Behavioral Intervals in Embedded System Design and Verification

Fabian Wolf, Dirk Ziegenbein, Rolf Ernst
Technische Universitit Braunschweig, Germany

Abstract— Embedded system timing and power consumption
are state and input data dependent. Therefore, formal analysis
of such data leads to behavioral intervals rather than single val-
ues. These intervals depend on system concurrency, execution
paths and states of processes, as well as target architecture prop-
erties. The paper presents an approach to modeling and analysis
of process behavior using behavioral intervals. It considers the
execution context, i.e. the current state and input of a process.
We show how the results can be used to model complex process
networks with system modes. The example of an ATM packet
handler demonstrates significant improvements in modeling pre-
cision.

1 Introduction

Embedded systems typically include reactive and transfor-
mative functions, often described in different languages and
semantics. A common representation called SPI (System
Property Intervals) [12, 13] has been developed which permits
the safe integration of different system parts and enables sys-
tem optimization across language boundaries. SPI is based on
the model of communicating processes, whose behaviors are
described on a very high level by a set of parameters. The
use of parameters like data rates, latency times, or an activa-
tion function enables the adaptation to different input models
of computation.

The key point for the semantic flexibility of the model is the
ability to specify the parameters not only in terms of an exact
value but also as ranges of possible values, so called behavioral
intervals. While the necessity for these intervals is straight-
forward for parameters like latency time, the extension of the
behavioral interval concept to include also parameters like data
rates, i. e. the amount of data consumed and produced at each
process execution, enables a variety of different applications
for the model. These include e. g. the representation of data-
dependent communication or the integration of system parts
in different design stages, ranging from possibly incomplete
specification to legacy code.

The necessity to consider behavioral intervals for the design
and verification of embedded systems becomes evident when
looking at the limits of simulation. Profiling and simulation are
the current practice in industry, but since exhaustive simulation
is impractical, simulation results can only cover part of the sys-
tem behavior, often with unknown coverage of worst and best
cases due to partly unknown input data. Verification is a more
complicated but attractive alternative. It provides lower and

Ethernet to Ethernet

™, Ethernet to Wireless
— \\E}
""&

if_sm
3
radiosta’t
Y

Wireless to ‘Sf 3 i D
Ethernet [,

y

Figure 1: Packet dependent flow of execution in a base station

upper bounds reflecting data dependent control flow as well as
data dependent statement execution. In the past, these bounds
were very wide due to a lack of efficient control flow analysis
and architecture modeling techniques. In the last few years,
there has been significant progress in both areas such that for-
mal behavioral interval analysis becomes practical.

Behavioral intervals depend to a certain extend on the pro-
cess control flow which depends on the process input data. In
other words, behavioral intervals of the processes and, hence,
of the overall system are context dependent. Figure 1 gives
an example. It shows a simplified set of processes of a pico
cellular base station [5]. The solid lines represent the paths
on which different data packets are routed through the process
network. Important questions of the system architect can be
the power consumption for sending a data package or the time
to set up a connection in the base station. This should take the
context into account, since for each packet type the processes
react with a different control flow. Of course, simulation is
always possible and statistical power and timing analysis are
feasible, but the first approach is not reliable and the second is
Jjust an approximation of the complex hardware activities when
executing the software of a base station. The analysis approach
on source code level provides reliable and narrow behavioral
intervals for context dependent process execution that is auto-
matically evaluated by the analysis tool.

This paper is organized as follows: In section 2, the SPI
representation model is introduced before we explain our path
analysis approach for the determination of behavioral intervals
in section 3. In section 4, intervals from data dependent in-
struction execution are explained. An example is presented in
section 5 before we conclude in section 6.

71 —

B @

2 The SPI Model

In this section, the basic concepts of the SPI (System Property
Intervals) model are introduced, but the main goal of this sec-
tion is to motivate the use of behavioral intervals. A more for-
mal definition of SPI can be found in [12, 13].

In the SPI model, the system is represented as a set of con-
current processes which communicate via unidirectional chan-
nels that are either FIFO-ordered queues (destructive read) or
registers (destructive write). Such models are usually repre-
sented as directed, bipartite graphs. A SPI graph consists of
process nodes (P), channel nodes (C) and directed communi-
cation edges (E).

