
Calculating Task Output Event Models
to Reduce Distributed System Cost

Razvan Racu, Kai Richter, Rolf Ernst
Institute of Computer and Communication Network Engineering

Technical University of Braunschweig
D-38106 Braunschweig, Germany
{racu, richter, ernst}@ida.ing.tu-bs.de

Abstract

Input event models such as periodic, jitter, and sporadic are known as powerful abstractions for
task workload arrival in scheduling analysis. In distributed systems, such task input models result
from output event models of other tasks in the system. Interestingly, output event models have received
only little attention in literature. In this paper, we introduce a novel approach to determine task output
event models for the most practically important task configurations. We show that the output event
model accuracy is key to efficient system dimensioning with a direct impact on system cost, and
we propose several optimizations. The experiments show that the new approach reveals previously
unknown, and hence, unexploited system performance reserves.

1. Introduction

Performance and timing analysis, specifically with respect to scheduling influences, is a known
problem in distributed system design. The traditional real-time scheduling analysis uses very efficient
environment models, or event models, to capture the arrival of workload. The RMS [5] is a popular
example, analyzing periodically arriving tasks. However, the known approaches are limited to a single
CPU or bus but fail to analyze more complex distributed systems. Multiprocessor extensions, called
holistic approaches, can cope with slightly more complex architectures, but their applicability and
scalability is still limited.

In a recent approach, called Symta/S, event streams are used to couple several existing local tech-
niques into a system-level analysis model. An event stream connects two locally analyzable com-
ponents, such that the output event model of one component becomes the input event model for a
connected component. But while input event models are well known and have been used for work
load analysis, output event models have received only little attention because they are seemingly less
interesting.

Output event models describe the generation of workload, such as production entering a bus. The
producer determines the arrival of packets at the bus. First, we have to consider how often that
producing task is executed. This information is given by the tasks activation or input event model.
Secondly, we need to consider that a task does not necessarily always produce a packet on each
execution. In other words, the task output can be conditional. For instance, a periodic task execution
can lead to non-periodic – or sporadic – packet generation. In order to correctly determine the output
event model, such conditional task behavior needs to be considered.

Finally, the execution time of a task represents a delay between input and output, and operating
systems usually disturb the tasks execution further, e. g. a periodically scheduled task does not neces-

sarily execute periodically, but can experience a varying number of preemptions. This obviously adds
jitter characteristic to the execution behavior, and subsequently, to the output generation.

The mentioned influences, namely input model dependency, conditional output generation and jitter
injection, can result in complex output event models. These models then become input models for
connected tasks and determine communication load. Hence, the output event model determination
needs to consider such complex models at component or communication inputs.

In this paper, we introduce an approach to derive best-case and worst-case output event models for
several task configurations. A task configuration in this sense in given by a) the tasks activation model
or input event model, which can beperiodicor sporadic, both with or without jitter, and b) the tasks
functional behavior which can be conditional or not. We assume jitter injection due to scheduling for
all configurations.

In the next section, we analyze periodic tasks with unconditional behavior. This allows us to start
with slightly simplified assumptions. More precisely, we focus on the scheduling influence, which
has not yet been considered for output event model calculation. Interestingly, the best-case scheduling
can lead to worst-case output generation. Distributed systems are known to exhibit suchscheduling
anomalies[2]. But the scheduling influence on output models has hardly been investigated. So far,
only very conservative approaches exist. New and much more accurate output model calculation
approaches are presented in Section 3 and 4. They allow to reveal and exploit previously unknown
performance reserves. In Section 5, we extend the basic approach to the other configurations, namely
conditional tasks, more complex input event models (sporadic with or without jitter) as well as com-
binations of both. Finally, we draw the conclusions and give an outlook on future work.

