduce the overhead due to this latency using burst access to
several consecutive data words in a memory row. The effect of
access latency can be further reduced by exploiting the internal
bank structure of a DRAM and switching to another bank while
one bank is busy accessing. This technique, called interleaving,
increases memory bandwidth, however without reducing the in-
dividual memory access latency. If there are enough banks, then

1This resolution means 2048x1556 pixels per frame at 30 bit/pixel and
24 pictures/s resulting in 11.4 Mbytes memory requirements per frame

the burst length and, hence, the individual access latency can be
reduced without significant loss in memory bandwidth. This tech-
nique [7] has already been utilized in the FPGA based memory
controller of an commercial HDTV mixer application reaching on
average 70% of the SDRAM peak performance with a burst length
of only 4 words [8].

With even higher throughputs and more complex access pat-
terns, the latency grows again due to larger intermediate buffers
and a higher scheduler complexity. In this paper, we propose a two
stage controller architecture consisting of a bank scheduler that is
adapted to the memory structure and a request scheduler that re-
flects the access patterns. We investigate two different buffering
and scheduling strategies that are simple enough to run in real-
time.

Fig. 1. Flexible image processing platform

After a concise introduction to requirements and related work
the two variants of the 2-stage memory controller architecture are
described in section 3. Section 4 describes the SystemC based eval-
uation environment, the experimental setup and the results. Sec-
tion 5 draws a conclusion.

2. REQUIREMENTS AND RELATED WORK

A closer look reveals that the following distinct types of accesses
have to be served by the SDRAM controller:

� Hard vs. soft realtime. While for some access sequences a
maximum lantency must be guaranteed, e.g. image streams
which must not lose any pixel (hard real-time), other access
sequences like user-interface CPU accesses might not suffer



from a short stall (soft real-time). However, it has to be
ensured that no access sequence gets completely blocked.

� Fixed address patterns, like mage input/output streams or
data streams generated by FPGA-based processing acceler-
ators. To increase troughput and to compensate the burst-
oriented SDRAM access, data prefetching and large FIFOs
which are needed for higher troughput can be used. Since
these are usually hard real-time streams, a maximum latency
and minimum troughput must be guaranteed.

� Random address patterns, like DSP memory access in case
of cache miss. Since these address patterns are nonde-
terministic, data prefetching cannot be used. Instead, to
minimize stall times, these accesses should be served with
smallest possible latency, therefore small buffers and short
burst lengths should be used. Depending on the CPU task,
these access sequences can be hard or soft real-time.

This results in two types of QOS: guaranteed minimum
troughput at guaranteed maximum latency and smallest possible
latency.

The Imagine processor [12] uses a configurable memory
scheduler [4][11], optimized for the application algorithms that
run on the processor. The scheduler is adapted to a specific ap-
plication and does not distinguish different stream types (hard-real
time vs. soft-real-time). The Prophid architecture [6] by Meer-
bergen et al. describes a dynamic RAM scheduler for the Prophid
DSP platform that is focused on streams using large FIFO buffers
and round-robin scheduling. Prabhat Mishra et al. [10] provide op-
timization heuristics for known memory access patterns of a single
processor. None of these schedulers support vastly different access
types at close to peak SDRAM bandwidth.

Closest to our work is a memory scheduler IP offered by Son-
ics [14] that also handles different access patterns and service lev-
els at high average memory bandwidth. That bandwidth is similar
to that of the scheduler presented here and is close to the maxi-
mum possible bandwidth as determined by the memory protocol.
While high bandwidth can always be reached by a sufficiently long
pipline, latency is the key problem to reduce cache stalling. The
Sonics IP is a complex, 7 stage architecture that has an inherently
longer latency than the lean 2-stage architecture which we present
here. Furthermore, the Sonics IP pipeline starts with a bank filter,
while our findings suggest to put the bank scheduling last to reduce
latency. Even though the authors of [14] highlight the importance
of low latency access to avoid cache delays, only bandwidth and
no latencies are published. Finally, the Sonics IP is a 100MHz
ASIC implementation while the scheduler presented here reaches
140 MHz clock speed as an FPGA implementation. Again that
high speed is due to the simple yet powerful architecture.

