
Safe Automotive Software Development

Ken Tindell
LiveDevices
York, U.K.

ken.tindell@livedevices.com

Hermann Kopetz
Technische Universität

Wien, Austria
hk@vmars.tuwien.ac.at

Fabian Wolf
Volkswagen AG,

Wolfsburg, Germany
fabian.wolf@volkswagen.de

Rolf Ernst
Technische Universität Braunschweig,

Germany (organizer)
r.ernst@tu-bs.de

Abstract

Automotive systems engineering has made significant
progress in using formal methods to design safe
hardware-software systems. The architectures and
design methods could become a model for safe and
cost-efficient embedded software development as a
whole. This paper gives several examples from the
leading edge of industrial automotive applications.

1 Introduction
R. Ernst, Technische Universität
Braunschweig

Automotive software is for a large part safety critical
requiring safe software development. Complex dis-
tributed software functions and software function inte-
gration challenge traditional simulation based verifi-
cation approaches. On the other hand, software func-
tions have to match the high fault tolerance and fail
safe requirements of automotive designs. To cope with
this challenge, advanced research in automotive soft-
ware has developed formal approaches to safe auto-
motive design which could become a model for safe
and cost-efficient embedded software development as
a whole. The special session which is summarized in
this paper includes contributions from most renowned
experts in the field. The following section will outline
the problems when integrating software IP from sev-
eral sources on one electronic control unit and gives an
example of a hardware-software solution to observe
and enforce real-time behavior. Section 3 looks at the
next level, distributed systems. Only at this level, the
high safety requirements of autonomous vehicle func-
tions such as X-by-wire can be met. The section intro-
duces the concepts of fault-containment regions and
error containment and introduces architectures and
corresponding hardware-software control techniques
to isolate defective parts. The presented time-triggered
architecture (TTA) and the time-triggered communi-
cation protocol are used throughout the automotive
and aircraft industries. The last section gives an exam-

ple of a practical application of formal methods to
software integration for combustion engine control.

2 The need for a protected OS in high-
integrity automotive systems
K. Tindell, LiveDevices, York

Motivation

As ECU (Electronic Control Unit) software
becomes more complex there is a need to run more
than one major subsystem inside a single ECU (such
as a mixture of high- and low-integrity software in an
X-by-Wire system). This need gives rise to the
demand for an ECU operating system that can provide
protection between software components. The OS can
isolate a fault in a software component and prevent
that fault from propagating to another subsystem in the
same ECU. The need for such a protected OS has been
recognized by the automotive industry. The vehicle
manufacture initiative of the HIS group
(Herstellerinitiative Software) of Audi, BMW,
DaimlerChrysler, Porsche and VW, lays out
requirements for a protected OS, the two most
interesting of which are:
• Protection must apply between applications (i.e.

groups of tasks) as well as tasks. This is because a
single application, developed by a single
organization, will typically be composed of a set
of tasks. Tasks need protection from each other,
but they must also share data (typically via shared
memory for performance reasons).

• The OS must be designed to tolerate malicious
software. This means that a programmer with the
deliberate intent of doing damage cannot cause
another application in the ECU to fail. Although
there are not major concerns about deliberate
sabotage by a programmer, this requirement is
here because software failures can be as intricate
and subtle as if they were deliberately
programmed. Thus the requirement to protect

1530-1591/03 $17.00 2003 IEEE

against all possible failures results in a more
secure system.

Not only does protection need to be applied in the
functional domain (e.g. controlled access to memory,
I/O) but it also needs to be applied in the timing
domain (e.g. tasks must not run for too long or too
frequently). This timing requirement is necessary
because the new approaches to ECU development are
based on schedulability analysis – engineering
mathematics that determine the worst-case response
times of activities (tasks, interrupt handlers) in a real-
time system. Such analysis is necessary for a complex
ECU with an OS because the timing determinism of a
rigid statically scheduled system is no longer present.

Protection in the timing domain entails that the data
used by the schedulability analysis (e.g. task execution
times) is enforced at run-time so that the timing
analysis always remains valid. For example, if a task
runs for too long then the OS needs to step in and stop
it in order that lower priority (and potentially more
critical) tasks that are in another application are not
held out for longer than calculated in the
schedulability analysis.

