
A Formal Approach to Performance Verification
of Heterogeneous Architectures

Kai Richter, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
Hans-Sommer-Strasse 66

D-38106 Braunschweig
{richter,ernst}@ida.ing.tu-bs.de

Abstract

Performance and timing verification is critical for many embedded systems. For small systems,
corner-case simulation patterns can be manually determined and timed simulation provides
reliable system performance data. Larger heterogeneous multiprocessor systems with different
operating systems and bus protocols exhibit complex scheduling anomalies which can not be
fully overseen by anyone in a design team. In effect, simulation will likely miss critical corner
cases. Such coverage problems have already lead to a variety of design errors in practice
including transient overload, buffer overflow, and missed deadlines, and a more systematic
approach is urgently needed. Semi-formal verification techniques are available for many
practically used preemptive and non-preemptive hardware and software scheduling algorithms
of processors and buses. However, they cannot be used in system-level analysis due to
incompatibilities of their underlying event models. This paper presents a technique to couple the
analysis of local scheduling strategies via an event interface model. We derive transformation
rules between the most important event models and provide proofs where necessary. We use
an expressive example to illustrate their application.

1. Introduction

With increasing embedded system complexity, there is a trend towards heterogeneous
architectures. Automotive systems include different processors running distributed functions
with reactive or transformative behavior under the OSEK/VDX operating system standards with
static or dynamic priority scheduling. Buses and networks use time sharing or packet
communication. Similarly, multimedia devices run telecommunication protocols, coding and
signal processing functions on heterogeneous VLSI-multiprocessors and coprocessors with
several heterogeneous operating systems. Communication infrastructure migrates from simple
busses to complex packet switched networks.

In all cases, system constraints, system specialization, and reuse of hardware and software IP
(intellectual property) are the main sources of heterogeneity. Component specialization is
needed to optimize system performance at low power and competitive cost. And using IP library
elements in a copy&paste design style is the only way to reach the necessary design
productivity.

Systems integration is a major challenge, since complex hardware and software component
interactions pose a serious threat to all kinds of performance pitfalls including transient
overloads, buffer overflows, and missed deadlines. The International Technology Roadmap for
Semiconductors names system-level performance verification as one of the top-three design
issues.

Timed simulation is state of the art in system performance verification. Tools such as
MentorGraphic's SeamlessCVE [Seamless] and Axys Design Automation's MaxSim [MaxSim]
support cycle-accurate cosimulation of the complete hardware/software system. The
cosimulation times are extensive, but developers can use the same simulation environment,
simulation patterns, and benchmarks in both function and performance verification. Simulation-



based performance verification, however, has conceptual disadvantages that become disabling
as complexity increases.

Hardware and software component integration involves resource sharing that results in a
confusing variety of performance dependencies at runtime which are not reflected in the system
function. As an example, Figure 1 shows a CPU subsystem with three processes. Although all
processes are activated periodically, the execution sequence is rather complex and leads to
transient output bursts for P3, modulated by P1 execution.

Component integration adds additional performance dependencies which can turn component
best-case performance into system worst-case performance, a so called scheduling anomaly,
as shown in Fig. 2. During bursts, the minimum (best-case) execution time of P3 leads to
maximum (worst-case) bus load, possibly slowing down other components communication.
Such transient runtime effects represent critical execution scenarios, or corner cases, which
have to be verified. However, such architectural corner cases can be subtle and extremely
difficult to find and debug.

Where do we get the stimuli to cover all corner cases? Reusing function verification patterns is
not sufficient because they do not cover the complex non-functional performance dependencies
that resource sharing introduces (Fig. 1). Reusing component or subsystem verification patterns
is not sufficient, either, since they do not consider the complex component and subsystem
interactions (Fig. 2). The designer might be able to develop additional simulation patterns for
simple systems with well understood component behavior. But manual corner case identification
is not practical for complex multiprocessor systems with layered software architectures, dynamic
communication protocols, and operating systems. In short, simulation-based performance
verification is about to run out of steam and should be enhanced by formal approaches that
inherently cover the corner cases.