While each channel node simply transfers data from the
sender to the receiver without any transformation, the func-
tionality of process nodes can be of arbitrary complexity. But,
the detailed internal process functionality does not have to be
known for the purpose of optimization at the process level.
Thus, processes and channels are modeled only by their ab-
stract external behavior. This behavior is captured by a small
set of parameters which are extracted from the original speci-
fication and associated with the graph nodes.

A parameter does not have to be specified as a single value
but may be formulated as a behavioral interval that constrains
the possible values for the parameter by a lower and upper
bound. A main reason for the necessity of behavioral inter-
vals for the purpose of correct modeling is the possible uncer-
tainty about input data in combination with input data depen-
dent control flow inside a process that make it impossible to
find exact values for the parameters. Another advantage of be-
havioral intervals is the possibility to integrate system parts in
different design stages in a single coherent representation. The
system parts may range from possibly incomplete specification
to legacy code.

[3ms, 5ms] 3ms

Ims
2 12,5] 3
(O (- @)~

Figure 2: SPI Example

An example of a SPI model is depicted in Figure 2. At each
execution, processes map input data to output data. However,
since we are not interested in the function performed by a pro-
cess, the communicated data is only represented by the amount
of data which is important for communication scheduling or
memory allocation. For example, process p; consumes 1 data
token and produces 2 data tokens at each execution. The la-
tency of p; (i.e. the difference between starting and comple-
tion time of p;) is ms. Process p2 is an example for a process
that is specified using behavioral intervals, as it consumes at
least 1 and at most 3 tokens from channel ¢; and produces at
least 2 and at most 5 tokens on channel ¢, respectively. The
execution latency is between 3ms and Sms.

Mostly, the parameters of a process are not independent of
each other but strongly correlated since they all depend on

the executed program path inside the process. As we have
discussed in the introduction, program paths are context de-
pendent. To exploit context dependent behavior, we introduce
process modes. Each mode thereby represents a subset of all
possible program paths or external process behaviors. For ex-
ample, process p; can be represented as having two alternative
modes:

[3,3.8]ms, 1,2)

my = (
2 = ([4.5,5]ms,3,5)

Then e.g. in mode m; process py’s latency is between 3ms
and 3.8ms, it consumes 1 token and produces 2 tokens, etc.
Nevertheless, without specifying rules for the selection of a
mode, the behavior of process p; is still uncertain since ps
may execute in mj or in my.

Since the selected program path only depends on the process
input data (and its state), a process can change its mode with
every execution. Modes are local to a process and change as a
result of process communication. While otherwise all data are
abstracted to tokens with unknown values, the values of data
which may change a process mode must be visible in SPI to
be exploited. For this purpose, virtual mode tags may be asso-
ciated to data tokens to represent data values. Thus, a process
can select its mode depending on the presence of certain virtual
mode tags. Therefore, an activation function is associated with
each process that may be formulated as a set of rules. These
rules map input token predicates to modes. A predicate in this
case is either ‘true’ or ‘false’ depending on the number of to-
kens and the tag set of the first tokens on the input channels
of the process. For process p; from the above example, these
rules could be:

ay : (cr.num > 1) A (‘a’ € c1.tag) — m
ay : (c1.num > 3) A (b’ € ci.tag) = my

Assuming that process p; adds one of the tags ‘a’ or ‘b’ to the
tag set of all produced tokens, the behavior of ps is completely
determinate. If there is at least 1 available token on channel
c; and if the tag ‘a’ is included in the tag set of this token,
process py is activated in mode m;. Analogously, if there are
at least 3 tokens available on c; and the first one has ‘b’ in its
tag set, p, is activated in mode my. Thus, by adding knowledge
about the input data, the behavioral intervals were substantially
narrowed. This technique will be explained in more detail in
the following section.

3 Behavioral Interval Determination

In this section, the determination of behavioral intervals of a
process is described. A process implemented in software has a
source code that can be analyzed. Input data can influence the
control flow as well as the instruction execution on hardware
level. When we investigate the control flow on the architecture
independent source code level, analysis can be divided to path
analysis and architecture modeling.

72 —

3.1 Path Analysis

For path analysis techniques [4] on source code level, a pro-
gram is divided into basic blocks, where a basic block is a pro-
gram segment which is only entered at the first statement and
only left at the last statement [1].