A final and very important set of requirements are
imposed by the automotive industry on any use of
electronics: component costs must be as low as
possible. This means that the choice of hardware is
very limited. Today only Texas Instruments with the
TMS470 and Infineon with the Tricore TC17xx
provide silicon to automotive requirements that also
contains the necessary memory protection hardware.

The APOS research project

The Advanced Technology Group (ATG) of
LiveDevices has been conducting a research project to
look at these issues. It has developed a prototype OS
called ‘APOS’ (ATG Protected OS) to meet the HIS
requirements and to investigate the issues surrounding
a protected OS (e.g. examining the additional
overheads due to protection, the issues of OSEK OS
compliance).

The following sections discuss the results of this
project in more detail.

Architecture

The APOS kernel runs on the Tricore TC1775 from
Infineon. It supports supervisor- and user-mode
execution, which prevents normal tasks from
executing privileged instructions and restricts these
tasks to accessing memory to four pre-defined regions
(private RAM, private ROM, application RAM,
application ROM). The private RAM is used to store
the task stack.

Access to the kernel is via API calls that are
implemented with TRAP instructions (as for a
conventional OS).

API calls check for permissions before completing.
There are permissions assigned off-line to each task in
the system that indicates which OSEK OS objects
(tasks, resources, alarms, counters, etc.) that the task
may access. Some critical API calls (such as the call to
shutdown the OS and re-start the ECU) have special
permissions checking so that only certain trusted tasks
can make these calls.

The complete ECU is constructed from a set of
applications (in turn composed of a set of tasks) by the
ECU integrator. This is a critical and trusted role since
one of the jobs of the system integrator is to assign
permissions and levels of trust to different tasks.
Another job of the system integrator is to perform the
timing analysis of the complete system to ensure that
all the tasks in all the applications meet their defined
timing requirements (i.e. deadlines). Only the system
integrator can do this since the schedulability analysis
requires complete information about the timing
behaviors of the application tasks.

Communication between tasks within the same
application is typically via shared memory. But
communication between applications is via OSEK
COM intra-ECU messaging.

Execution time monitoring

Every task in APOS is assigned an execution time
budget. A task begins running with a virtual stopwatch
set to this time. The stopwatch then counts down while
the task is running. If the task is pre-empted by
another task (or interrupt handler) then the stopwatch
is stopped, to be resumed when the task continues
running. If the stopwatch reaches zero then the APOS
kernel terminates the task. Thus a task that runs for too
long is killed before it can disrupt the execution of
other lower priority tasks (most especially those that
might be in another application).

Execution times are measured in hardware clock
ticks and stored as 32-bit integers. The TC1775 unit
used in development is clocked at 20MHz; thus no
task execution time budget in the system can be longer
than 3.6 minutes. Since a task rarely runs for longer
than a few milliseconds, this is adequate. One
exception is the idle task: this task never terminates,
and so will run for longer than 3.6 minutes. The APOS
implementation addresses this problem by providing a
special “refresh budget” API call. Only the idle task is
permitted to make this call.

APOS also keeps track of the longest execution
time observed for each task. This aids the developer in
setting appropriate execution time limits in the case
where the developer does not have access to tools that
can calculate statically a worst-case execution time
figure. The measurement feature can also guide the
testing strategy to ensure that the software component
tests do exercise the worst-case paths in the task code.

In addition to patrolling the total execution time of
a task, the kernel also patrols execution times of the

task while holding a resource. In OSEK OS a resource
is actually a semaphore locked and unlocked
according to the rules of the priority ceiling protocol.
This is done because the maximum blocking time of a
higher priority task can be calculated. However, the
time for which a task holds a given resource needs to
be bounded (this time is used in the schedulability
analysis) and hence enforced at run-time. The APOS
kernel does this: when a task obtains an OSEK OS
resource another virtual stopwatch is started and
counts down. If the task fails to release the resource
within the defined time then it is killed and the
resource forcibly released. Unfortunately, this may
lead to application data corruption (a typical use for a
resource is to guard access to application shared data).
However, since a failed task can in any case corrupt
application shared data, it is important that the
application be written to tolerate this failure (perhaps
by having a soft restart option).