2. Output Models of Periodic, Unconditional Tasks

In this section we determine the output event models for tasks with very simple configurations.
Consider a task with a periodic activation and a one-to-one correspondence between input (task ac-
tivation) and output (task completion) and a fixed execution time. Each activation experiences a
fixed delay from input to output, and thus, the output event model is equal to the input event model.
Due to the input-output delay, the stream offsets are different but the event model does not consider
them. Only the relative timing is important when defining event models and in this case it remains
unchanged from input to output. But, usually the software processes have a non-constant execution
time. Moreover, the tasks are sharing common resources so that the scheduling disturbs the task exe-
cution further. So, we obtain a non-constant delay between task activation and task completion. The
output event model is not purely periodic anymore. However, the delays are bounded and the upper
bound is known from the scheduling analysis theory asworst-case response time. Theresponse time
determines the time span between activation (input event) and completion (output event) of a task.
We illustrate this using the following example.

Consider a set of three periodic tasksP1, P2 andP3 running on the same processing resource. The
activation periods areT1 = 100µs, T2 = 240µs andT3 = 500µs. The tasks have the core execution
timesC1 = 40µs,C2 = 70µs andC3 = 120µs, respectively. TaskP1 has the highest priority and task
P3 the lowest. Figure 1 shows the Gantt diagrams corresponding to the worst-case activation scenario
[5].

The first activation ofP2 is preempted two times by taskP1 and finishes∆t1 = C2+2·C1 = 150µs
after the activation. The second activation ofP2 is preempted only once,∆t2 = C2 + C1 = 110µ.
Moreover, the first activation ofP2 occurs at itscritical instant, and thus, according to the theory
from [5], ∆t1 represents the maximum or worst-case response time ofP2. Equation 1 shows the
RMS worst-case response time calculation(Ri) of Pi whereCi andTi represent the core execution
time and the activation period ofPi andHP (i) is the set of all higher priority tasks.

R
(n+1)
i = Ci +

∑
∀j∈HP (i)

R
(n)
i

Tj

 · Cj ≤ Ti (1)

P1

P2

∆t1 ∆t2 ∆t3

P3

Figure 1. Non-constant delays between task activation and task completion

In a similar way a lower limit can be defined, i. e. the minimum task response time can be determined.
Thus, even though the response time is not constant, it is always bounded by an interval. This means
the key property of the input stream is preserved in the output stream, i. e. a generally periodic behav-
ior. However, due to a non-constant response time there is some uncertainty about the actual timing
of each event. Such event stream behavior is known asjitter. A jitter allows each event to slightly
deviate from areference period. The jitter bounds the maximum deviation in time. Figure 2 shows
the jitter characteristic of the output event model.

tresp,min

tresp,max

tresp,min

tresp,max

tresp,min

tresp,max

T
INPUT:

OUTPUT:

J

T-J
T

Figure 2. The presence of a jitter at the output

The output jitter is the difference between the highest and the lowest possible execution delay. This
is the basic idea to determine the output jitter for the simple task configuration. We have shown above
how upper response time bounds can be calculated. Besides the relatively simple RMS [5], there is
a host of other approaches capturing more complex task activations. Periodic activation with jitter
is considered in [1]. Tasks with arbitrary deadlines are the subject of [4]. Interestingly, the lower
response time bound has received only little attention. This is mainly because scheduling analysis
traditionally considers only load and response time analysis in the worst-case situations, but no output
event models.

In Figure 2, we observe that the worst-case output occurs when two events are very close in time.
The first task activation finishes after the maximum response time (late event). The second task release
finishes after the minimum response time (early event). This is exactly the worst-case output scenario.
The distance between these events is (T-J) while the average period is T. This requires not only the
upper (for late event) but also the lower (for early event) response time bound to be known. In other
words, the worst-case output depends on the best-case response time.

The dependency between best-case and worst-case in distributed system scheduling is known as
scheduling anomaly[2]. In the next section, we analyze the best-case response times in detail and
propose a set of optimizations.

3. Output Event Model Accuracy

Audsley [1] provided first ideas for distributed scheduling analysis and conservatively bounded the
minimum response time to bezero. Tindell [9] and Eles [6] exploit these properties in their so called
holistic scheduling analysis approaches. However, a zero response time is, as we will see soon, a very
conservative bound, resulting in very pessimistic performance estimates.

