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ABSTRACT simulation. Formal methods have successfully been used in real-

Formal methods are growing in importance for performance analy- ime System analysis (e.g. schedulability analysis), but embedded
system heterogeneity limits the application of these methods to sub-

sis of real-time systems, but embedded system heterogeneity limits ] - i i
the application of these methods to subsystems or special cases?yétems o.r special cases. One of the problems is the rich .varlety
One of the problems is the rich variety of interactions between em- ©f intéractions between embedded system processes. While real-

bedded system processes, which cannot be directly expressed witffime angly3|s usually assumes simple process depen.denues, such

the typical event models used in real-time analysis as acyclic task graphs and single-rate data dependencies, embedded
This paper shows how to transform complex interaction patterns system functions include multi-rate data flow graphs or conditional

into the integral representation of minimum and maximum arrival communication leading to data rate intervals. The resulting inter-

curves, and then to conservatively approximate these arrival curves2Ction pattemns cannot be directly expressed with the typical event

using standard event models. This approach paves the way to appl)}noqels useq in real-time analysis. o

the formal approaches known from real-time analysis to heteroge- Little previous work addresses this issue. In [6], bursts of events

neous embedded systems. arriving at a process input have a common deadline and lead to
the production of one output event. However, this does not solve
Categories and Subject Descriptors the problem of data rate transitions between sender and receiver,

and the approach is only applicable to earliest-deadline first (EDF)
scheduling. Since no output event models are calculated, heteroge-
neous multi-processor systems cannot be analyzed. An extension
presented in [15] allows to analyze single-processor EDF schedul-
ing of synchronous dataflow graphs (SDF) [8]. This is done by
transforming the multi-rate SDF graph into an equivalent single-

C.3 [Computer Systems Organizatiof: Special-Purpose and
Application-Based Systemsreal-time and embedded systei@sA
[Computer Systems Organizatiof: Performance of Systems

General Terms

Theory, Algorithms, Performance, Verification rate representation and calculating individual deadlines for each
process activation. Again, since no output event models are used,
Keywords the approach is restricted to single component analysis.

Heterogeneous Embedded Systems, Real-Time Systems, Multi-Rate This paper shows how to transform complex interaction patterns
Data Dependencies, Rate Intervals, Multiple Activating Inputs, Schelnto the integral representation of minimum and maximum arrival

duling Analysis, Event Models, Arrival Curves curves, and then to conservatively approximate these arrival curves
using standard event models. This approach paves the way to ap-
1. INTRODUCTION ply the formal approaches known from real-time analysis to het-

erogeneous embedded systems. Our approach is motivated by the
With growing system complexity, formal methods for system Wwork presented in [9], where event models are propagated to com-
performance analysis and estimation receive more attention as arpine existing single-component timing analysis techniques, in order
alternative or complement to an increasingly expensive performancel0 analyze heterogeneous systems for which no coherent analysis
technique exists. However, only single-rate systems with single en-
abling inputs are considered.

- . . . The remainder of the paper is organized as follows: In the next
Permission to make digital or hard copies of all or part of this work for . . . .
personal or classroom use is granted without fee provided that copies areS€ction we describe typical embedded system properties that can
not made or distributed for profit or commercial advantage and that copies be captured using our approach. This is followed in Sec. 3 by an

bear this notice and the full citation on the first page. To copy otherwise, 10\ rview of standard models employed by existing analysis tech-
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. nigues. In Sec. 4 we explain how to transform complex interaction

DAC 2003 June 2-6, 2003, Anaheim, California, USA. patterns into existing event models, first for multi-rate data depen-
Copyright 2003 ACM 1-58113-688-9/03/000655.00.



dencies, then for data rate intervals and finally for multiple acti- maximum number of arriving events within a certain time inter-
vating inputs. The paper concludes with a summary and a brief val is bounded, which can be efficiently expressed with so called

outlook on future work. event modelsUsing these event models, as well as the core exe-
cution time of each process and assigned scheduling parameters, a
2. SYSTEM PROPERTIES scheduling analysis for a component can calculate the load of that

component as well as minimum and maximum response times for

State of the art embedded systems consist of multiple heteroge-€ach process scheduled on that component. This allows to validate
neous processing and communication components, either highly in-deadlines, for example. Overviews of analysis techniques for single
tegrated in the form of multi-processor systems on chip (MP-SoC) Processors are givenin [1, 4].
or as distributed systems. They execute a multitude of different ~Event models are generally categorized as periodic or sporadic
parallel functions, many of them with hard real-time constraints. @nd additionally can display jitter or bursts [12]. In the following
Process scheduling is controlled by real-time operating systemsWe use theperiodic with jitter event model as an example to illus-
(RTOS) with different scheduling strategies, and communication trate our approach, but this is not a restriction. Peeiodic with

scheduling happens through a variety of bus arbitration protocols. Jitter event model states that each event generally arrives periodi-
cally with periodP, but that it can jitter around its exact position