 Execution pattern monitoring

 The schedulability analysis performed by the
system integrator not only uses the worst-case
execution time figures for each task (and resource
access patterns), but also the pattern in which the task
(or interrupt handler) is invoked. The OS must enforce
the execution patterns since any task or interrupt
handler exceeding the bounds implied by the pattern
may cause another task in another application to fail
(and hence violating the strong protection
requirements). There is therefore a strong coupling
between enforcement and analysis: there is no point
analyzing something that cannot be enforced, and vice
versa.

Simple schedulability analysis requires a minimum
time between any two invocations of a task or
interrupt handler (i.e. the period in the case of periodic
invocations). But in real systems there are often tasks
that run with more complex patterns, particularly
when responding to I/O devices. For example, an
interrupt handler servicing a CAN network controller
may be invoked in a ‘bursty’ fashion, with the short-
term periodicity dictated by the CAN baud rate and the
long-term periodicity a complex composite of CAN
frame periodicities. Making the assumption that the
interrupt handler simply runs at the maximum rate is
highly pessimistic. Although the analysis can be
extended to account for the more complex behavior,
enforcing such arbitrary patterns efficiently in the OS
is impossible. An alternative approach is taken by
using two deferred servers for each sporadic task or
interrupt handler. This approach provides two
invocation budgets for each sporadic task and interrupt
handler. If either budget is exhausted then no further
invocations are permitted (for an interrupt handler the
interrupts are disabled at source). The budgets are
replenished periodically (typically with short- and
long-term rates).

Performance and OSEK

Early figures for performance of the OS compared
to a conventional OSEK OS indicate that the CPU
overheads due to the OS are about 30-50% higher and
the RAM overheads are about 100% higher. Given the
very low overheads of an OSEK OS and the benefits
of sharing the hardware across several applications,
this is quite acceptable. Furthermore, no significant
OSEK OS compatibility issues have been discovered.

Summary

In the near future automotive systems will require
the ability to put several applications on one ECU.
There are many technical demands for this but all are
soluble within the general requirements of the
automotive industry for low component cost.

3 Architecture of Safety-Critical
Distributed Real-Time Systems
H. Kopetz, Technische Universität Wien

Computer technology is increasingly applied to
assist or replace humans in the control of safety-
critical processes, i.e., processes where some failures
can lead to significant financial or human loss.
Examples of such processes are by-wire-systems in the
aerospace or automotive field or process-control
systems in industry. In such a computer application,
the computer system must support the safety, i.e., the
probability of loss caused by a failure of the computer
system must be very much lower than the benefits
gained by computer control.

Safety is a system issue and as such must consider
the system as a whole. It is an emergent property of
systems, not a component property [1], p.151. The
safety case is an accumulation of evidence about the
quality of components and their interaction patterns in
order to convince an expert (a certification authority)
that the probability of an accident is below an
acceptable level. The safety case determines the
criticality of the different components for achieving
the system function. For example, if in a drive-by-wire
application the computer system provides only
assistance to the driver by advising the driver to take
specific control actions, the criticality of the computer
system is much lower than in a case where the
computer system performs the control actions (e.g.,
braking) autonomously without a possible intervention
by the driver. In the latter case, the safety of the car as
a whole depends on the proper operation of the
computer system. This contribution is concerned with
the architecture of safety-critical distributed real-time
systems, where the proper operation of the computer
system is critical for the safety of the system as a
whole.

A computer architecture establishes a framework
and a blueprint for the design of a class of computing
systems that share a common set of characteristics. It
sets up the computing infrastructure for the
implementation of applications and provides
mechanisms and guidelines to partition a large
application into nearly autonomous subsystems along
small and well-defined interfaces in order to control
the complexity of the evolving artifact [2]. In the
literature, a failure rate of better than 10-9 critical
failures per hour is demanded in ultra-dependable
computer applications [3]. Today (and in the
foreseeable future) such a high level of dependability
cannot be achieved at the component level. If it is
assumed that a component—a single-chip computer—
can fail in an arbitrary failure mode with a probability
of 10-6 failures per hour then it follows that the
required safety at the system level can only be
achieved by redundancy at the architecture level.