A zero response time will obviously never occur. Even if we totally neglect the influence of schedul-
ing, i. e. we assume no preemption, the minimum response time is at least the task core execution time.
And the core execution time is already known since it is essentially required for scheduling analy-
sis. While the maximum core execution time is required for worst-case response time analysis, the
minimum core execution time is used to compute the lower response time bound. Both values can be
determined using approaches such as [10].

We carried out a set of experiments to demonstrate that using the minimum core execution time as
the minimum response time instead of zero results in a significant accuracy gain in the output event
models.

Figure 3 shows an example of a heterogeneous architecture, containing two processing elements
(CPU1, CPU2) that communicate via a shared bus or network (NoC). A periodic data stream coming
from the IP1 component travels through the network on channelC1 and then activates taskP1 on
CPU1. When taskP1 finishes execution, it transmits data via channelC2 to taskP3 running on CPU2.
P3, in turn, sends data to the coprocessor HW1.

In parallel, another periodic stream coming from the IP2 component activates the execution of task
P2 mapped on CPU1. At its completion taskP2 sends a data stream through channelC3 to taskP4 on
CPU2. After executionP4 transmits data to the connected hardware component HW2.

As we can see, both data streams (the one traveling from IP1 to HW1 and the other traveling from
IP2 to HW2) are crossing different common resources like CPU1, CPU2, and NoC. As explained
above both streams experience complex delays due to resource scheduling.

C1

C2

C3

P4

P3
HW1

HW2

P1

P2

IP1

IP2

CPU1 CPU2NoC

periodic

periodic

?

?

Figure 3. Event streams connecting system components

The IP1 periodically sends data packets with a period of100µs. The IP2 component also sends data
blocks with a period of150µs. Both processing resources CPU1 and CPU2 are running a static prior-
ity preemptive scheduling. The communication channelsC1, C2, andC3 share the network resource
NoC using a TDMA arbitration scheme. Table 1 provides the timing and scheduling parameters of
the tasks and channels running on CPU1, CPU2 and NoC. The time values are expressed inµs.

We apply the known local scheduling analysis, then determine the output models, and –following
the recent Symta/S approach– propagate these to the inputs of the connected components. The analy-
sis requires the input event model of taskP1, but this cannot be found before we analyze the commu-
nication on the bus. For the communication analysis we need the input event models of channelsC2

andC3 that are generated only after we analyze CPU1. We observe that the system contains a depen-
dency cycle between CPU1 and the communication network. In order to start the analysis on CPU1
we assume that the communication network does not add any jitter characteristic to the event stream

Table 1. Task/Channels parameters

CPU1 CPU2 NoC
Static Priority Preemptive Static Priority Preemptive Time Division Multiple Access
Task TCore Priority Task TCore Priority Channel Access time TSlot
P1 [20;40] 1 (high) P3 [10;25] 1 (high) C1 [20;30] 10
P2 [40;50] 2 P4 [40;40] 2 C2 [20;20] 7

C3 [30;60] 15

coming from IP1 and traversing the bus through the channelC1. Thus, the taskP1 will have a periodic
activation. With purely periodic input, and thus, task activation, we can use the RMS analysis [5] and
we obtain the worst case response times of tasksP1 andP2. We consider for all tasks/channels that
the best case response time is zero. After CPU1 is analyzed, the input event models forC2 andC3 can
be computed and we can apply the TDMA analysis on the network [3]. From the analysis results we
observe that NoC analysis added jitter to the periodic activation ofP1. So, CPU1 must be reanalyzed,
but this time, using an analysis that can cope with input jitter [1] [4]. Now, a larger jitter is computed
for C2, so we must also reanalyze the network. Iteratively applying local analysis techniques and
propagating the output streams to the inputs of connected components solves the above mentioned
dependency cycle [7].