worst-case
situation

P3

P1

burst

P2

jitter

burst

p
rio

rity

output eventsinput events

T1

buffering

T3

T1

T2T2 T2

t t = tworst case

buffering

M1

HW

CPU

P1

P3

P2

Sens

Figure 1 Performance Dependencies due to Resource Sharing

M2IP2M3

M1

DSPIP1

HWCPUSens

Bus

Subsystem 1

Subsystem 2

max execution time
 min bus load

M1

BusBus

min execution time
 max bus load

HW

P3

CPU

Figure 2 Scheduling Anomaly due to Component Integration



2. Existing Formal Approaches to Performance Verification

2.1 Single-Component Techniques

Real-time systems research has addressed software scheduling analysis for decades, and
many popular techniques are available. Examples include rate-monotonic scheduling [RMS]
and earliest deadline first [EDF] using both, static and dynamic priorities; time-slicing
mechanisms like time-division multiple access (TDMA) or round-robin (RR); and static order
scheduling of synchronous data-flow [SDF]. Many extensions have found their way into
commercial analysis and optimization tools such as Livedevices' Real-Time Architect [RTA],
TriPacific RapidRMA [RapidRMA], and many more.

These techniques rely on a simple yet powerful abstraction of task and communication
activation. Instead of considering each event individually, as simulation does, formal scheduling
analysis abstracts from individual events to event streams. The analysis requires only a few
simple characteristics of event streams, such as an event period or a maximum allowed jitter.
From these parameters, the analysis systematically derives corner-case scheduling scenarios
(an example is shown in Fig. 1), which safely bound the process and communication response
times.

We just mentioned that the local techniques assume certain input event models, such as, e.g.,
periodic events with a bounded jitter. When integrating several components, the output of one
component becomes the input of a connected component. Interestingly, output event models
have been widely neglected in formal real-time systems research, so far.

Each event experiences a delay when traveling through a component. Due to resource sharing
(and other influences), these delays can vary from one execution to the next, reflected by a
response time interval that introduces uncertainty to the output events timing. In other words,
each component adds jitter characteristics to the event stream, as already shown in Figure 1.
Accumulating jitters can further lead to heavy event bursts. It is quite obvious that output event
models are usually more complex than input event models, as can be seen when comparing the
bus input and output event models in Figure 3.

Unfortunately, most output event models are
not supported as input models by the known
analysis approaches. Hence, the local
techniques cannot be reasonably combined
into a system-level analysis. They are limited
to a single scheduling strategy, but fail to
consider systems with multiple resource-
sharing strategies and complex component
interactions because of model incompatibili-
ties, indicated by the gray boxes in Figure 3.
The DSP, for instance, requires strictly
periodic input to efficiently run a set of signal
processing applications. For the HW
component, we might only know a maximum
allowed frequency which corresponds to a
minimum time separation of two consecutive
executions. Real-time systems research
captures such minimum interarrival times
using the model of sporadic events.

Figure 3 Input and Output Event  Models

simple
periodic

periodic
w/ burst

?

?

given

required

given

required

M2DSP

HW

simple
sporadic

periodic
w/ heavy jitter

IP2M3IP1

M1CPUSens

C1

C3

periodic

NoC
C2

sporadic periodic
w/ jitter

sporadic
w/ jitter



2.2. System-Level Techniques

"Holistic" analysis aims at finding timing equations capturing all influences and dependencies for
an entire system. However, the system-level timing equations can be complex, and there is –so
far– no general procedure to efficiently create and solve them. The known approaches are
limited to specialized classes of distributed systems [Tindell, Eles, EDF] which simplifies the
timing equations.  For instance, the TTP (time-triggered protocol) provides a global
synchronization between all processors over the TTP-bus. The obtained predictability, however,
comes at a significant performance price, a price that grows with system size and complexity.
The static nature of TTP and other "highly predictable" protocols increases buffer sizing
requirements, along with response times.  In addition, such protocols do not adapt to
dynamically changing load situations that are typical for reactive embedded systems.  Holistic
analysis and the conservative approach will therefore not scale well to future distributed
multiprocessor platforms with multiple network protocols.