3. ARCHITECTURE

Our main design goal was to reach maximum memory bandwidth
for multiple access streams with different access sequence types
running in parallel. As explained in the introduction, the two ob-
jectives (maximum bandwidth and minimum latency) require con-
tradictory buffer types and memory burst lengths.

Fig.2 shows the overall memory controller structure with the
two scheduler variants, one with different acess pathes and distinct
FIFOs for different priorities, and one, slightly less complicated
architecture with merged access pathes and FIFOs. In this paper,

we focus on the two blocks, request scheduler and bank scheduler,
their respective buffers and their scheduling strategies.

3.1. 1st Variant: Request Priority Scheduling

3.1.1. Request Scheduler, Bank Buffer

Requests to the SDRAM controller are always made at full burst
length. The request scheduler forwards requests of several inputs
with different request types, one request per clock cycle, to the
bank buffer. The one-per-bank bank buffer FIFOs are small and
store the requests sorted by bank.

By applying a priority-based round-robin arbitration similar to
[13], a minimum access service level is guaranteed. Requests from
high priority inputs are scheduled out of order before requests from
standard inputs. To prevent starvation, one slot is always reserved
for standard priority requests. Without loss of generality, we use 2
priority levels.

3.1.2. Bank Scheduler

The bank scheduler is responsible for selecting requests from the
bank buffer and forwarding them to the tightly coupled access con-
troller for execution. In order to increase bandwidth utilization,
two aspects have to be considered: bank interleaving and request
bundling.

Bank interleaving is used to hide the bank access latencies. In
a common SDRAM setup, an access to a bank in auto-precharge
mode and with burtstlength 4 takes 4 active cylces in which data
is transferred, follwed by 4 (read) to 6 (write) passive cycles dur-
ing which the bank cannot be accessed. However, during these
passive cycles, another bank can be accessed. Thus, with at least
3 banks available, it can be guaranteed that each memory bank
can be accessed once in a round without stalling. The scheduler
maintains bank busy flags which describe the current state of the
bank. By only selecting banks which are not busy and by apply-
ing a priority-based round-robin arbitration similar to [13], it is
guaranteed that successively each bank gets scheduled (assuming
a request is available).

Request bundling is used to minimize bus direction switches.
On every bus direction switch, tristate cycles have to be inserted (1
for a read-write change, 1-2 for a write-read change, depending on
the type of SDRAM) which can lead to a bandwidth decrease of up
to 20..27% for alternating read-write accesses. Bundling requests
to consecutive read or write sequence alleviates this. To prevent
deadlocks, only one request of each bank is allowed in one read or
write bundle.

3.2. 2nd Variant: Bank Priority Scheduling

3.2.1. Request Scheduler, Bank Buffer

In this variant, independent pathes are provided for different re-
quest priorities. Each priority has got its own request scheduler and
their own bank buffer FIFOs. Since the same arbitation scheme
(without request priorities) is used as in the 1st variant, we still
have a deterministic maximum latency and per-input troughput.
As expained above, different bank buffer FIFOs for different pri-
orities exist. A later multiplexor selects high priority requests if
available, otherwise standard priority requests. To prevent nor-
mal requests from being deadlocked by continuous high priority



Fig. 2. SDRAM controller architecture

requests, after a sequence of high priority requests one normal re-
quest will be selected if available. This is controlled by the Bank
Scheduler.

The additional complexity for the scheduler is moderate since
the complexity of each scheduler is less compared to the 1st vari-
ant (less inputs and no priority selection logic). The bank buffer
complexity increases noticeable, especially if more than two prior-
ities are used. However, since it might be possible to reduce each
FIFO size, the added complexity will be moderate.

3.2.2. Bank Scheduler

The bank scheduler works similar to the 1st variant regarding
bank interleaving, request bundling and the round-robin arbitra-
tion scheme. In addition, the priority handling has moved from
the request scheduler to the bank scheduler. To accomplish this,
high priority requests are given precedence over standard priority
requests. Only if no high priority requests can be scheduled, a
standard priority request is taken. To prevent starvation of stan-
dard priority requests, after a consecutive scheduling �������	��
 high
priority requests one standard priority request gets scheduled if
available (in this case, the bank buffer FIFO multiplexors select a
standard priority request regardless of available high priority re-
quests as stated above).