After two iterations, the jitter values converge and the iteration is terminated. So, we can now
perform the analysis on the last processing element (CPU2). Table 2 shows the response times and
the jitter values of the input and output event models as well as the jitter induced by scheduling. The
output jitter is determined by the sum of the input jitter and the tasks internal jitter.

Table 2. Analysis results considering best case equal zero (µs)

Task Response Time Input Jitter Internal Jitter Output Jitter
P1 [0;76] 96 76 172
P2 [0;170] 0 170 170
C1 [0;96] 0 96 96
C2 [0;257] 172 257 429
C3 [0;256] 170 256 426
P3 [0;125] 429 125 554
P4 [0;336] 426 336 762

We see that the jitter drastically increases along a dependency path. When we consider the path
IP2-P2-C3-P4-HW2, we observe that the periodic data stream coming from IP2 component turned
into a heavy burst event stream at HW2 input. A periodic with jitter event model with the period
equal to 150 and the jitter equal to 762 may have in the worst-case scenario burst activation with the
burst size equal to 6. Figure 4 a) shows the worst-case activation scenario for this event model. Due to
the large jitter (762) the first 6 activations can arrive at the same time. Moreover, the next activations
arrive as soon as possible relative to the time instant when the burst activations were released. Such a
burst obviously generates a high transient load.

We apply the analysis on the system again, but this time using the minimum core execution time as
an approximation of the best-case response time. Table 3 contains the result values obtained from the
analysis. We see that the new approach reduces the internal jitters, and thus, the jitter of the output
event models. We see that the values for the output jitter decreased by∼28% compared to the values
obtained considering the best-case response time equal to zero.

Referring to the same path as the one analyzed in the previous section (IP2-P2-C3-P4-HW2) we ob-
serve that the event stream entering HW2 radically changed its parameters. It still has a burst behavior
but the burst size decreased from 6 to 4. Figure 4 b) shows the activation diagram corresponding to
the output event model ofP4.

We see that the jitters do not increase that fast if we use minimum core time as minimum response
time. Furthermore, we see that smaller input jitters result in less distortion due to scheduling, and
the worst-case response times of other tasks are noticeably shorter. This corresponds to previously

Table 3. Analysis results considering best case equal minimum core execution time (µs)

Best Case = minimum core execution time Best Case = 0 Output Jitter
Task Response Time Input Jitter Internal Jitter Output Jitter Output Jitter Reduction (%)
P1 [20;56] 76 36 112 172 34,9
P2 [40;170] 0 130 130 170 23,5
C1 [20;96] 0 76 76 96 20,1
C2 [20;197] 112 177 289 429 32,6
C3 [30;236] 130 206 336 426 21,1
P3 [10;89] 289 79 368 554 33,6
P4 [40;270] 336 230 566 762 25,7

Average 27,4

P = 150

max Jitter = 762

P = 150

max Jitter = 566

Figure 4. Transient load due to burst activations a) Best Case = 0; b) Best Case = min core exe

unknown performance reserves which can now be exploited.
Suppose that the tasksP3 andP4 on CPU2 have the deadlinesD3 = 130 andD4 = 500. The

deadlines are met in both cases. But we see that the analysis considering the minimum core execution
time as the best-case response time reveals previously unknownperformance reserves. We can now
reduce the required performance of CPU2 without violating the deadlines ofP3 andP4. We carried
out additional experiments (without tables) and found that we can reduce the clock speed of CPU2 by
25% without violating the timing constraints ofP3 andP4. In this case, the worst-case response times
of P3 andP4 are 129 and 410, respectively, so the deadlines are still met. Reducing the clock speed
allows to chose a cheaper CPU. This shows the consequences of analysis deficiencies when output
event models are overly conservative.

In the next section we provide a more sophisticated algorithm, aiming at an even more accurate
approximation of the minimum response time.

4. Best-Case Scheduling Approximation

In this section we propose a new approach for the improvement of best case scheduling analysis.
We developed this approach for static priority preemptive scheduling and for TDMA scheduling.