Any program can be partitioned into disjoint basic blocks.
Then, the program structure is represented on a directed pro-
gram flow graph with basic blocks as nodes. Figure 3 shows
an example. For each basic block a cost with respect to each
behavioral interval is determined. Then, a longest or shortest
path analysis on the program flow graph is used to identify a
global behavioral interval. This procedure does not yet provide
sufficient accuracy. For acceptable analysis accuracy one must
identify feasible paths through a program. A feasible program
path or trace is a path in this flow graph corresponding to a pos-
sible sequence of basic blocks when the program is executed,
that means leading from the first to the last basic block of a
program. A program segment PS is a segment of a program
flow graph. This definition implies a hierarchy of program
segments. A program path segment PPS is a path through a
program segment. Not all paths in the program flow graph rep-
resent feasible program paths. A false program path is a path
in the program flow graph which cannot be executed under any
input condition.

False path identification is mandatory for programs with
loops since loops correspond to cycles in the flow graph which
lead to an infinite number of potential paths. The approaches
by Mok [6], Puschner and Koza [9], Park and Shaw [8] require
iteration bounds for all loops in the program which the user
must provide by loop annotation. The approach by Gong and
Gajski [3] can partially consider false paths because the user
can specify the branching probabilities. While making formal
analysis feasible, loop bounding alone is not sufficient for ac-
curate path analysis. Nested loops are often interdependent and
conditions depend on each other. These dependencies can be
rather complex. Therefore, as a second step in [4] and in [8],
the user is asked to annotate false paths. The number of false

~ paths can be very large. Instead of enumerating false paths or,
conversely, feasible paths, a language for user annotation with
regular expressions is introduced in [8]. Still, the number of
required path annotations can be extremely large in practice,
as demonstrated with even small examples in [4]. A major

sist of N basic blocks with x; execution count of basic block
BB; and c; execution cost. Then, the sum-of-basic—blocks
model defines for the total program execution cost C:

N
CZZC,'XX,'
i

This model assumes that all executions of a basic block cost
the same, which is true for data rates. However, data depen-
dent instruction execution and superscalar or superpipelined
architectures with overlapped basic block execution lead to
widely varying local path cost with respect to latency time and
power consumption. They have a substantial effect on the over-
all behavioral interval. For these common architectures, the
sum—of-basic-blocks model cannot provide close bounds, but
must be pessimistic to be correct. For higher accuracy, basic
block sequences must be considered. This shall be called the
sequence—of-basic-blocks model.

3.3 Path Classification

It is possible to exploit program properties to simplify path
analysis for the determination of the sequence-of-basic-blocks.
Large parts of typical embedded system programs have a single
program path only. An FIR filter is a simple example and a fast
fourier transform is a more complex one. In other words, there
is only one path executed for any input pattern, even though
this path may wrap around many loops, conditional statements
and even function calls which are used for program structuring
and compacting. A program has a Single Feasible Path SFP,

when paths through the program are not depending on input
data. A program segment with the SFP property is called an
SFP-segment. Previous analysis approaches give more than
one execution path for SFP programs because they do not dis-
tinguish between input data dependent control flow and pro-
gram structuring aids. In the best case, they may be accurate
but require much user interaction for SFP programs such as [4]
and still do not deliver the sequence—of—basic-blocks. In case
of SFP, simulation would choose the one correct path for any
input pattern without further user interaction, but most practi-
cal systems also contain non—SFP parts. These have the multi-
ple feasible path property MFP. A program segment has Multi-

_ ple Feasible Paths MFP, when paths through the program are

step forward was the introduction of implicit path enumeration dependin ifput data. A program segment with the MFP

[4]. Here, the user provides linear (in)equations to define false
paths. To evaluate these (in)equations, Li and Malik map the
upper and lower bound identification to two ILP optimization
problems, the one optimizing for the lower, the other one for
the upper interval bound.

3.2 Local Path Cost

The execution time model in [4] is established as a standard
model for static approaches. Here, the general term cost c is
used since this analysis holds for many cost measures, such as
timing, power consumption or data rates. The execution cost
model is the sum—of-basic—blocks model. Let a program con-

property is called an MFP—segment. Isolation of SFP and MFP
parts can help to exploit the SFP property and the resulting se-
quence in all programs. To apply different techniques to MFP
and SFP parts, disjoint program partitioning is needed.

