
Context-Aware Performance Analysis for Efficient Embedded System Design

Marek Jersak, Rafik Henia, Rolf Ernst
Technische Universität Braunschweig

Institut für Datentechnik und Kommunikationsnetze (IDA)
D-38106 Braunschweig, Germany
{jersak, henia, ernst}@ida.ing.tu-bs.de

Abstract

Performance analysis has many advantages in theory
compared to simulation for the validation of complex em-
bedded systems, but is rarely used in practice. To make
analysis more attractive, it is critical to calculate tight anal-
ysis bounds. This paper shows that advanced performance
analysis techniques taking correlations between successive
computation or communication requests as well a corre-
lated load distribution into account can yield much tighter
analysis bounds. Cases where such correlations have a
large impact on system timing are especially difficult to sim-
ulate and, hence, are an ideal target for formal performance
analysis.

1. Introduction

Performance validation is key during architecture design
and function implementation of state-of-the-art embedded
systems. It has to consider the host of non-functional de-
pendencies introduced through processor and bus schedul-
ing. Most existing performance validation approaches rely
on simulation and hence suffer from high running times, in-
complete coverage and failure to identify corner cases. The
problems are aggravated for applications with many scenar-
ios of operation, since combinatorially more cases have to
be simulated.

A promising alternative to simulation is formal perfor-
mance analysis. It can calculate conservative lower and up-
per bounds for performance values over a range of scenar-
ios and thus guarantees corner-case coverage. Additionally,
performance analysis often runs considerably faster than
simulation, making it well suited for exploration in early
design stages.

If performance analysis seems so attractive in theory
compared to simulation, why is it rarely used in practice?
A major reason is the fact that performance analysis can be
very pessimistic, because it ignores certain correlations be-
tween consecutive task activations. Such pessimism sheds a
negative light on performance analysis in the embedded sys-
tems community, which does not accept over-dimensioned
solutions. Therefore, to make performance analysis more
attractive, it is critical to calculate tight analysis bounds
which are very close to the true performance corner-cases.

A typical performance analysis technique assumes that

every activation of a task leads to the worst-case execution
time of the task. I.e., it ignores that there may be paths
through the control-flow graph of the task leading to shorter
execution times. Performance analysis also typically as-
sumes a very pessimistic worst-case load distribution over
time. I.e., it ignores that certain task activations often cannot
happen at the same time, which evens out the load distribu-
tion to a certain extent. We call such correlationssystem
contexts.

This paper shows that advanced performance analysis
techniques taking system contexts into account can yield
much tighter analysis bounds, making analysis an attrac-
tive validation option during embedded system design. The
designer then automatically profits from the fundamental
advantages that analysis has over performance simulation.
Performance analysis can also reveal system-level effects
due to small local changes, e.g. a slight change in the worst-
case execution time of a task.

After a brief overview of the state-of-the-art in perfor-
mance analysis, two different types of contexts and the anal-
ysis improvements that can be obtained are discussed in
sections 4 and 5. In section 6 it is shown that additional
improvement is possible if contexts can be combined. The
design of a hypothetical set-top box (section 3) is used as
an example. The paper concludes with a summary and out-
look.

2. State-of-the-Art in Performance Analysis

The goal of performance analysis is to verify that an em-
bedded system implementation meets all response-time and
throughput constraints, e.g. end-to-end deadlines. Addi-
tionally, it can be used to obtain reliable values for worst-
case processor and bus loads, required memories etc.

The performance of tasks sharing a single component
(e.g. a CPU or a bus) can be analyzed using so-called
scheduling analysis techniques. Consider the following
equation which gives the worst-case response timeri of a
lower priority taski due to a worst-case number of inter-
rupts by all higher priority taskj ∈ hp(i).

ri = Ci +
∑

∀j∈hp(i)

nj(ri)× Cj (1)

nj(ri) is the maximum number of activating events for task
j arriving duringri. Ci, Cj are the worst-case core execu-



tion times (WCET), i.e. assuming no interrupts, of tasksi
andj. The equation holds only ifri is smaller than the min-
imum distance between two activations of taski. For more
general cases see e.g. Tindell [9].