Other techniques rely on combining several local analysis techniques and circumvent the
incompatibility problem mentioned at the end of Section 2.1 by using complex generalized event
stream representations. Thiele et. al. [Thiele] define numerical upper- and lower-bound event
arrival curves and use network calculus for analyzing the components. Gresser [Gresser]
defines a complex event vector system, and component analysis is performed using event
dependency matrices. However, both approaches define new models and require new
scheduling analysis techniques, so they cannot reuse existing work, which we consider a major
disadvantage for a broad industrial acceptance.  We can summarize that there is currently no
sufficiently optimal analysis approach that covers all aspects of todays heterogeneous
architectures.

3. Our Basic Idea

We do not necessarily need to develop new analysis techniques or introduce new models, if we
can benefit from the host of work in real-time scheduling analysis. We have recently developed
a technology [Richter02, Richter03a] that lets us a) extract key output event stream information
from a given component schedule, and b) automatically interface or adapt the output event
stream to meet the established input event models such as RMS. This way, we overcome the
mentioned model incompatibilities and designers and analysts can safely apply existing
subsystem analysis techniques and tools without compromising component integration and
system-level analysis.

3.1 Event Model Interfaces

With respect to the example in Figure 3, we introduce an Event
Model Interface (EMIF) to transition from the model of periodic
events with jitter to the model of sporadic events at the input of the
HW component in Figure 4. Some analysis techniques need this
transformation, requiring only a minimum of math. The jitter events
are characterized by a period (TC2) and a jitter (JC2). The jitter
bounds the maximum time deviation of each event with respect to a
virtual reference period. So, each individual event can be at most
JC2/2 earlier or later than the reference. The required sporadic model
has only one parameter, the minimum interarrival time (tHW,min)
between any two successive events, thus bounding the maximum
transient event frequency.  Now, imagine two successive jitter
events, the first being as late as possible (t1=t0+JC2/2) and the
second as early as possible (t2=t0+TC2+JC2/2). The minimum
distance between any two events is thus tHW,min = t2 - t1 = TC2 - JC2.
EMIFs only change the mathematical event stream representation
for analysis purposes. The system implementation and the actual
timing of stream events remain unchanged.

Figure 4 Usage of EMIF
and EAF

EMIF    
w/ EAF      

M2DSP

HW

EMIF

simple
sporadic

C3

simple
periodic

C2

periodic
w/ jitter

periodic
w/ burst



3.2 Event Stream Adaptation

Such direct model transformations are not always possible. For instance, consider the periodic
stream with burst entering the DSP in Figure 4. Many signal processing applications require
purely periodic execution to run efficient DSP schedules. But the burst obviously has to be
resynchronized to meet the required model of purely periodic events, i.e. the actual timing of
individual events has to be changed. In such situations our technology automatically inserts an
Event Adaptation Function (EAF) as a supplement to the EMIF to make the streams match.
EAFs correspond to buffers that have to be inserted at a component interface. Hence, EAFs
modify the system to make it working and analyzable. Optimized buffer sizing and buffering
delay calculation is automatically performed during adaptation. The math for the resulting EMIF
in the example is –again– relatively simple. The sought-after parameter (TDSP) of the periodic
stream is the average period of the burst stream, and can be described by the burst's outer
period (TC3) and its burst length (nC3): TDSP=TC3/nC3.

3.3 Event Propagation and Analysis Principle

The EMIF and EAF technology presented in the preceding sections allows to transition between
a variety of different event models for a single event stream, thereby overcoming the mentioned
model incompatibilities.  This is then used to map the output event models of components to the
input models of the connected components. As a result, each local component analysis can use
the model best suited for a particular component. We call this "scheduling analysis integration"
[Richter03b].

The overall system-level analysis principle is shown in
Figure 5. First, the known environmental timing
assertions are applied to the primary system inputs,
i.e. those components that directly communicate with
the system environment. This applies to environmen-
tal data and event sources such as network interfaces
or sensor devices. Then, these components are
analyzed using known techniques providing common
results such as component utilization (percentage of
available processing power or bus bandwidth),
response times for tasks and communication needed
to check system latency constraints, local buffer
memory requirements, etc. Finally, the output event
models are determined and are mapped to the input
models of the connected components, possibly using
EMIFs and EAFs, just as explained above. This
process is iterated until all components are analyzed.