G}{E‘/ S Data rate transition within a jitter interval 7. For example, the minimum and maxi-

Py (P2 mum distance between two events are

1 1 1 1

< :l@%: :56392'\Multiple activating inputs dmin =P =T, dmez =P +T

| i ' "% O (AND or OR logic) .

'y (12 (28] ~1] J can be equ.al or Iargerthdh If.J = 7?. theq 2 events can arrive _

! Ps) : : (Ps) ! ‘ at the same time, while the earliest arrival time of the 3rd event is

: ! ! i Dataraeintervals one period later. For a larger jitter, the ??rd event can arriye earligr.

:Compl: :Compz: If J = 2 * P then t.hree events can arrive at the same time while

-2 ool the earliest arrival time of the 4th event is one period later, and so
on.

Figure 1: System example Event sequences can be represented as integrals over time us-
ing event model functions [5] oarrival curves[11]. Time inte-
In our system example in Fig. 1, six processEs through Ps) grals give nice graphical representations and fit the load analysis

have been mapped to two different processing components. Theapproach to scheduling analysis [4], but finding a closed form can
processes are scheduled by an RTOS together with an arbitrarybe difficult. One approach presented in [11] is to introduce a new
number of other processes, representedfpyand Ps. We do analysis technique, where the arrival curves are approximated with
not restrict the exact scheduling policies or the scheduling param- piecewise linear functions for the maximum and minimum number
eters. Arbitration of shared communication resources is neglectedof arriving events. In this paper, we propose to extract model prop-
for simplicity in the example and is not a restriction of our ap- erties from arrival curves such that the the upper and lower arrival
proach. curves can be represented by the event models used in classical
Realistic systems exhibit multi-rate data dependencies betweenreal-time analysis. This way, we are able to make use of existing
processes, e.g. in dataflow graphs [8], as well as data rate intervalgpowerful analysis techniques that have been developed in the field
at process inputs and outputs and multiple activating inputs per pro- of real-time analysis.
cess. Our example exhibits a data rate transition betwesnd
P» from a smaller production rate to a larger consumption rate, re-
sulting in an execution rate transition from a faster to a slower rate.
The opposite happens betweBnand P,. The production and the
consumption rates betwedt and Ps are intervals.P; addition-
ally has 2 activating inputs that can be concatenated with eitfnr
condition, i.e. the process is activated when sufficient data has ar-
rived at all inputs, such as in dataflow graphs, or witftondition,
i.e. sufficient data has arrived at least at one of the inputs, e.g. in
FSM networks. A detailed discussionarfidandor activation and
their impact on execution rates can be found in [2].

DEFINITION 1. For any At, the upper arrival curve is a tight
upper bound for the number of events that can arrive during any
interval of lengthAt¢, while the lower arrival curve is a tight lower
bound for the number of events that must arrive during any interval
of lengthAt.

In Fig. 2, upper and lower arrival curves are shown forpbe-
odic with jitter event model withP = 4, 7 = 1.

Recently, it has been shown how event models can be used to
couple analysis techniques for different processors and buses in an
MP-SoC or a distributed system, for which no coherent schedul-
ing analysis is available [9, 10]. Single component analysis is per-
3. EXISTING SCHEDULING ANALYSIS formed using existing techniques. The analysis is extended to pro-

MODELS duce output event models which are propagated to the next com-
ponent, where they serve as input event models for the analysis of

Scheduling analysis techniques typically assume that processedhat component. It may be necessary to adapt an event model to
are activated by a stream of arriving events. The minimum and suite the analysis requirements for the receiving component, e.g.



events the number of events, but instead integrate over the number of com-

o ';e;“;‘f‘g i ier: municated tokens. In case of producing processes, we assign each
1 dpw event a height corresponding to the number of tokens produced per
e activation, in this case. Accordingly, we model the activation of
| dmin the consuming process as events with a height corresponding to the
> number of tokens consumed per activation. For this to work, we

L B o B o S o S have to re-map events of height into events of height- and

5 10 15 At

calculate the resulting event model.