Sinceri appears on both sides of the equation, it is usu-
ally calculated iteratively, as shown in the following algo-
rithm.

1 WorstCaseResponseTime(LowPriorTask){
2 NewResponseTime = LowPriorTask.WCET;
3 Do{
4 OldResponseTime = NewResponseTime;
5 for(int i = 0; i < HighPriorTasksList.size; i++){
6 HighPriorTask = HighPriorTasksList.get(i);
7 MaxActivations = max number of activations

of HighPriorTask during OldResponseTime;
8 InterruptTime =

MaxActivations * HighPriorTask.WCET;
9 NewResponseTime =

NewResponseTime + InterruptTime;
10 }
11 }while(NewResponseTime > OldResponseTime)
12 return NewResponseTime;
13 }

Scheduling analysis algorithms are not directly applica-
ble to a heterogeneous multi-component architecture with
different scheduling and resource-sharing strategies. Eles et
al. have extended existing techniques to allow performance
analysis of special heterogeneous architectures, e.g. fixed-
priority-scheduled CPUs connected via a TDMA-scheduled
bus [5]. Richter [6, 7] takes a more general approach that al-
lows to couple different existing performance analysis tech-
niques for an arbitrarily complex architecture. Chakraborty
et al. take a somewhat similar approach using a real-time
calculus [2]. Jersak [3] has extended [6, 7] to allow perfor-
mance analysis for applications with complex task depen-
dencies, including multiple activating inputs and multi-rate
data dependencies with intervals.

3. Set-Top Box Design Example

The SoC implementation of a hypothetical set-top box
shown in Fig. 1 is used as an example throughout this paper.
The set-top box can simultaneously process two MPEG-2
video streams, which can either come from the RF-module
or from the hard-disk, and can either be shown on a TV
screen or saved to the hard-disk. A decryption unit allows
to decrypt encrypted video streams. We assume that MPEG
frames arrive periodically from the RF-module. When two
MPEG streams are received simultaneously, the exact order
of interleaved frame types is unknown. The set-top box can
additionally process IP traffic and download web-content
either to the screen or to the hard-disk.

We will focus on load analysis and response-time analy-
sis for the system bus. We will assumepriority-based bus
schedulingof communication tasks sharing the system bus.
We are going to demonstrate the improvement in analysis
tightness that can be obtained when different types of sys-
tem contexts are considered.

4. Intra Event Stream Contexts

Context-blind analysis assumes that in the worst-case,
every scheduled task executes with its worst case execution

Figure 1. Set-top box example

time for each activation. In reality, different events often
activate different behaviors of a computation task with dif-
ferent WCET, or different bus loads for a communication
task. Therefore, a lower maximum load (and a higher min-
imum load) can be determined for a sequence of successive
activations of a higher-priority task if the types of the acti-
vating events are considered. This in turn leads to a shorter
calculated worst-case response time (and a longer best case
response time) of lower-priority tasks. We call a sequence
of different activating events anintra event streamcontext.

Mok and Chen introduced this idea in [1, 4] and showed
promising results for MPEG-streams where the average
load for a sequence of I-, P- and B-frames is much smaller
than in a stream that consists only of large I-frames, which
is assumed by a context-blind worst-case response time
analysis [1]. However, the periodic sequence of types of
activating events was supposed to be completely known.

In reality, intra event stream contexts can be more com-
plicated. If no complete information is available about the
types of the activating events, it is no longer possible to ap-
ply Mok’s and Chen’s approach. However, partial informa-
tion may be available. Specifically, it may be possible to
specify minimum and maximum conditions for the occur-
rence of each event type. In this case, a single worst-case
and a single best-case sequence of events can be determined
from the given min- and max-conditions that can be used to
calculate the worst- and best-case load due ton consecutive
activations of the task.n is an arbitrary integer value.