In pure feed-forward systems, i.e. systems without cycles, the procedure is relative simple. The
environmental input event models are just propagated through all local component analyses to
the system outputs. Finally, global input-output delays and global buffer size requirements can
be determined.

More complex iterations can be found in systems where the timing of two or more components
is mutually dependent. Feed-back communication is often found in recursive filter applications in
signal processing, representing a functional dependency cycle. However, system integration
can also lead to non-functional mutual dependencies which are far less intuitive. Figure 6
highlights a nonfunctional event stream dependency cycle in our example system that is only
introduced by communication sharing. Upon receipt of new sensor data, the CPU activates
process P1, which preempts P3 and thus affects the execution timing of P3 . Figure 1 illustrates
this preemption. P3 ’s output, in turn, enters the network on channel C2 , where it now interferes
with the arriving sensor data on C1. The interference of the two functionally independent
channels, C1 and C2, closes the dependency cycle. Note that the subsystem in Figure 1 was
originally cycle-free.

environment model

local analysis

derive output event model

map to input event model

until convergence or non-schedulability

Figure 5 Analysis Principle



Such cycles are analyzed by iterative propagation of
event streams until the event stream  parameters
converge or until a process misses a deadline or
exceeds a buffer limit. This iteration process
terminates because the event timing uncertainty, i.e.
the best-case to worst-case event timing interval,
grows monotonically with every iteration. For cases in
which no convergence occurs automatically, we have
developed a mechanism that uses EAFs to break up
the dependency cycle and enforce convergence by
reducing the timing uncertainty. We have thoroughly
investigated cyclic dependencies. Note that the event
flow cycles are not an artificial result of global
analysis but exist in practice as the example
demonstrates. And the event stream view allows to
optimize buffer sizing in such situations which are
usually very hard to find using simulation.

4. Experiments

So far, we presented event model propagation, interfacing, and adaptation. Now, we will
demonstrate the applicability of the approach by fully analyzing the example system.

4.1. Set-Up

The Actuators

There are three actuators: The sensor
sporadically sends data blocks of 8kb size to
P1, with a maximum sending frequency of
1,7kHz, which corresponds to a sporadic
event model with a minimum sporadic
period 588µs. Process P3 is periodically
activated by the RTOS (real-time operating
system) on the CPU with a period of 50µs.
The high-performance DSP application on
IP1 has a sending frequency of 140kHz,
corresponding to a period of 7,14µs.

The Network

Instead of sending the complete data block,
the data packets are fragmented to avoid
too long blocking times. Each 8kB data
block from the sensor is split into 32 packets
of 262byte each, 256bytes plus 6bytes
protocol overhead–address, length, and
CRC. The 3kB blocks from P3 are split into
24 packets of (128 +6) = 134bytes. This
channel C2 has a higher priority than
channel C1. The highest-priority channel C3
does not split the DSP data packets, but
only adds the 6byte protocol information.
The overall average network load is
222,77Mbyte/s.

              CPU

sporadic
w/ jitter

periodic
w/ burst

P3     preemptionP1

     EMIF
       w/ EAF

NoCC1 interference  C2

HWSens

EMIF

simple
periodic

simple
periodic

activation 
by RTOS

Figure 6  Non-Functional Event Stream
                Dependency Cycle

     EMIF
       w/ EAF

EMIF    
w/ EAF      

M2DSPIP2M3IP1

HW

M1CPU

Sens

simple
sporadic sporadic

w/ jitter EMIF

simple
sporadic

C1

C3

periodic periodic

NoC
C2

periodic
w/ burst

periodic
w/ burst

periodic
w/ jitter

simple
periodic

fmax=1,7kHz, s=8kB

f=140kHz, s=1kB

f=20kHz

s=3kB

8kB→ 32× ( 256 + 6 ) byte

1kB→ 1× ( 1024 + 6 ) byte

3kB→ 24× ( 128 + 6 ) byte

Figure 7 Example System with Timing Set-Up



Execution and Transmission Times

For simplicity, the core execution times of the two processes on the CPU are assumed
constant: 250µs for P1 and 10µs for P3. This is not a limitation of the approach but rather a
clarification of the following experiments.