The key idea is that independent of their height, events are treated
as atomic from the perspective of scheduling analysis, and thus
each consumed event results in one activation. Therefore, stan-
by reducing the maximum jitter through controlled buffering [10, dard scheduling analysis techniques that require activation by sin-
14]. All put together, this approach allows to analyze heteroge- gle events become applicable. Of course, the number and size of
neous multi-processor systems. tokens produced and consumed is still important for the dimension-

However, existing component analysis techniques usually assuméng of communication buffers.
single-rate data dependencies between processes. Consequently,
event streams are a sequence of single events, and each event retoken token
sults in exactly one process activation. This is a serious restriction ,,7 .,
for the analysis of realistic systems, which exhibit multi-rate data - P=4,0=1
dependencies, data rate intervals and multiple activating inputs assf
shown in Fig. 1. In case of multi-rate data dependencies, tokens ] 3
produced by one activation of the producing process may not be 4 © l|j
sufficient to activate the consuming process, or, on the contrary, 5 10 1 5 10 15
may result in more than one activation of the consuming process. token token
With data rate intervals, the identification of single activating events 1 J

A

Figure 2: Arrival curves

is even less clear. Processes with multiple activating inputs are alsom; i T
not supported by most existing timing analysis techniques. Here, ] i) t
a notable exception is recent work on the timing analysis of con- 5;:1 y T T T

ditional process graphs [3, 13]. However, these workings assume 71 o

holistic, homogeneous scheduling of multi-processors and thusdo """ 77" "7 T T T T LT i T LT T T T Ty
not support the coupling of different analysis techniques in a het- © D
erogeneous system with heterogeneous scheduling strategies.

In the following, we show how the aforementioned restrictions Figure 3: Data rate transition from a smaller production rate

of existing timing analysis techniques can be abolished. to a larger consumption rate.
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4. ANALYSIS MODEL EXTRACTION To correctly construct the arrival curves of the consuming pro-

cessPc, we must consider betwe@mandrc — 1 initial tokens at

In this section we show how to extract standard event models the input of Po *. In our examplerc(P;) = 3. The maximum

which are directly applicable for coupling existing timing analysis nhumber of arriving tokens for anit at the input ofPc is obtained
techniques from realistic systems which exhibit data rate transi- if ¢ — 1 initial tokens and the earliest possible arrival times for
tions, data rate intervals and multiple activating inputs. We illus- tokens from the producing proceBs are assumed. Therefore, the

trate our approach using the example in Fig. 1 and assume that allupper arrival curve o’y is shifted upwards byc — 1 as shown

relevant event models are of typeriodic with jitter which was in Fig. 3 b).

introduced in Sec. 3. However, our methodology is equally appli- ~ The upper and lower arrival curves of the consuming process are

cable to other event models. constructed from events with a height corresponding to the num-
ber of tokens consumed per activation of the consuming process.

4.1 Data Rate Transitions They bound the minimum and maximum number of activations of

the consuming process for any time interval of length The
curves can never be higher than the respective curve of the produc-
ing process (or else non-existent tokens would be consumed). This
is shown in Fig. 3 ¢).

At this point, all that remains is to find parameters for some event
PP) =4, J(P)=1 model to either exactly describe or conservatively approximate the

We first consider the data rate transition from a smaller produc-
tion rate to a larger consumption rate, using processesdP; in
Fig. 1 as an example. Let us assume tRaproduces events with
the following properties at its output:

The upper and lower arrival curves of this event model are shown in Ipore initial tokens do not have to be considered since they would
Fig. 3 a). However, different to Fig. 2, we no longer integrate over have already activateB in the past.



token token

upper and lower arrival curves of the consuming process. An exact a
description can be obtained using e.g. the formalism proposed inzoz EBZO% o) P ry
[5]. However, an exact description can be rather complex, and the '
complexity is likely to rise as event models get propagated through y .
the system. With a conservative approximation on the other hand, 1 I
event model complexity can be bounded. r i

It is possible to obtain an approximation for the consuming pro- R 4 ' ’ 4
cessPq using an event model of the same class that was used for
the producing procesBp, in our exampleeriodic with jitter. The
target event model parameters are calculated as follows:
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P(Pc) = P(Pp)x o a) b)
j(PC') = ma:t(jupper(PC), g%ower(PC)) token token