4.1. Static Priority Preemptive Scheduling Analysis

First, we shortly review the theoretical aspects formulated by Liu and Layland regarding the worst-
case response time calculation for static priority preemptive schedulers. They define the critical in-
stant of a taskPi as the time whenPi is preempted by all higher priority tasks in the system. They
proved that ifPi is activated at its critical instant then it experiences the longest response time, i.e.
the worst-case response time. Moreover, all higher priority tasks must rearrive as soon as possible in
order to preemptPi as often as possible.

An inverse argument can be used for the best case approach:Pi must be activated exactly at the
time instant when all higher priority tasks finish their execution, i.e. when the processing resource just
becomes idle. Moreover, all higher priority tasks must rearrive as late as possible thus, preemptingPi
as rare as possible.

Consider the following example: 3 tasksP1, P2 andP3 are running on the same processing core
CPU. The input event models ofP1 andP2 are periodic with jitter with the parametersT1 = 10ms,

J1 = 1ms andT2 = 11ms, J2 = 1ms. TaskP3 is periodically activated with the period equal to
100ms. The core execution times of each process are:[2ms; 3ms] for P1, [5ms; 5ms] for P2, and
[11ms; 15ms] for P3. We can see in Figure 5, the Gantt diagrams corresponding to possible best-case
scenarios ofP3.

P1

P2

P3

P1

P2

P3

t=0

t=0
t_resp = 25

t_resp = 27

Figure 5. Two candidates for the best-case response time of task P3

As we can observe, several scenarios (or candidates) have to be investigated in order to get the
best case response time of taskP3. They differ in the order in which the higher priority tasks are
activated. Obviously, each possible permutation of higher priority tasks must be verified in order to
get the minimum response time. Hence, the computational effort grows quickly with the number of
higher priority tasks.

We found a very promising approximation that has a linear complexity. Consider the case that all
higher priority tasks finish at timet = 0. Of course, this scenario is practically impossible since all
tasks share the same resource. Figure 6 shows the (assumed) Gantt diagram for this approach. If we
compare these with the one shown in Figure 5 we observe that in this approach all higher priority
tasks were activated as late as possible (all tasks finish at the same time compared to the real case
scenarios when they are executed one after the other). Obviously, they rearrive as late as possible
such that there is no realistic scenario where the tasks will rearrive later. Hence, the analyzed task
experiences in this scenario the minimum number of preemptions. The formal proof, we have carried
out, must be omitted due to space limitations.

P1

P2

P3

t=0
ri = 18

c1

c2

J1

J2

Figure 6. Conservative scenario for the best case response time of task P3

This approximated best-case response time bound can be iteratively computed using the following

equation:

r
(n+1)
i = ci +

∑
j∈HP (i)

max

0,

r(n)
i + cj − Jj

Tj

 · cj (2)

ci is the minimum core execution time ofPi, Ti andJi are the activation period and the jitter ofPi
andHP (i) is the set of all higher priority tasks.

4.2. TDMA Scheduling Analysis

Similar observations can help to optimize the best case response time analysis for TDMA schedul-
ing. In the previous section we considered the best case response time ofPi, running on a resource
with a static priority arbitration scheme, as being equal to its minimum core execution time. This is
valid only for the case when the minimum core execution time ofPi does not exceed its time slot. In
this situation, it is not preempted. Moreover, in case of TDMA analysis we can obtain exact values
for the best-case response times since the tasks execution is independent of the other tasks activation.
Each task gets its own resourceslicethat is statically defined.

Thus, in order to construct the best case response time scenario we consider thatPi is activated
exactly at the beginning of its time slot and we can easily compute the number of time slots necessary
for Pi to finish. Moreover, after exceeding its time slotPi is interrupted by all other slots for a constant
period of time. With the following equation we can compute the exact value for the TDMA best case
response time of a task:

ri = ci +

(⌈
ci
tslot,i

⌉
− 1

)
·
∑

(∀)j 6=i
tslot,j (3)

ci represents the minimum core execution time ofPi andtslot,i is the time slot ofPi.
We apply the above proposed approaches to the example system proposed in Section 3 and we

obtain the results shown in Table 4.
Table 4. Analysis results applying the proposed best case algorithm