3.3. Additional Modules

Since the rest of the SDRAM controller is the same in both vari-
ants, they will be explained only once.

3.3.1. Access Controller

The Access Controller is responsible for SDRAM command issu-
ing, including initialization and refresh cycles. As stated above,
and contrary to most other SDRAM controllers, the SDRAM is
accessed using auto-precharge mode, which means that a bank is
automatically precharged after an access. This results in deter-
ministic bank throughput and access latency which is needed for
a global real-time analysis. Also, the complexity of the controller
decreases due to a simpler state machine and lack of row address
comparators, which makes it more suitable for FPGAs. The Ac-
cess Controller works with a burst length of 4 words (8 words on
DDR-SDRAM).

3.3.2. Address Translation

Due to the auto precharge mode, there is no advantage in mapping
access sequences to the same bank and row to exploit row buffer
hits as with precharge-based SDRAM controllers [15]. In contrast,
the latency increases if two consecutive requests hit the same bank.



To avoid this, request sequences are spread over all banks by per-
mutating and xor-ing original address bits analogous to [16]. For
many deterministic address patterns, e.g. linear address incremen-
tation during video input, the optimum bank access sequence can
be achieved by adapting the algorithm.

3.3.3. Data Buffer

The write-request data gets stored inside data buffers. Once the
request has been scheduled, the data is transferred to the SDRAM.
For read requests, an empty place in the according data buffer is
assigned to the request. If the read is executed, the data from the
SDRAM is transferred to that place. The bank buffer access is
done via tags which are assigned to the requests. This technique
allows an easy adaption of the off-chip SDRAM databus width and
the usually narrower internal datapathes. It also alleviates the need
to store the data inside the buffer FIFOs and the buffer-to-buffer
transfers.

3.4. Real-Time Aspects

Since all schedulers use round-robin arbitration, and deadlocks due
to continuous high-priority requests are prevented by temporarily
forcing the scheduling of low-priority requests, we have a detemi-
nistic maximum latency and minimum troughput.

3.5. Parameters

The controller is parameterizable to serve different applications.
The most important parameters are the SDRAM layout (rows,
columns, banks) and timing, number of inputs including their pri-
ority and the FIFO sizes. Those parameters directly influence the
latency and throughput. Increasing the number of ports increases
the maximum per-port latency and decreases the per-port maxi-
mum troughput (decrease of performance). Increasing the num-
ber of banks also increases the per-bank latency and decreases per
bank troughput which in turn also affects the worst case perfor-
mance. However, more banks also increase the possibility that two
requests get mapped to different banks which leads to a better av-
erage performance. However, if the bank access sequence can be
predicted as stated in 3.3.2, then also the worst-case performance
is improved.

3.6. Implementation

For simulation, we used SystemC, because, besides the high sim-
ulation speed, it allowed us to model at serveral abstraction levels
in one language and to easily reuse available C models.

To get accurate speed data for implementation in an Xilinx Vir-
texII FPGA, we implemented critical modules (access controller,
bank scheduler and data paths) in VHDL, follwed by synthesis,
placement and routing using Synopsys FPGA compiler 2 and Xil-
inx tools. The synthesis and routing results indicate a clock speed
of 140 MHz.

4. EXPERIMENTS

To evaluate the concept, we created a system model consisting of
the SDRAM, SDRAM controller as well as several clients. For
the experiments, the SDRAM controller and SDRAM model were
implemented cycle-accurately at transaction level, except for the

interface between controller and SDRAM which is modeled at RT
level.