We have extended response-time calculation to exploit
this idea. In the following, we show the worst-case calcu-
lation. Since min-conditions represent the lowest bound for
the occurrence of an event-type in the sequence, our algo-
rithm fulfills them first.

1 FulfillMinConditions(){
2 for(i = 0; i < MinConditionsList.size; i++){
3 MinCondition = MinConditionsList(i);
4 while(MinCondition not fulfilled in Sequence)
5 Sequence.add(MinCondition.type);
6 }
7 return Sequence
8 }

After this step, types have to be assigned to the remaining
events to complete the sequence. This is reflected by the
following method.

1 CompleteSequence(){
2 next = 0;
3 while(EventsToAdd >= 0){
4 type = WeightSortedEventTypeList.get(next);
5 Do as long as ((EventsToAdd >= 0) and

(MaxConditions are not violated in Sequence)){



6 Sequence.add(type);
7 EventsToAdd = EventsToAdd - 1;
8 }
9 next = next + 1;
10 }
11 return Sequence;
12 }

Finally the resulting sequence is sorted by weight.
Intra event stream contexts can now be exploited for

scheduling analysis. In case of a static priority preemptive
scheduler, the following extension of equation 1 gives the
worst-case response time for taski. Cj,k is the WCET of
thekth activation of taskj in a worst-case sequence of ac-
tivations due to an intra event stream context. Ifj is a task
without intra event stream context information,Cj,k equals
Cj .

ri = Ci +
∑

∀j∈hp(i)

nj(ri)∑
k=1

Cj,k (2)

The code in section 2 has to be modified accordingly. Line
9 is replaced by the following call which calculates the 2nd
sum in equation 2:

InterruptTime = MaxLoad(HighPriorTask,MaxActivations);

This method iterates through the weight-sorted sequence
starting from the first event, adding up loads until the worst
case load forn activations of the task has been calculated.
If n is bigger thanl, the sequence length, the method goes
only throughn mod l events and adds the resulting load to
the load of the whole sequence multiplied byn div l.

1 MaxLoad(Task, n){
2 MaxLoad = 0;
3 for(i = 0;i <= n mod Task.Sequence.Length;i++){
4 MaxLoad =

MaxLoad + Task.Sequence.get(i).getLoad;
5 }
6 MaxLoad = MaxLoad + Task.Sequence.Load *

(n div Task.Sequence.Length);
7 return MaxLoad;
8 }

Let us apply this approach to our set-top box example.
Suppose that the RF sends two multiplexed MPEG-2 video
streams to the bus: the first video stream is displayed on
the TV while the second is saved on the hard-disk. In each
video stream, one of the following common MPEG-2 frame
patterns is repeated: IBBPBB, IBPBPB or IBPB. In addi-
tion, the exact order of interleaved frame types in the mul-
tiplexed video stream is unknown. It is thus impossible to
provide a fixed sequence of successive frame types in the
multiplexed video stream. However, we can give minimum-
and maximum-conditions for the occurrence of each frame
type.

We determine min- and max-conditions for a multi-
plexed video stream with a length that is the smallest com-
mon multiple of the length of all patterns,12 in this exam-
ple. The following table shows the determined conditions.

frame type min # of frames max # of frames
I 2 4
P 2 4
B 6 8

We skip the details how to obtain these numbers. We
assume that the size of each frame-type is fixed indepen-
dent of the pattern that it appears in. Otherwise, we would
simply specify more conditions.

The resulting partial sequence after fulfilling the min-
conditions is IIPPBBBBBB. Worst-case frame types now
have to be assigned to the remaining two frames to com-
plete the sequence. I-frames generally have the largest size
in MPEG-streams, B-frames have the smallest size. Since
the upper bound on the occurrence of I-frames is4 in our ex-
ample, the remaining two frames have to be assumed to be
I-frames. Therefore, the resulting sequence after this step is
IIPPBBBBBBII. Finally, the sequence is sorted by weight
(in this case frame size), resulting in IIIIPPBBBBBB.