3.4 SFP Identification and Clustering

Hierarchical Flow Graph The input program is mapped to
a hierarchical control flow graph like the bubble sort example
in figure 3. In this figure, every control construct, such as if,
case, loop, is represented by a shaded area. The nodes in these
areas are the basic blocks of the program. Each of the control
constructs has an associated condition that decides which of

..

the paths of the construct is executed. Conditions of the control
structures can be nodes as well because an execution leading
to a basic block and therefore a node may be necessary for the
evaluation of the condition. In this graph, a Program Control
Segment PCS is a Program Segment with an associated control
structure in the control flow graph. Each control structure as
well as the nodes are classified as being either SFP or MFP.

for(i=0;
i<14;
i++)

for(j=i+l;
§<15;
j++)

if(afil<alil)

swap(alil,alil); . .
1,a(j)

Figure 3: Flow graph with a control structure hierarchy

Feasible Paths in the Control Flow Graph Figure 3 shows
a bubble sort algorithm and its control flow graph. A conserva-
tive analysis assumes that the program paths branch at the for
and the if statements [4] such that all the corresponding pro-
gram segments have the MFP property. In figure 4a two pos-
sible paths for every iteration of the loop can be seen, one of
which is being taken for every iteration. If the condition in the
if statement is evaluated, it can be recognized that values in af]
are not known, meaning two potential paths for every loop it-
eration leading to oloop iterations potential paths. The first major
step is to split the program in two segments, the if construct
and the rest. The two paths through PS; are now considered
to be merged into a single MFP segment. As a consequence,
the paths of figure 4a are merged into a single path through the
segments PS; and PS5 in figure 4b which winds around the two
fixed, and hence input data independent loops. In other terms,
PS; and PS3 become an SFP segment which includes the pro-
gram segment PS> with separately analyzed cost bounds.

SFP Identification As we see in the example, the flow graph
nodes need to be partitioned into SFP and MFP nodes. Every
program control segment which does not contain an input data
dependent control construct must be SFP. Nodes of the CFG,
ie. basic blocks, are SFP by definition. A control structure
is SFP, if it only contains SFP nodes and its associated condi-
tion is independent of input data. The input data dependency
of conditions can be determined by an algorithm. It requires a
global data flow analysis [1] which forms a transitive closure
over all data dependencies of variables in control statements.
A global data flow analysis does typically not cover dependen-

Figure 4: a: Program paths of bubble sort code shown above,\
b: Separation of the if construct

cies across array elements and pointer operations. Therefore,
the global data flow analysis is complemented with symbolic
simulation of basic blocks [11]. There is a simple recursive
clustering approach to flow graph partitioning. It automati-
cally cuts the program into SFP and MFP segments. This is
shown in the following:

SFP Clustering Algorithm:

for all PCS on top level
if PCS contains condition with symbolic expressions
if condition is independent from data: PCS is SFP
else: PCS is MFP, cut out PCS
for all basic blocks nodes of the PCS
pasic block node follows pcs classification
recursively check all sub PCS and sub BB nodes

SEP clustering is not sufficient when MFP path segments
are embedded. The bubble sort in figure 3 is an example. The
clustering algorithm is extended to merge adjacent SFP blocks:
If the associated condition of a hierarchical node depends on
input data, this PCS has the MFP property. Cut points are set at
the beginning and the end of the MFP nodes and clustering is
repeated ignoring the MFP nodes but regarding the cut points.
In this case we remove the MFP from the graph, analyze it
separately regarding SFP segments on lower levels and MFP
cost, and add its cost to the SFP assuming worst case intervals
at the cut points. For the SFP, MFP cost c is set to 0. The total
cost C is composed by the cost for the SFP csrp, the cost for
the transitions at the beginning and the end Ctransition,we and the
cost for the MFP cyrp.

C = csFp ~+ 2Ctransition,we T CMFP

The new clusters found shall also be defined as SFP, since there
is only one path after separation of the embedded MFP blocks.
To be conservative for correct analysis, it is sufficient to an-
alyze the MFP node separately and assume worst case anal-
ysis behavior at the remaining cut points. This is guaranteed
by leaving the cut points inside the SEP clusters. Then, no

74 —

false SFP paths leading to incorrect bounds can be introduced
in the next steps. The result is still correct, but SFP segment
lengths are maximized. For most higher performance architec-
tures with pipelines as well as for architectures with caches,
analysis precision increases with path length. Figure 5 shows
the result for the example in figure 3. Only the condition basic
block, the comparison and the swap() are in MFP path seg-
ments.

i=0;
i<14;
i++)

for(

for(j=i+1;
3<15;
4+)

Figure 5: Single Feasible Path property with isolated Multiple
Feasible Path among the distinct paths