For the SDRAM we used the same parameter set (table 1)
throughout all experiments.

parameter value
technology SDR
clock 142 MHz
size 64 MByte
banks 8
databus width 32 bits
burstlenth 4��
���������������� 
�� ����� 


2� 
��
8

refresh 8192 auto-refresh per 64ms

Table 1. SDRAM parameter

4.1. Experiments 1a,1b

To test the impact of the bank buffer size regarding maximum
troughput and latency, we created one random access, 50%
read/write data stream and did serveral runs with different loads
and bank buffer sizes. Access streams are not priorized for this ex-
periment. We recorded the troughput and latency. Table 2 shows
the setup and the results. We made the following observations:

� the maximum reachable SDRAM troughput is 0.9
words/cycle, which means 90% bandwidth utilization.

� increasing the buffer sizes has no major effect on the
troughput, but it increases the latency significantly on high
loads due to FIFO fill up. On the other side, with 8 banks
available, there are enough banks left to achieve close to
maximum troughput even if one bank buffer is empty due
its small size. Therefore, a buffer size of 1 is sufficient.

Given the small bankbuffer FIFO size of 1, it is interesting
to see if architecture variant 2 with its distinct paths for high and
low priority requests provides better QOS than architecture vari-
ant 1. Therefore, we created a 2 �

�
access stream to which we

gave a higher priority. We tested several load combinations (which
together did not exceed the maximum reachable troughput) with
both architecture variants and recorded troughput and latency (ta-
ble 3).

� We clearly see that effect of the priorities in architecture
variant 2 is bigger than in architecture variant 1, that means
that the latency of the high priority stream is lower while the
latency of the low priority stream is higher. That means that
even with small buffers, it is better to have different request
paths and merge the requests as late as possible. Since the
bank buffer FIFO size is only 1, the added complexity is
moderate and thus acceptable.

� The priority architecture has no impact on the maximum
troughput. Both streams reach their requested troughput.

4.2. Experiment 2

While the synthetic experiment 1 gives a good impression of the
memory controller performance, we are also interested in the per-
formance under practical conditions. For this purpose, we defined



applied BB size 1 BB size 2 BB size 5 BB size 10
load tp lat tp lat tp lat tp lat
[w/c] [w/c] [cycles] [w/c] [cycles] [w/c] [cycles] [w/c] [cycles]
0.8 0.80 21.3 0.80 21.5 0.80 21.5 0.80 21.5
0.9 0.90 39.9 0.90 42.7 0.90 42.9 0.90 41.0
0.95 0.92 49.0 0.92 64.1 0.92 97.7 0.93 149.6
1.0 0.90 51.7 0.92 64.1 0.92 111.1 0.91 186.3

BB size - bank buffer FIFO size
w/c - words per cycle
tp - troughput
lat - latency

Table 2. Experiment 1a: Simulation setup and results

applied architecture variant 1 architecture variant 2
load troughput latency troughput latency

lo / hi lo / hi lo / hi lo / hi lo / hi
[w/c] [w/c] [cycles] [w/c] [cycles]

0.2 / 0.5 0.2 / 0.5 19.5 / 19.5 0.2 / 0.5 21 / 19
0.2 / 0.7 0.2 / 0.5 40 / 40.5 0.2 / 0.5 55 / 31.5
0.5 / 0.2 0.5 / 0.2 19.5 / 19.5 0.5 / 0.2 20 / 19
0.7 / 0.2 0.7 / 0.2 39.5 / 32.5 0.7 / 0.2 45.5 / 25.5

w/c - words per cycle
lo - low priority stream
hi - high priority stream

Table 3. Experiment 1b: Simulation setup and results

an example architecture which ressembles the setup in [8] and
implemented an example application. The experimental setup is
shown in figure 3. It consists of a hardware implementation of a
discrete wavelet transformation (DWT) algorithm and a CPU with
caches.

Fig. 3. Experimental setup

4.2.1. Discrete Wavelet Transformation

The DWT implementation is based on [9] and was implemented in
SystemC at the RT-Level to obtain a cycle true simulation model
and a basis for a precise cost and performance estimation via logic
synthesis.

After implementation for a Xilinx VirtexII FPGA, the CAD
tools reported a maximum operating frequency of 100 MHz. This
frequency is not a integer fraction of the expected 140 MHz
SDRAM memory interface clock. So in order to achieve maxi-
mum throughput we used asynchronous FIFOs to transfer data be-
tween the two different clock domains. The DWT input consumes
one data item (2 pixels) per clock cycle, while the four outputs are
idle for 32 cycles, followed by 8 cycles of data output through 4
parallel write ports.