= maa:('P(Pc) - dein: dcmaz — P(PC))

where dcmin and domaqe are the minimum and maximum dis-
tances between two activations Bf
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demin = max(npmin * P(Pp) — J(Pp), 0)
dcomaz = NPmaz * P(PP) + j(PP) ] ‘r A 1 f} R A
1 4 4 cmn A
Here,npmin andnpmaq, are the minimum and maximum number  _x Q . (
of activations ofPp needed between two activationsief. 2 A £ P4,
]_]x A A P=2J=6
n P— ’VT_C—‘ T T T TTT TT T T T T T T T 1T VA[ T T TrTT T T 1T 1T =A‘
Pmazx - 5 10 15 5 10 15
P ) d)

npmin 1S Obtained by first determining the maximum number of
tokensd... possibly available after an activation Bf Figure 4: Data rate transition from a larger production rate to
a smaller consumption rate.
5maz:TC_1+TP_TO:7’P—1

nd then calculatin . . L.
and then calculating For all data ratios withp /rc > 1, one activation of the produc-

Omaz + NPmin *Tp > TC ing process can lead to more that one activation of the consuming
o np. _ |rezre +1 process. The minimum and maximum number of simultaneous ac-
Prmin = rp tivations of the consuming process is
This is shown in Fig. 3 d) for our example, where VPJ FPW
SCmin = | — |y, SCmaz = | —
3 rc rc
P(P) = P(P)+—> = 4x5 =6 - | _ _
1 2 This kind of bursty behavior can be conservatively approximated
J(P2) = maz(6-3,9-6) =3 using aperiodic with jitterevent model, where the jitter is equal or

As can be seen, the approximation is not overly conservative. The larger than the period as explained in Sec. 3.
shortestAt for the arrival of3, 5, ... events is underestimated by The period offc is calculated as before:
two time units, while the longegkt¢ between the arrival of, 5, . . . P(Pc) = P(Pp)x re
events is overestimated by two time units. An extension usually re
yielding higher precision would be to maintain separate values for To calculate the minimum jitter required for a conservative approx-
Tupper (Pc) and Jiower (Pc). We will return to this in Sec. 4.2. imation, we need to find a ‘critical’ activation in the upper and
lower arrival curves ofP-. ‘Critical’ activations are the highest
We now consider the data rate transition from a larger production ‘peaks’ above and the deepest ‘valleys’ below the average slope of
rate to a smaller consumption rate, usifigand P4 in Fig. 1 as an the curves. ‘Critical’ activations with the smalledt....;; are cir-
example. Let us assume an output event model fRymvith the cled in Fig. 4 c). The goal is to tightly bound ‘critical’ activations
following properties: in the conservative approximation as shown in Fig. 4 d).
P(Py) =5, T(Py) =2 f We show the ca_lculation of the jittejnpp_er(Pc) that results
rom the upper arrival curve. The calculation @, (Pc) for
Fig. 4 a) shows the upper and lower arrival curves as produced the lower curve is similar and is given in [7].
by processPs, with the upper curve shifted upwardshy—1 =1 As explained before, the upper arrival curve is constructed as-
in Fig. 4 b) in analogy to Fig. 3 b). The curves are overlayed in suming the maximum number of initial tokens. Therefake,= 0
Fig. 4 c) with the upper and lower arrival curves as consumed by is the starting point of the longest possible sequence-of,. Si-
processP; in analogy to Fig. 3 c). multaneous activations dPc. If this sequence is longer than 1,



then the smallesf\t.,.;; is the value ofAt for the last element in input of Pc are used; to construct the lower arrival curve for con-
this sequence (each element rises higher above the average slopgumed tokens, the minimum production rate, the maximum con-
than the previous one). If the length of the sequence equals 1, thensumption rate and zero initial tokens at the inputf are used.
this approach would returt = 0, which due to the jitter may not ~ Note that without additional information a lower consumption rate

be critical. However, the smalledtt > 0 for which s¢ = scma, of zero is problematic because a bounded buffer cannot be guaran-
will be critical as shown in Fig. 4 d). teed.
The number of activations in the upper arrival curve of the target  Obviously, two event models with different periods are now re-
periodic with jitterevent model after the initial burst is quired to conservatively bound the upper and lower arrival curves.
Atorir This additional complexity can easily be handled when event mod-
Nag = [P(Pc)w els are propagated through the system for analysis. Worst case load

is calculated based on the upper arrival curve models, while best
The earliestAt of the first event after the initial burst in the target  :5se load is calculated based on the lower arrival curve models.
event model is Before we present the construction process, we have to address
Atiee = Aterit — (na —1) = P(Pe) an |r?terpretat|o.n issue regarding the minimum number of tokens
required at the input oP- for Pc to be able to execute. Our inter-
Let .- be the maximum number of tokens consumed for any time pretation is as followsPc requires its maximum consumption rate
interval At = At.ri:. The number of activations in the upper of tokens available at its input to execute. This is because the total

arrival curve during the initial burst in the target event model is number of tokens consumed may depend on the values of the first
Serit tokens consumed, and we do not wdft to stall for lack of to-
Nd = re Na kens. Our approach remains equally valid for other interpretations