Best-Case Approximation Best Case = 0 Output Jitter
Task Response Time Input Jitter Internal Jitter Output Jitter Output Jitter Reduction (%)
P1 [20;40] 54 20 74 172 56,9
P2 [40;130] 0 90 90 170 47,1
C1 [42;96] 0 54 54 96 43,7
C2 [70;164] 74 94 168 429 60,8
C3 [47;196] 90 149 239 426 43,8
P3 [10;50] 168 40 208 554 62,4
P4 [40;180] 239 140 379 762 50,2

Average 52,1

If we again analyze the timing for the path IP2-P2-C3-P4-HW2 we observe that the jitter corre-
sponding to the event stream entering HW2 decreased by 50% when compared with the value obtained
by considering best case equal zero. The burst size corresponding to this event model is reduced from
6 to 3.

Comparing the response time values from Table 2, 3 and 4 we observe that not only the minimum
response times changed but also the worst-case response time values. This is because a better esti-
mation of the best-case response time leads to a reduction of the output jitter, and thus, reducing the
uncertainty at the input of the connected component.

Considering the best-case response time equal to minimum core execution time we obtain an aver-
age timing improvement of 28%. Applying the new algorithms to determine the minimum response
time leads to an average optimization of 52% of the jitter values. This would allow a further reduction
of the CPU speed or the speed of some other component, e. g. the bus. Again, the overall system cost
can be lowered.

5. Other Task Configurations

In the preceding sections, we focused on a relatively simple task configuration, i. e. periodically
activated tasks –possibly with jitter– with unconditional communication behavior. In this section,
we extend the basic ideas to the other task configurations, i. e. tasks which are activated sporadically
and/or have conditional communication behavior.

First, we consider tasks that are periodically activated but have conditional output behavior, i. e. they
do not always produce an output (event) at each execution. In other words, the output stream isspo-
radic. The events timing in a sporadic stream is far less predictable than in a periodic stream because
the periodic nature of input events and task execution is lost at the output. However, we can bound
the event timing in the worst case and in the best case.

Audsley [1], already analyzed the properties of sporadic streams and came to a surprisingly simple
result: in the worst case, which we consider the maximum number of events, in turn leading to a
maximum load, a sporadic stream behaves exactly the same way as the corresponding periodic stream.
In other words, a periodic stream model tightly bounds the worst-case behavior of a sporadic stream.
This means, that we can directly reuse the output event models of periodic, unconditional tasks, as
introduced above, as the worst-case bound for periodic but conditional tasks. The same response time
calculations can be used.

Obviously, the best-case bound fundamentally differs. A best-case situation is said to have as few
events as possible. A conditional task does not always produce an output on each execution. Hence,
in a best-case output scenario, the task will not produce an output on any execution. In other words,
it does not produce any output at all; the number of events is zero.

Such sporadic event models are known as input event models from scheduling analysis. The model
of sporadic events basically provides two bounds, one for the worst and the other for the best case.
But only the periodic worst-case bound is provided explicitly. The best-case bound is implicit, namely
zero. This is indicated by the fact that the stream is consideredsporadicinstead ofperiodic.

We have not yet fully considered the detailed influence of scheduling. As explained in Section 2,
a task execution can add jitter characteristics to an output stream. The model of periodic events with
jitter is well known in scheduling analysis theory. However, there is no model ofsporadic events with
jitter, although it is now clear that such models make ultimate sense as output event models. One of
the main reasons why sporadic events with jitter have not yet been considered is that output models
in general have not yet received much attention. In [8], we introduced a six-class event model set that
slightly extends the known models to capture the consequences of jitters, and subsequently bursts,
in periodic as well as sporadic models, and we have shown that existing analysis techniques can be
adapted to these models easily. The six-class model set includes simple periodic, periodic with jitter,
and periodic with burst, as well as the sporadic counterparts.