In order to be able to estimate the reliability at the
system level, the experimentally observed reliability of
the components must provide the input to a reliability
model that captures the interactions among the
components and calculates the system reliability. In
order to make the reliability calculation tractable, the
architecture must ensure the independent failure of the
components. This most important independence
assumption requires fault containment and error
containment at the architecture level. Fault
containment is concerned with limiting the immediate
impact of a fault to well-defined region of the system,
the fault containment region (FCR). In a distributed
computer system a node as a whole can be considered
to form an FCR. Error containment is concerned with
assuring that the consequences of the faults, the errors,
cannot propagate to other components and mutilate
their internal state. In a safety-critical computer
system an error containment region requires at least
two fault containment regions.

Any design of a safety-critical computer system
architecture must start with a precise specification of
the fault hypothesis. The fault hypothesis partitions
the system into fault-containment regions, states their
assumed failure modes and the associated
probabilities, and establishes the error-propagation
boundaries. The fault hypothesis provides the input for
the reliability model in order to calculate the reliability
at the system level. Later, after the system has been
built, it must be validated that the assumptions which
are contained in the fault hypothesis are realistic.

In the second part of the presentation it will be
demonstrated how these general principles of
architecture design are realized in a specific example,
the Time-Triggered Architecture (TTA) [4]. The TTA
provides a computing infrastructure for the design and
implementation of dependable distributed embedded
systems. A large real-time application is decomposed
into nearly autonomous clusters and nodes and a fault-
tolerant global time base of known precision is

generated at every node. In the TTA this global time
is used to precisely specify the interfaces among the
nodes, to simplify the communication and agreement
protocols, to perform prompt error detection, and to
guarantee the timeliness of real-time applications. The
TTA supports a two-phased design methodology,
architecture design and component design. During the
architecture design phase the interactions among the
distributed components and the interfaces of the
components are fully specified in the value domain
and in the temporal domain. In the succeeding
component implementation phase the components are
built, taking these interface specifications as
constraints. This two-phased design methodology is a
prerequisite for the composability of applications
implemented in the TTA and for the reuse of pre-
validated components within the TTA. In this second
part we present the architecture model of the TTA,
explain the design rational, discuss the time-triggered
communication protocols TTP/C and TTP/A, and
illustrate how component independence is achieved
such that transparent fault-tolerance can be
implemented in the TTA.

4 Certifiable Software Integration for
Power Train Control
F. Wolf, Volkswagen AG, Wolfsburg

Motivation

Sophisticated electronic control is the key to
increased efficiency of today’s automotive system
functions, to the development of novel services
integrating different automotive subsystems through
networked control units, and to a high level of
configurability. The main goals are to optimize system
performance and reliability, and to lower cost. A
modern automotive control unit is thus a specialized
programmable platform and system functionality is
implemented mostly in software.

The software of an automotive control unit is
typically separated into three layers. The lowest layer
are system functions, in particular the real-time
operating system, and basic I/O. Here, OSEK is an
established automotive operating system standard. The
next higher level is the so-called ‚basic software‘. It
consists of functions that are already specific to the
role of the control unit, such as fuel injection in case
of an engine control unit. The highest level are vehicle
functions, e.g. adaptive cruise control, implemented on
several control units. Vehicle functions are an
opportunity for automotive product differentiation,
while control units, operating systems and basic
functions differentiate the suppliers. Automotive
manufacturers thus invest in vehicle functions to
create added value.

The automotive software design process is
separated into the design of vehicle software functions
(e.g. control algorithms), and integration of those

functions on the automotive platform. Functional
software correctness can be largely mastered through a
well-defined development process, including
sophisticated test strategies. However, operating
system configuration and non-functional system
properties, in particular timing and memory
consumption are the dominant issues during software
integration.