Let us now observe the response-time analysis improve-
ments through intra event stream contexts in our set-top box
example. Suppose that in addition to the multiplexed video
stream, IP traffic is sent via the bus to the hard-disk. We as-
sume that the multiplexed video streamSmux has a higher
priority on the bus than the IP trafficSip. As an exam-

Figure 2. Worst-case response time calcula-
tion for IP traffic (grey boxes) a) without and
b) with intra event stream context information

ple, Fig. 2 shows for both context-blind (a) and intra event
stream context (b) cases the calculated worst case response
time of Sip due to interrupts bySmux for an IP traffic of
127, I-frame size of106, P-frame size of85 and B-frame
size of 27. As can be seen, when considering the avail-
able intra event stream context information for the multi-
plexed video stream, gaps between successive executions
of Smux are larger than in the context-blind case. Since
IP traffic is transmitted during these gaps (grey boxes in
Fig. 2), a smaller number of interrupts ofSip by Smux is
calculated considering intra contexts in comparison to the
context-blind case. This leads to a reduction of the calcu-
lated worst-case response time ofSip.

In Fig. 3, worst-case response time analysis improve-
ments using intra event stream context information com-
pared to the context-blind case are shown forSip as a func-
tion of the bus-speed. Typical frame size ratios are assumed
for the multiplexed video streams. The I-frame size is nor-
malized to100 and the bus-speed is normalized to1.

Curvesa and b show the reduction of the calculated
worst-case response time ofSip for an IP traffic size of120.
Reducing the bus-speed increases the time needed to trans-
mit one MPEG frame. This in turn leads to smaller gaps
between successive transmissions of frames, leading to a
larger number of interrupts ofSip. The number of required
gaps increases considerably faster in the context-blind case
than in the intra event stream context case. Therefore, a
greater reduction in the calculated worst-case response time



Figure 3. Improved worst-case response time
analysis for IP-traffic due to intra event stream
contexts

(up to 90 % in our example) is obtained in the intra event
stream context case for slower bus speeds. This observa-
tion is important since the designer usually strives to reduce
bus bandwidth as much as possible to save cost and power
consumption.

Curvesc and d show the reduction of the calculated
worst-case response time ofSip for smaller IP traffic sizes
(80 and 40). When reducing the bus-speed, we observe
generally a lower reduction of the calculated worst-case
response time ofSip for smaller IP traffic sizes. This is due
to the fact thatSip is interrupted less often bySmux for
smaller IP traffic sizes.

Another form of partial intra event stream context in-
formation are subsequences. Suppose that in our exam-
ple, in addition to the existing min- and max-conditions
we know that the subsequence [IIB] is always available in
each sequence of twelve successive frames in the multi-
plexed video stream. Since the subsequence already assigns
types to three frames, when evaluating the min- and max-
conditions we only have to assign types to the remaining9
frames keeping in mind the types already used in the sub-
sequence. Therefore, some min-conditions are totally (min
2 I-frames out of12 frames) or partially (min6 B-frames
out of 12 frames) fulfilled by the subsequence. The result-
ing sequence after fulfilling the remaining min conditions is
[IIB]PPBBBBB.

Types still have to be assigned to two frames. Since the
upper bound for the occurrence of I-frames is four (max4 I-
frames out of12 frames), and two I-frames already exist in
the sequence, the remaining two frames have to be assumed
to be I-frames. Therefore the resulting sequence after this
step is [IIB]IIPPBBBBB.

The 9 frames outside the subsequence are sorted by
weight, however the complete sequence cannot be sorted.
When executingMaxLoad, all insertion positions of the sub-
sequence have to be tried to obtain the the worst-case se-
quence of lengthn.

5. Inter Event Stream Contexts

Context-blind analysis assumes that in the worst-case all
scheduled tasks are activated simultaneously. In reality, ac-

tivating events are often time-correlated, which rules out si-
multaneous activation of all tasks. This in turn may lead to
a lower maximum number (and higher minimum number)
of interrupts of a lower-priority task through higher-priority
tasks, resulting in a shorter worst-case response time (and
longer best-case response time) of the lower priority task.