The transmission times of the network packets depend on the network speed. Since we perform
several experiments with different network speeds, the actual time values are provided at the
corresponding experiment results sections.

We explored several different networks with different bit widths and clock speeds. Furthermore,
we performed one set of experiments with a buffer inserted between the CPU and the network
to eliminate the possible jitter or burst on the input of channel C2, just as explained in Section
3.3. In the second set of experiments, we omitted the buffer.

4.2 Experiments with Buffer

The buffer at the input of channel C2 resynchronizes the possibly bursty –or at least jittery–
stream from P3 on the CPU (see Figure 6) to a purely periodic stream. Hence, the network
inputs are fully specified, allowing us to analyze the network without the iterations mentioned in
Section 3.3. After the network is analyzed, we have the input stream of P1, and we can analyze
the CPU scheduling. This will not only yield the performance of process P1 but also the output
event stream of P3, which is finally required for dimensioning the buffer. We performed
experiments with three different network speeds: 480Mbyte/s, 300Mbyte/s and 240Mbyte/s,
corresponding to an average network utilization of 46,41%, 74,26%, and 92,82%, respectively.

We expect that the propagation jitter on channel C1 increases with increasing network
utilization. In effect, the input jitter of P1 will increase, in turn increasing the output jitter (or
burstiness) of P3, finally resulting in increasing buffering requirements.

Experiment 1: The network speed is 480Mbyte/s. The packet transmission times are 17,5µs,
6,7µs, and 2,15µs for a complete data packet on channel C1, C2, and C2, respectively. The
output jitters are 4,85µs for C2 and 265µs for P3. In a worst case situation, we need to store 6
events, each representing a 3kB data block, resulting in a 18kB buffer. The C1 output jitter is
17,45µs.

Experiment 2: The network speed is 300Mbyte/s. The packet transmission times are 27,95µs,
10,72µs, and 3,43µs on channel C1, C2, and C2, respectively. The network output jitter of C2
increases to 14,59µs, but the buffering requirements remain constant. Only the C1 output jitter
increases to 69,5µs.

Experiment 3: The network speed is reduced to 240Mbyte/s. The packet transmission times
are 34,93µs, 13,4µs, and 4,29µs. Now, the output jitter of P3 has increased to 275µs, the buffer
is now required to store 7 events (21kB), and the output jitter of C1 further increases to 256,3µs.

4.3 Experiments without Buffer

In the second set of experiments, we omitted the buffer at the input of channel C2 . This has
–as theoretically explained in Section 3.3– severe consequences for the overall analysis
procedure. We now have to start the network analysis with an assumption on the not yet known
output of P3 . We start by assuming a periodic stream with a frequency of 20kHz –just as in the
experiments with buffer–, and analyze the network and the CPU. Then, we have to check the
actual output of P3 against our assumption. This process is iterated until the assumption is met,
or –in case of the last experiment– the given deadline for packets on channel C1 (1ms) is
missed.

Experiment 4: The network speed is 480Mbyte/s, just as in Experiment 1. The output jitters of
C2 and P3 remain unchanged compared to experiment 1.  However, since the jittered output of
P3 now enters the bus without synchronization, C1 communication is heavily distorted, so the



C1 output jitter is 85,9µs. However, we observe no severe consequences for the overall system
performance, mainly due to the very conservative over-dimensioning of the network. If we
reduce the network performance as in Exp. 2 and 3, we expect notable changes.

Experiment 5: The network speed is now set to 300Mbyte/s, as in Experiment 2. Now, the
output jitters increase: 14,59µs for C2, 275µs for P3. Again, C1 communication is further
distorted and the output jitter increases to 276,13µs, exceeding the value of Experiment 3.