The period of the output streams depends on the image width
and on the current DWT level [9]. Because this algorithm, as well
as most other image transform or filtering algorithms, has a known
memory access pattern, we are able to apply pre-fetching to all
input data. This is aided by the fact that the avaliable FIFOs on the
FPGA are relatively large. This way, the fixed access pattern can
be served by burst memory access.

The data I/O for the DWT uses a separate port, DWT I/O. This
port reads and writes a periodic pixel stream.

4.2.2. CPU

For CPU simulation, we used the SimpleScalar SimSafe DLX sim-
ulator together and an adapted version of the Dinero cache simu-
lator. The CPU has its own fast local RAM for program code and
local variables (stack) and uses the SDRAM for larger data stor-
age.

In the final system, the CPU will be replaced by a DSP, but this
architecture is sufficient to generate meaningful burst cache access
patterns for these experiments.

4.2.3. Simulation Results

The DWT was setup for a three level 512 x 512 grayscale image,
and the CPU performed a compression of a 64 x 64 color image
using cjpeg from the media testbench [5]. The SDRAM controller
was clocked at 140 MHz, the DWT at 100 MHz. The CPU and the
cache (2Kb, 4-way associative, block size equal to SDRAM burst
length) were clocked at 1 GHz to compensate for the weak DLX
performance (as said in Subsection 4.2.2 ideally we would use a



bank buffer architecture variant 1 architecture variant 2
FIFO DWT CPU DWT CPU

Nr. DWT CPU size Kcycles Mcycles / CPI Kcycles Mcycles / CPI
1,2,3 no yes 1, 6/2x6, 6/2x3 5.75 (1.89) 5.75 (1.89)
4,5,6 yes no 1, 6/2x6, 6/2x3 504 504

7 yes yes 1 531 6.75 (2.22) 531 6.61 (2.17)
8 yes yes 6 / 2x6 532 6.76 (2.22) 538 6.63 (2.18)
9 yes yes 6 / 2x3 538 6.63 (2.18)

Table 4. Experiment 2: Simulation setup and results

powerful DSP instead). We measured the execution time of the
DWT and the CPU for several runs with the following parameters:

� Running only CPU, only DWT and both CPU and DWT.
� Bank buffer FIFO size of 1 vs. 6. For architecture 2, we

set a) both high and standard priority FIFOs to 6 (2x6) and
b) both high and standard priority FIFOs to 3 (2x3). The
later (2x3) sizes have about the same complexity as a single
FIFO of size 6.

The results are shown in table 4. We made the following ob-
servations:

� Architecture 2: setting the bank buffer FIFO size to 2x3
shows no difference compared to the 2x6 setting (nr. 2,5,8
vs. 3,6,9)

� The mutual influence of CPU activity and DWT is small,
despite the relatively large load and despite the very dif-
ferent access patterns. This is a result of the flexible 2
stage scheduling scheme with short access bursts and small
round-robin time slots leading to low latencies.

5. CONCLUSION

Based on earlier experience with a fixed architecture for a re-
configurable HDTV system, we presented two variants of a dy-
namic RAM scheduler IP that supports several concurrent access
sequence types with different requirements including hard real-
time periodic sequences and cache accesses with a minimum la-
tency objective. It consists of a 2-stage scheduler, a Bank Sched-
uler for memory efficiency optimization and a Request Scheduler
to arbitrate the access streams. We explained the two variants, the
chosen IP parameters and their impact on design performance. The
IP has been evaluated in a simulation environment consisting of a
processor with cache, an application specific data path for wavelet
coding and video I/O, all modeled in SystemC. In the evaluation,
we demonstrated the high flexibility and efficiency of the 2-stage
approach. The simulation data shows a 90% memory bandwidth
utilization and adherence to access requirements for a wide range
of load scenarios. The IP can easily be adapted to DDR-RAM
or RAMBUS DRAM by simply exchanging the memory interface
and the bank model.
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