To complete the approach on output event model analysis, we will shortly explain the remaining
task configurations. Another type of task configuration includes tasks that are activated sporadically
and have a conditional or unconditional output behavior. The sporadic task activation leads to a
sporadic execution behavior, and subsequently, to sporadic behavior at the output. However, the
behavior of the sporadic input stream can be bounded, just as previously explained. We can again
differentiate between a worst-case and a best-case situation, but this time, we need to consider this
already at the task input.

In the output worst case, we assume worst-case input, i. e. periodic activation, and can apply the
output model determination such as in the previous sections. In the best case, we assume zero activa-
tions, and clearly, there is no task execution and no output. Again, we obtain a sporadic output event
stream, just as withperiodic but conditionaltasks. Interestingly, we cannot only reuse the calculation
but we also obtain the same results.

The fact that a task can be periodically or sporadically activated clearly influences other tasks on
the same CPU, or other transmissions on the same bus. Scheduling analysis must recognize this. Es-
pecially in static priority scheduling, the best-case number of preemptions can differ. A sporadic task
might never be activated and will thus never preempt any other task. This reduces the optimization

potential introduced in Section 4.1 to some extend. However, it is still better to use the minimum core
execution time as the best-case response time than zero. The TDMA response time bounds described
in Section 4.2 are not affected.

6. Conclusion

In this paper, we have thoroughly investigated the importance of output event models in distributed
system timing analysis. A key observation is that worst-case output event models strongly depend
on best-case scheduling. However, both have received only little attention in the past, and only very
conservative approximations can be found in literature.

Recent approaches rely on output event models to combine several local scheduling techniques
into a system-level timing analysis model. And the output event model accuracy was shown to have a
tremendous impact on the accuracy of the overall analysis result.

We presented two optimizations: a simple, intuitive one which allows to neglect scheduling influ-
ence but is still better than the existing work; and a more sophisticated and novel best-case scheduling
analysis approach which increases the output event model accuracy further.

This increase in accuracy reveals significant, previously unknown performance reserves in the sys-
tem which can now be exploited. In our experiments, we could show that the required performance
of individual components can be heavily reduced without violating any timing constraints, allowing
to select cheaper components. This cost reduction shows the practical consequences of more accurate
output event models, and underlines the importance of best-case scheduling analysis.

References

[1] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings. Applying new scheduling
theory to static priority preemptive scheduling.Journal of Real-Time Systems, 8(5):284–292, 1993.

[2] R. L. Graham. Bounds on multiprocessing timing anomalies.SIAM Journal on Applied Mathematics,
17(2):416–429, 1969.

[3] H. Kopetz and G. Gruensteidl. TTP - a time-triggered protocol for fault-tolerant computing. InProceed-
ings 23rd International Symposium on Fault-Tolerant Computing, pages 524–532, 1993.

[4] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. InProceedings
Real-Time Systems Symposiom, pages 201–209, 1990.

[5] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environ-
ment.Journal of the ACM, 20(1):46–61, 1973.

[6] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and analysis of mixed time/event-triggered distributed
embedded systems. InTenth International Symposium on Hardware/Software Codesign (CODES’02),
Estes Park, Colorado, USA, May 2002.

[7] K. Richter, M. Jersak, and R. Ernst. A formal approach to MpSoC performance verification.IEEE
Computer, 36(4), Apr. 2003.

[8] K. Richter, R. Racu, and R. Ernst. Scheduling analysis integration for heterogeneous multiprocessor
SoC. InProceedings 24th International Real-Time Systems Symposium (RTSS’03), Cancun, Mexico,
Dec. 2003.

[9] K. Tindell and J. Clark. Holistic schedulability analysis for distributed real-time systems.Micropro-
cessing and Microprogramming - Euromicro Journal (Special Issue on Parallel Embedded Real-Time
Systems), 40:117–134, 1994.

[10] F. Wolf. Behavioral Intervals in Embedded Software – Timing and Power Analysis of Embedded Real-
Time Software Processes. Kluver Academic Publishers, Boston, 2002.