Experiment 6: In the final experiment, the network speed is set 250Mbyte/s, already very close
to 240Mbyte/s in Experiment 3. The jitters on the channels constantly increase during the
iterative event stream propagation, further leading to heavy burst execution of P1. After the third
iteration, the response time of C1 exceeds the given deadline of 1ms and we can stop the
iteration. The system is not schedulable.

4.4 Result Interpretation

network speed
[Mbyte/s]

network util
[%]

buffer size
[kb]

C1 output jitter
[µs]

C2 input jitter
[µs]

C1 worst-case
response [µs]

480 46,4 18 17,4 - 34,9
300 74,3 18 69,5 - 97,4
240 92,9 21 256,3 - 291,2
480 46,4 - 85,9 265 103,4
300 74,3 - 276,1 275 304,1
250 89,1 - > 980 > 515 > 1ms

Table 1 Result Overview

Table 1 gives an overview about the six experiments. We can see that the jitter on the lower
priority channel C1 gradually increases with decreasing network performance. However, the
buffer at the input of C2 resynchronizes these effects. So, the bus load is –compared to the
experiments without buffer– relatively determinate. When the buffer is removed, the system is
still stable as long as the network performance is above a certain limit. Only we can see that the
jitters increase much faster compared to experiments 1 to 3. If the network performance
becomes too low, the jitters on both points of interest (C1 output and C2 input) seem to
exponentially grow, and the deadline of channel C1 is quickly violated (after the third iteration
step).

The results of the experiments show two things: First, our approach can be configured to
analyze heterogeneous designs without the need for highly specialized and complex formal
models. All used formalisms are of similar complexity than the ones already widely accepted in
industry, e.g. [RMS]. And secondly, the approach proved applicable and efficient. Especially the
cyclic dependencies could be resolved without major convergence problems. On an 2.4 GHz
Pentium P4 CPU, the runtime of our analysis tool SymTA/S (see next Section) is below 1
second (!) for each of the given experiments.

5. The SymTA/S Tool

We have developed a Java-based tool prototype that we call SymTA/S (Symbolic Timing
Analysis for Systems). We have a similar tool SymTA/P (SymTA for Processes) to determine
the core execution times of tasks.

An easy-to-use GUI allows to configure the analysis in SymTA/S. Figure 8 shows a screenshot
of the tool for the example system of Figure 7. The user tasks and communication channels are
edited and connected in the main "drawing area". The environmental assertions and constraints
are modeled as "virtual" source and sink tasks. The mapping of tasks and communications to
resources is shown in the "architecture and mapping window".



Task parameters such as the core execution time and scheduling parameters are input in the
"task property window" in the top right corner of the tool. The "resource config window" in the
middle right contains the operating system configuration, scheduling strategy, OS overhead,
etc.. The event streams representing the component interactions are observed in the "event
stream window" in the lower right corner, where also the interfacing specifications such as
EMIF/EAF are described and optimized. The tables in the three windows on the right hold all
timing information about the entire system and are continuously updated during analysis.

The actual analysis is started by a simple "double-click" mechanism. The mathematical
background on event model interfacing and adaptation is fully hidden from the user, so she/he
can concentrate on the key tasks, that is integration and analysis. In order to allow fast and
easy tool control, key information about the analysis status (schedulable or not) and the up-to-
dateness of results in an iterative analysis process are visualized using an intuitive color code:
green=success, red=failure, white=up-to-date, yellow=needs update, etc.. The timing
parameters of central concern such as response times, buffer sizes, and jitters can optionally be
shown as tool tips when the mouse is moved over a specific element in the drawing area.