Inter event stream contexts capture information about
time-correlated events in different event streams in a way
that can be exploited by performance analysis. Tindell in-
troduced this idea for tasks scheduled by a static priority
preemptive scheduler [8]. Each set of time-correlated tasks
is grouped into a so called transaction. Each task is activated
when an offset elapses after the activation of the transaction
to which it belongs. Transactions are activated by periodic
external events.

Tindell [8] showed that the worst-case contribution of
a transaction to the response time of a lower-priority task
occurs when the activation time of the lower-priority task
happens as soon as possible after thecritical instantof the
transaction. The critical instant is the activation time of one
of the transaction’s higher-priority tasks. Subsequent acti-
vations of higher-priority tasks belonging to the transaction
also have to happen as soon as possible after the critical in-
stant.

Since all activation times of all higher-priority tasks be-
longing to a transaction are candidates for the critical instant
of the transaction, the worst-case response time of a lower-
priority task has to be calculated for all possible combina-
tions of all critical instants of all transactions that contain
higher priority tasks, to find the absolute worst-case.

The following WorstCaseResponseTime algorithm consid-
ers inter event stream contexts to compute the worst-case
response time of a lower-priority task that doesn’t belong
to any transaction. If the lower-priority task itself belongs
to a transaction, the interrupt-time by higher-priority tasks
belonging to the same transaction has to be calculated sep-
arately.

1 WorstCaseResponseTime(LowPriorTask){
2 MaxResponseTime = LowPriorTask.WCET;
3 for each combination of critical instants

determined by higer-priority tasks
belonging to different transactions{

4 NewResponseTime = LowPriorTask.WCET;
5 Do{
6 OldResponseTime = NewResponseTime;
7 for each transaction{
8 Contribution = 0;
9 for each HighPriorTask of transaction{
10 MaxActivations = max activations of

HighPriorTask during OldResponseTime
considering HighPriorTask.Offset;

11 InterruptTime =
MaxActivations * HighPriorTask.WCET;

12 Contribution =
Contribution + InterruptTime;

13 }
14 NewResponseTime =

NewResponseTime + Contribution;
15 }
21 }while(NewResponseTime > OldResponseTime)
22 if (NewResponseTime > MaxResponseTime)
23 MaxResponseTime = NewResponseTime;
24 }
25 return MaxResponseTime;
26 }

In comparison to the context-blind algorithm presented
in section 2, the response time has to be calculated for all
combinations of critical instants to get the worst-case re-
sponse time (line3). For each task in a transaction, the max



number of activations is calculated taking its offset into ac-
count (line10). For tasks not belonging to a transaction,
instead of executing lines7 - 15 , lines5 - 10 of the context-
blind algorithm in section 2are executed.

Let us apply Tindell’s approach to our set-top box exam-
ple. Suppose that the RF sends an encrypted MPEG-2 video
stream to the bus. The decryption unit decrypts the stream,
which we assume takes a fixed amount of time, and for-
wards it with the resulting time-offset via the bus to the TV.
In addition, IP traffic is sent via the bus to the hard-disk. We
assume that the encrypted video streamSenc has the high-
est priority, the decrypted video streamSdec has the middle
priority and that the IP trafficSip has the lowest priority.

In order to show in isolation the analysis improvement
due to inter event stream contexts, we will assume for now
that all video-frames are I-frames. SinceSenc andSdec are
time-correlated, they are grouped into a transactionT .