3.5 Context Dependency and SPI

The path analysis approach presented above is based on the
identification of input data independent control flow defining
single feasible paths. This improves the accuracy compared to
the approach by Malik in [4]. On the other hand, it does not ex-
ploit context dependent execution patterns as they are utilized
in SPI for the concept of process modes [13]. Figure 6 gives an
example. System simulation of an ATM switch identifies some
of the cells in the data cell stream as so called operation and
maintenance cells OAM which control the ATM connection
[10]. They do not carry user data so they are irrelevant for data
transmission. Figure 6 shows a typical code segment to han-
dle the operation and maintenance component of the switch.
The control flow graph is shown in figure 7. When process-
ing OAM cells, the shaded else program segment in figure 6
cannot be reached. It should not be included in further anal-
ysis. The context "VCI = 3” selects a subset of all program
paths rather than a single path. It corresponds to a mode at the
level of a SPI process network. More precisely, every mode
can be annotated by a corresponding context. This is, then,
used for a context dependent analysis of the SPI process which
provides one cost interval per context. The cost interval can
be back annotated to the SPI process as behavioral interval of
the respective mode for a given target architecture. This way,
SPI process network analysis and individual process analysis
have been tightly integrated. The next sections shown how the
context dependent analysis is implemented.

crG | ver | ver [et [cre
4Bit | 8 it |16Bit| 431t | smie | 48 Byte Payload
e

USER: VCI=3 ‘

int mvector [18];

OAM Header

int VCI;
I widmaing SWitch Code
> if (VCI=3)
ATM Switch if (type = 1)
Simulation

i=VPltable [VPI;

}

else
TH_perf_monitoring ();

Figure 6: Path selecting property of the known VCI of a cell

3.6 Classification of Input Data

Process analysis needs to identify the context dependency in
the source code. It is given by input data for a mode or context
in the control structures. Therefore, all input data in control
structures leading to MFP segments in the previous approach
has to be classified. Constants in control structures leading to
SFP segments are not regarded to be input data. Input data is
given to the process at execution time and belongs to one of
the following categories.

Constant Data

for(i = 0;i < const_fourteen;i++)
for ...

Constant input data may have a predefined value that is
known by the user like the value of 14 for the loop bound.
This may be the case for unused header fields that are put to a
defined default value. This case is obvious and not expected to
have great impact because few control structures will depend
on constant data that are not found by SFP analysis. Control
flow gets predictable for this kind of control structures accord-
ing to the SFP definition like in figure 5.

Unknown Data

for(i = 0;i < const_fourteen;i++)
for(j = i;j < const_fifteen;j++)
if(ali]l < alj]) { ... } /* a is unknown */

While the loop bounds belong to the previous class of data,
the contents of the array a[] are not known. This class of input
data is variable, meaning that it is not known in any case. This
is the default case used in the state of the art [4] leading to MFP
that are isolated.

Context Dependent Input Data

if{VCI == 3} /* Designer: VCI = 3, known from context */
if{type == 1}

{oee o }
{...}

else

Process modes in SPI can give values for some input data
in the context. This is the value of the VCI in figure 6 for the
OAM execution mode. Control flow gets predictable at analy-
sis time leading to a single flow of execution in the hierarchical
nodes that depend on this data in the control flow graph. In fig-
ure 6, the known VClI selects the upper part of the if statement.
This is a Context Dependent Path. A PCS has the Context De-
pendent Path property CDP, if paths through the PCS only
depend on known input data. A PCS with the CDP property
is called a CDP—segment. The same discussion for the gain in
accuracy for CDP as in [11] applies because longer sequences
are achieved than with SFP identification alone.

3.7 Extended Clustering

CDP segments are only found within MFP segments. With-
out a modification to the clustering approach they stay isolated
improving only estimation accuracy of the MFP parts. At the
transitions between SFP and CDP segments, no cut points are
needed and the clusters can be extended. CDP segments and
SFP segments are merged for a given context by extending the
clustering algorithm. The longer clusters result in higher anal-
ysis precision.

di

BB8

Figure 7: SFP, CDP and BB collapse to program path segments

After clustering, the graph consists of SFP/CDP clusters
with a single flow of control and isolated MFP. The SFP/CDP
clusters can be treated like basic blocks in the following giving
the possibility to reduce the control flow graph to a graph of
program path segments PPS. This is shown in figure 7, where
the control flow graph for our example is collapsed. Program
path segments like PPS;3 from CDP segments and PPS3s
from SFP segments on lower levels as well as program path
segments PPSg from single basic blocks are reduced to sin-
gle nodes in the resulting control flow graph that needs to be
analyzed using the methodology in [4] for MFP segments.