Automotive Software Development

While automotive engineers are experts on vehicle
function design, test and calibration (using graphical
tools such as ASCET-SD or Matlab/Simulink,
hardware-in-the-loop simulation etc.), they have
traditionally not been concerned with software
implementation and integration. Software
implementation and integration is usually left to the
control unit supplier who is given the full specification
of a vehicle function to implement the function from
scratch. Some automotive manufacturers are more
protective and implement part of the functions in-
house but this does not solve the software integration
problem.

This approach has obvious disadvantages. The
automotive manufacturer has to expose his vehicle
function knowledge to the control unit supplier who
also supplies the manufacturer’s competitors. It is hard
to protect intellectual property in such an environment.
Re-implementation of vehicle functions results in
design cycles of several weeks. This inhibits design-
space exploration and optimized software integration.
Often the function returned by the system integrator
does not fully match the required behavior resulting in
additional iterations. From the automotive
manufacturer’s perspective, a software integration
flow is preferable where the vehicle function does not
have to be exposed to the supplier and where
integration for rapid design-space exploration is
possible. This can only be supported in a scenario
where software functions are exchanged and
integrated using object codes.

The crucial requirement here is that the integrated
software must meet the stringent safety requirements
for an automotive system in a certifiable way. These
requirements generally state that it must be guaranteed
that a system function (apart from functional
correctness) satisfies real-time constraints and does
not consume more memory than its budget. This is
very different from the telecom domain where quality
of service measures have been established. However,
timeliness of system functions is difficult to prove
with current techniques, and the problem is aggravated
if software parts are provided by different suppliers.
An important aspect is that even little additional
memory or a faster system hardware that can
guarantee the non-functional system correctness may
simply be too costly for a high-volume product like an
automotive control unit.

Certification of Multi-Source Systems

The focus is on a methodology and the resulting
flow of information that should be established between
car manufacturer, system supplier, OSEK supplier and
system integrator to avoid the mentioned
disadvantages and enable certifiable software
integration. The information flow that is needed by the
certification authority should be defined via formal
agreements. Part of the agreements provides a
standardized description of the OSEK configuration,
process communication variables and scheduling
parameters, such that intellectual property is protected
and any system integrator can build an executable
engine control. However, the novel key agreements
should guarantee real-time performance and memory
budgets of the integrated software functions. This
requires suitable models for timing and resource usage
of all functions involved: vehicle functions, basic
software functions and system functions.

Commercial tool suites can determine process-level
as well as system-level timing by simulation with
selected test patterns. This approach lacks the
possibility to explore corner-case situations that are
not covered in the tests. It is known from real-time
systems design that reliable system timing can only be
achieved if properties of each function are described
using conservative min-max intervals. Therefore, the
enabling requirements for certifiable software
integration are to obtain such conservative process-
level intervals for all functions involved, including
operating system primitives, and to apply suitable
system-level analysis techniques to determine all
relevant system timing.

Different methodologies for the determination of
conservative process-level timing intervals exist. The
main problem is the absence of mature, industry-
strength tool suites that support certifiable timing
analysis for complex automotive systems. The same
applies to system-level timing analysis tool suites. So
for today’s automotive systems, a combination of
simulation-based timing analysis with careful test
pattern selections and formal approaches where
applicable is feasible.

Conclusion

The need for distributed development of
automotive software requires a certifiable integration
process between car manufacturer and suppliers. Key
aspects, i.e., software timing and memory
consumption of the operating system, of the software
functions provided by the control unit supplier as well
as of the software functions provided by the car
manufacturer have been identified. These need to be
guaranteed for certifiable software integration.

5 References

1. Leveson, N.G., Safeware, System Safety and
Computers. 1995, Reading, Mass.: Addison Wesley
Company.

2. Simon, H.A., Science of the Artificial. 1981, MIT
Press, Cambridge.

3. Suri, N., Walter, C.J. and Hugue, M.M., eds.,
Advances in Ultra-Dependable Systems. 1995, IEEE
Press.

4. Kopetz, H. and Bauer, G., The Time-Triggered
Architecture. Proceedings of the IEEE, 2003. 91
(January 2003).

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