Figure 4. Worst-case response time calcula-
tion for IP traffic (grey boxes) a) without and
b) with inter event stream context information

Let us observe the worst-case contribution of the transac-
tion to the worst-case response time ofSdec andSip. As an
example, Fig. 4 shows for both context-blind (a) and inter
event stream context (b) cases the calculated worst case re-
sponse time ofSip and its interrupts throughSenc andSdec
for an IP traffic (grey boxes) of50. The transaction-period
is normalized to100, the I-frame size is set to30. As can be
seen, when considering the available inter event stream con-
text information for the video streams, one interrupt less of
Sip by Sdec is calculated. In general, when analyzingSip,

Figure 5. Improved worst-case response time
analysis for IP-traffic and packet decryption
due to inter event stream contexts

we have to try both critical points of transactionT , which

are the activation times ofSenc andSdec. In Fig. 5, analysis
improvements with inter event stream context information
in relation to the context-blind case are shown as a function
of the offset betweenSenc andSdec, which is equal to the
execution time of the decryption unit. The bus load due to
the video streams is60 %. Curvea shows the reduction of
the calculated worst-case response time ofSdec. Depend-
ing on the offset,Sdec is either partially (offset value less
than30), completely (offset value more than70) or not in-
terrupted at all bySenc (offset value between30 and70).
The latter case yields a maximum reduction of50 %.

Curvesb - g show the reduction in the calculated worst-
case response time ofSip for different IP traffic sizes. The
reduction is visible in the curves as dips. If no gaps ex-
ists between two successive executions ofSenc andSdec,
no worst-case response time reduction ofSip can be ob-
tained (offset value less than 30 or more than 70). If a gap
exists, then sometimes one interrupt less ofSip can be cal-
culated (either throughSenc or Sdec), or there is no gain at
all (curvesd andf). Since the absolute gain that can be ob-
tained equals the smaller worst case execution time ofSenc
andSdec, the relative worst-case response time reduction is
bigger for shorter IP-traffic.

An important observation is that inter event stream con-
text analysis reveals the dramatic influence that a small lo-
cal change, in our example the speed of the decryption unit
reading data from the bus and writing the results back to
the bus, can have on system-performance, in our example
the worst-case transmission time of lower-priority IP traf-
fic. Systematically identifying such system-level influences
of local changes is especially difficult using simulation due
to the large number of implementations that would have to
be synthesized and executed. On the other hand, formal per-
formance analysis can systematically and quickly identify
such corner cases.

6. Combination of Contexts

Inter event stream contexts allow to calculate a tighter
number of interrupts of a lower-priority task through higher-
priority tasks.Intra event stream contexts allow to calculate
a tighter load for a number of successive activations of a
higher-priority task. The two types of contexts are orthog-
onal: the worst-case response time of a lower-priority task
is reduced both because fewer high-priority task activations
can interrupt its execution during a certain time interval, and
because the time required to process a sequence of activa-
tions of each higher-priority task is reduced. Therefore, per-
formance analysis can be further improved if it is possible
to consider both types of contexts in combination.

Let us apply the combination of event stream contexts to
the scenario presented in the previous section, by addition-
ally considering intra event stream contexts with the frame
pattern IBBPBB. Therfore, bothSenc andSdec have an intra
and an inter context. In Fig. 6, we show analysis improve-
ments considering both inter and intra event stream contexts
in relation to the context-blind case as a function of the off-
set betweenSenc andSdec. Curvea shows the reduction of
the calculated worst-case response time ofSdec. SinceSdec
is interrupted at most once bySenc, and the worst-case load



Figure 6. Analysis improvement due to the
combination of intra and interevent stream con-
texts

produced due to one activation ofSenc is the transmission
time of one I-frame, no improvement is obtained through
the context combination in comparison to curvea in Fig. 5.

Curvesb - g show the reduction of the calculated worst-
case response time ofSip for different IP traffic sizes. When
comparing curvesb andc (IP traffic sizes of5 and10) to
curvesb andc in Fig. 5), it can be seen that no improvement
is obtained through the context combination. This is due to
the fact thatSip is interrupted at most once bySenc and at
most once bySdec. Therefore, as in casea, the calculated
worst-case load produced by the video streams is the same
no matter whether the available intra event stream context
information is considered or not.