Before we get to the analysis of MFP segments, the cost of
the program segments is needed. The path analysis approach
that has been described up to this point is shown in the upper
part of figure 8. Local analysis of the encapsulated program
segments is shown on the left side. These results are known
in the global path analysis on the right side of figure 8 that we
explain in the following. Their determination is described in
section 4.

Source Code
v . Path Analysis
- (Symbolic Execution)

Segment Code Execution Constraints
LocalAnalysis \ B
. Escopsulated M Global Analysis
Program Segments . &
. ¢gm . Segment ‘ Formal Path Analysis
o ; . Cost \._ with ILP solving

Interval

Figure 8: The toolflow with analysis steps and interfaces

3.8 Global Analysis

For the global analysis, the cost for the program path segments,
as e.g. in figure 7 is assumed to be known. For the MFP pro-
gram segments the methodology proposed in [4] and used by
the first clustering approach in [11] is adopted. The execution
cost C is assumed to be the sum of all basic block or program
path segment execution costs ¢; multiplied with their execution
counts x; when basic block and path cost is the same for every
execution.

N
Cc= 2(3,’ X X
i=0

In figure 7, this means that the overall execution time T as an
example for the behavioral interval of the MFP is

T=x13Xtj3+X46X1t46+X6X1l6+xX7X17

with ¢ being the execution times and x the execution counts of
the nodes. Intervals for the MFP cost I, are needed as the ex-
ecution count of the program path segments in an MFP can be
an interval with a minimum execution count x; i, and a max-
imum execution count X;mqe. For the program path segment
execution count interval [x; min,Ximax), the user provides an im-
plicit description of the path by means of linear equations for
execution counts. For example, this could be x4 5 > 2x¢ mean-
ing that i=VPItable [VPI],... is executed more than twice

76 —

as often as IH_perf_monitoring()in figure 7. Annota-
tions may be given for the MFP part. This kind of user anno-
tation requires a deeper understanding of the software under
investigation than the annotation of known input data avail-
able from process modes. It requires the execution constraints
shown in figure 8. The execution count inflow d of a program
path segment PPS in figure 7 equals its execution count x and
its execution count outflow d. It defines another set of equa-
tions [4].
Z dinflow = Xj,pps = Z doulflow
PPS PPS

In figure 7 the equations are d; = X1,3; X1,3 = dy +dy.. These
equations and inequations for the upper and the lower exe-
cution count bound are mapped to two ILP problems which
can be solved to derive the widest execution count interval
[x,-,m,-,,,x,-,,,,ax] for each MFP. The execution cost ¢; of the ba-
sic block is determined by architecture modeling assuming a
constant execution cost c; in the first approach. So the cost
interval I, for an MFP segment can be calculated. When G
is not constant for every execution because of data dependent
instruction execution or pipeline hazards and register alloca-
tion due to unpredictable execution sequences in MFP parts,
an interval [ci,mi,,,ci,,,,ax] for the cost is needed, redefining the
interval to

N
I = Z[Ci,mim Ci,max][xi,mimxi,max]
i
Just assuming the worst case for ¢; which is common practice
invalidates the best case for the complete interval delivered by
the ILP solver because of the overhead that is always added.

4 Architecture Modeling

Now, the local analysis from figure 8 for the program path seg-
ments is explained. The cost is determined by simulation using
one of the following two techniques when appropriate.

Instruction Cost Addition ICA The instruction or state-
ment execution costs in a basic block or along a path segment
are added. These execution costs are taken from a table. This
is a very computation time efficient approach. Minimum and
maximum instruction execution cost can be considered.

Program Segment Simulation PSS The basic block or pro-
gram segment is simulated using a cycle true processor model
which can exactly model hardware cost.

4.1 Instruction Execution Interval

Instruction execution cost can be dependent on input data. A
popular example is a shift-and-add implementation of a mul-
tiplication in a processor delivering an interval for ¢i. Before
the program path segment functions can be executed, the used
variables must be initialized to legal values to avoid for exam-
ple divide-by-zero effects. A standard data flow analysis [1]
provides the variables to be declared and initialized including
the user annotations for CDP parts. Where values at PPS starts

are not available, because the segment is not reached in sim-
ulation or delivered by data flow analysis, ICA must be used.
The worst case cost from the table is needed in this case. As an
alternative, a set of data for the paths and basic blocks can be
assumed where not available and PSS is used. After that, the
cost for the data dependent instructions are compared with the
worst cases in the instruction tables. The difference between
the values for the assumed data and the worst case is added
afterwards.