5. Conclusion

The current design trend of component reuse and the "copy&paste" integration style leads to
increasingly heterogeneous embedded system architectures, posing a serious threat to all kinds
of performance pitfalls. Design errors such as transient overload and missed deadlines can be
subtle and difficult to detect and to debug using the traditional performance simulation
techniques, and formal approaches are becoming attractive as a reasonable supplement.
Systematic scheduling analysis techniques are known and practically applied to individual
components for a long time. But so far, incompatibilities in the underlying load and scheduling
models prevent their direct application in heterogeneous system design.

detailed analysis
status/error output

drawing area

architecture and
mapping view

task property
control window

resource config &
performance window

event stream
control window

environmental
event source

unanalyzed task
(yellow)

analyzed task
(white)

unmatched event
stream (red)

matched event
stream (green)

input/output port
event model spec

task load and 
timing results

resource & OS
configuration

local task
properties

source & target
event models

interfacing
specification
(EMIF/EAF)

Figure 8 SymTA/S Tool Screenshot



Our technology generally supports automatic interfacing and adaptation for the most frequently
used event models, allowing designers to apply known analysis and optimization techniques
locally without compromising global analysis. The elegant event stream and interfacing view
helps designers to understand and control the complex component interactions and to optimize
the dynamic behavior of the overall system, effectively enabling fast and reliable system
integration.

The event model interfaces and adaptation functions enable a novel system-level analysis of
complex heterogeneous systems. We consider our approach a serious alternative or
supplement to simulation-based performance verification. It allows comprehensive system
integration and provides much more reliable performance measures at far less computation
time.

We have already applied out technology to case studies in cooperation with our industry
partners in telecommunications, multimedia, and automotive manufacturing. Each case had a
very different focus. In the telecommunications project, we resolved a severe transient-fault
system integration problem that not even prototyping could solve. In the multimedia case study,
we modeled and analyzed a complex two-stage dynamic memory scheduler to derive maximum
response times for buffer sizing and priority assignment. In the automotive study, we showed
how the technology enables a formal software certification procedure.

References
[Seamless] "Seamless Hardware/Software Co-Verification"

http://www.mentor.com/seamless/, Mentor Graphics Inc.

[MaxSim] "MaxSim Developer Suite"
http://www.axysdesign.com/products/products_maxsim.asp, Axys GmbH

[RMS] "Scheduling algorithms for multiprogramming in a hard-real-time environment",
C. L. Liu and J. W. Layland, Journal of the ACM, Vol. 20, No. 1, 1973

[EDF] "DEADLINE SCHEDULING FOR REAL-TIME SYSTEMS -- EDF and Related
Algorithms", J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Kluver Academic
Publishers, 1998

[SDF] "Synchronous Dataflow", E. A. Lee and D. G. Messerschmitt, Proceedings of the IEEE,
Vol. 75, No. 9, 1987

[RTA] "Real-Time Architect", http://www.livedevices.com/realtime.shtml, ETAS GmbH, formerly
Livedevices Inc.

[RapidRMA] "RAPID RMA: The Art of Modeling Real-Time Systems",
http://www.tripac.com/html/prod-fact-rrm.html, TriPacific Software Inc.

[Tindell] "Holistic Schedulability Analysis for Distributed Real-Time Systems", K. Tindell and J.
Clark, Microprocessing and Microprogramming - Euromicro Journal (Special Issue on
Parallel Embedded Real-Time Systems), Vol. 40, 1994

[Eles] "Bus Access Optimization for Distributed Embedded Systems Based on Schedulability
Analysis", P. Pop, P. Eles, and Z. Peng, Proc. Design, Automation and Test in Europe
(DATE) Conference, 2000

[Thiele] "Real-time Calculus for Scheduling Hard Real-Time Systems", Lothar Thiele, Samarjit
Chakraborty and Martin Naedele, Proceedings International Symposium on Circuits and
Systems (ISCAS), 2000

[Gresser] "An Event Model for Deadline Verification of Hard Real-Time Systems", K. Gresser,
Proceedings 5th Euromicro Workshop on Real-Time Systems, 1993

[Richter02] "Event Model Interfaces for Heterogeneous System Analysis", K. Richter and R. Ernst,
Proc. Design Automation and Test in Europe (DATE) Conference, 2002

[Richter03a] "A Formal Approach to MpSoC Performance Verification", K. Richter, M. Jersak, and Rolf
Ernst, IEEE Computer Magazine, April 2003

[Richter03b] "Scheduling Analysis Integration for Heterogeneous Multiprocessor SoC", K. Richter, R.
Racu, and Rolf Ernst, Proc. IEEE International Symposium on Real-Time Systems
(RTSS), 2003