Curved shows that for an IP traffic size of30, no im-
provements are obtained through the context combination
in comparison to thecontext-blindcase. This is due to the
fact that for all offset-values,Sip is interrupted exactly once
by Senc and exactly once bySdec, and that the calculated
worst-case load produced by the video streams due to one
activation is the same no matter if intra event stream con-
texts are considered or not.

Curvee andf show that for IP traffic sizes of50 and70
improvements are obtained as a result of the context combi-
nation in comparison to both the intra and inter event stream
context analysis. Let us focus on curvee. Since intra and
inter event stream contexts are orthogonal, the reduction of
the calculated worst-case response time ofSip due to the
intra event stream context is constant for all offset values.
Since no reduction due to inter event stream context can
be obtained for an offset value of0 (equivalent to the inter
event stream context-blind case), we are sure that the reduc-
tion shown in the curve for this offset value is only a result
of the intra event stream context. On the other hand, the
additional reduction between the offset values25 and75 is
obtained due to the inter event stream context.

Curve g shows that for an IP traffic size of90, even
though the inter event stream context leads to an improve-
ment (see curveg in Fig. 5), the improvement due to the
intra event stream context dominates, since no dip exists in
the curve. I.e. no additional improvements are obtained due
to the context combination in comparison to the intra event
stream context case.

7. Conclusion

In this paper we demonstrated that considering intra
event stream contexts and inter event stream contexts can
yield considerably tighter performance analysis bounds
compared to a context-blind analysis. We used a priority-
based system bus of a hypothetical set-top box as an ex-
ample. We focused on realistic streams of bus load, where
intra event stream contexts can be described only by mini-
mum conditions, maximum conditions and possibly subse-
quences. We explored the analysis improvements for var-
ious bus speeds and various load distributions, by varying
the speed of a decryption unit. The results show that the
improvement due to intra event stream contexts is largest
for high bus loads (up to90 % in our example), which is
a design point a designer is striving for. Considering inter
event stream contexts improves analysis up to50 % in our
example.

Equally important, performance analysis reveals the
dramatic influence that a small local change can have
on system-performance. Systematically identifying such
system-level effects due to local changes is especially diffi-
cult using simulation. On the other hand, the most com-
plicated curves we presented took a couple of hundred
milliseconds to compute on a standard desktop computer.
These numbers show that formal performance analysis is
ideal for design space exploration and corner case identifi-
cation.

References

[1] S. K. Baruah, D. Chen, and A. K. Mok. Static-priority
scheduling of multiframe tasks. InEuromicro Conference on
Real-Time Systems, June 1999.

[2] S. Chakraborty, S. K̈unzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. InProc. DATE’03, Munich, Ger-
many, Mar. 2003.

[3] M. Jersak and R. Ernst. Enabling scheduling analysis of het-
erogeneous systems with multi-rate data dependencies and
rate intervals. InProceeding 40th Design Automation Con-
ference, Annaheim, USA, June 2003.

[4] A. Mok and D. Chen. A multiframe model for real-time tasks.
IEEE Transactions on Software Engineering, 23(10):635–
645, 1997.

[5] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and
analysis of mixed time/event-triggered distributed embed-
ded systems. InTenth International Symposium on Hard-
ware/Software Codesign (CODES’02), Estes Park, Colorado,
USA, May 2002.

[6] K. Richter, M. Jersak, and R. Ernst. A formal approach to
mpsoc performance verification.IEEE Computer, 36(4), Apr.
2003.

[7] K. Richter, R. Racu, and R. Ernst. Scheduling analysis in-
tegration for heterogeneous multiprocessor SoC. InPro-
ceedings 24th International Real-Time Systems Symposium
(RTSS’03), Cancun, Mexico, Dec. 2003.

[8] K. W. Tindell. Adding time-offsets to schedulability analysis.
Technical Report YCS 221, Univ. of York, 1994.

[9] K. W. Tindell. An extendible approach for analysing fixed pri-
ority hard real-time systems.Journal of Real-Time Systems,
6(2):133–152, Mar 1994.