. . . . of P¢’s activation condition.
Consequently, the jitter resulting from the upper arrival curve is

token token

juppe'r(PC) = (nd - 1) * P(PC) + P(PC) - Atlst ,‘ A

104 10

and, as before, the resulting output event model jitter is ]

J(Pc) = max(Jupper(Pc), Jiower(Pc)) Ijr
In our example scmin = |5/2] = 2, SCmaz = [5/2] = :*Wﬁﬂ*
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3, Meris = 2. Thus - -
Atcrit = 8 . .
Figure 5: Arrival curves for produced and consumed tokens for
Nrerie = 16 processes with data rate intervals.
P(Py) = 5%2/5=2
] An example are processés an Ps in Fig. 1. The corresponding
Mo = h—‘ =4 arrival curves are shown in Fig. 5, with Fig. 5 a) constructed in
Aty = 8—(4—1)%2=2 analogy to Fig. 3 b) and Fig. 5 b) constructed in analogy to Fig. 3
16 c). Note that due to our interpretationsf’'s activation condition,
nd = 5= 4=4 at least 3 tokens are required at its input for execution. The two
TJupper(P1) = (4—1)%2 4+ 2-2=6 boundingperiodic with jitter event models can be constructed as

explained in Sec.4.1.
Since Jupper (P1) = Jiower(Ps) in this example, the resulting

periodic with jitter event model parameters are 4.3 Mu|tip|e Inputs

P(P1) =2, J(Ps)=6 If a process has two inputs, than activation typically either re-

As afinal note, for the special case of equal output and input dataqy,Ires a m|n|r.ngm number of tokens at at Ieast. one '“m‘t@r?'
dition), or a minimum number of tokens at both inputa{ condi-

rates, both calculations presented yield the same activating event

. . . tion). More than two activating inputs allow to combine these two
model for the consuming process as is output by the producing pro- o o
possibilities. In case oind condition, both data rates have to be
cess [7], as would be expected.

the same, otherwise one buffer cannot be bounded.

The upper and lower arrival curves for condition are the re-
spective sums of the two upper and the two lower arrival curves of

The transition between data rate intervals builds on the transition the two input event models. The upper and lower arrival curves for
between fixed data rates explained in the previous section with theand condition are the lesser of the two upper and the two lower
following extensions: to construct the upper arrival curve for con- arrival curves of the two input event models, respectively. This is
sumed tokens, the maximum production rate, the minimum con- shown in Fig. 6 for twgeriodic with jitterevent models with equal
sumption rate and the maximum number of initial tokens at the periods and different jitter. Note that the input event model with the

4.2 Data Rate Intervals



smaller jitter contributes the upper arrival curve éord condition,

while the input event model with the larger jitter contributes the
lower arrival curve. Foor condition, a bounding event model can

be constructed as explained in Sec.4.1.
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Figure 6: Arrival curves for two activating inputs with c) or
and d) and condition.

5.

CONCLUSIONS

In this paper we showed how to extract standard single-rate event

models from realistic systems which exhibit multi-rate data de-
pendencies, data rate intervals and multiple activating inputs. The
transformation is performed by first obtaining minimum and max- [12]
imum arrival curves, and then conservatively approximating them
using standard event models. The resulting event models are di-

rectly applicable to existing scheduling analysis techniques, thus [1

enabling scheduling analysis of systems that so far were out of
reach for those existing techniques.

A major benefit of event models is their ability to couple existing
analysis techniques for single components, in order to enable tim- [14]
ing analysis of complex, heterogeneous MP-SoC and distributed
systems for which no single coherent analysis exists. As a result of
the transformations presented in this paper, this coupling has been
taken beyond single-rate systems. We are currently investigating[15]
the combined benefits resulting from first transforming complex
interaction patterns into single-rate event models, and then using
those event models to couple analysis techniques.

6.
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