4.2 Simulation for Timing and Power

As an example for PSS that delivers timing and power con-
sumption of the program path segments, a StrongARM sim- -
ulator core is combined with the DINERO III cache simula-
tor delivering both instruction and data cache behavior, Both
source codes have been recompiled to one simulator to achieve
better performance. Architecture modelin g regarding timing is
derived from [2] while the energy dissipation model is taken
from [7]. Data rates are directly derived from the amount of
data produced or consumed on a path and its execution count
interval. Simulation results for timing and power consumption
of program path segments are used in the global analysis to
calculate the global interval, The results for a PPS regarding
timing and power are already intervals because data dependent
instruction execution for divisions can be present and cache
simulation can start from both first hit as the best case and first
miss as the worst case if applied.

For data rates, the communicated amount of data js directly
given by the number of executions of a send or receive state.-
ment and the size of the data block it is communicating.

5 Experiment

The behavioral interval determination has been applied to a
single process that reads a packet and loads a picture. If the
picture is addressed to the System component, it performs an
“unlikely dot” filter on the picture data and sends it to another
buffer. Loop bounds for the case that no mode is selected have
been annotated. The StrongARM frequency is set to 80 MHz,
the bus frequency to 40 MHz and the memory access time to 25
ns in the PSS. A pseudo code description is given as follows,

Experiment :
header = receive (INPUT, HEADER_SIZE) ;

for all pixels
picture(y] [x] = receive (INPUT, 1);

/* line 89 */

if (address == MY_ADDRESS) { /* Ann. address, line 122 */
for all pixels { /* line 124 */
for a 3*3 pixel window {
if (without_center)/* ann. center, line 143 */
average sum/8§;
else average sum/9;

nwon

/* line 151 */
if(abs(picture[y][x]~average)>threshold)
send (OUTPUT, average, 1);
else send(oUTPUT, picturely] (x], 1);

77 SN

Table 1: Behavioral Intervals without mode or annotation

[TCine+ [Type | Latencyms | Power mWs | Sentbytes [Received]
89 SFP [4.92,38.0] [2.0,8.5] [0,0 [6197,25045]
122 MFP | [413ns,2475ns] | [50nWs,178nWs] 0,0 [0,0
124 CDP 39.5,329 17.5,72.6 0,0 0,0
143 MFP 1.54,131 0.65,14.7 0,0 0,0
151 MFP 16.7,182 2.85,20.4 [0,24393] 0,0
Best | - [4955 | 209 [© 6197 |
[Worst| = | 680847 | 16211 | 24393 | 25085 |

In table 1, behavioral intervals without mode or address an-
notation are given. Due to the loop bounds given above, we
know the minimum and maximum number of pixels leading
to a CDP in line 124. The intervals for latency time, power
consumption and data rates as well as the path classification
are given for every program segment that is referenced by the
line number it is starting with. They can be very wide because
worst cases assume a cache flush for the beginning of the seg-
ment while best cases assume hits. SFP segments may be parts
of CDP segments, so they may not be visible in the results.
Sent numbers of data bytes do not equal the received numbers
of data bytes because headers have to be received and the outer
pixels are not sent to the output buffer.

Table 2: Behavioral Intervals: Large mode, MY_ADDRESS

[Cine+ | Type | Latency ms [Power mWs [Sent bytes [Received |
89 SFP | [19.2,38.0] [8.4,8.5] 0,0 [25045,25045]
122 CDP | [164,329] | [72.6,72.6] 0,0 0,0
143 CDP | [15.7,22.6] | [4.4,5.00] 0,0 0,0
151 MFP | [64.9,182] | [11.8,20.3] | [24393,24393] 0,0

[Best | - [264604 | 07308 | 24393 | 25045 |

[Worst | = | 572012 | 106514 | 24393 | 25045 |

In table 2, the address has been annotated to a match which
leads to a CDP instead of an MFP in line 122 which is clustered
with the CDP in line 124. The calculation of the luminance in-
cluding the center pixel has been annotated as well affecting
line 143 which is not clustered with other segments. The pro-
cess mode has been annotated as LARGE, meaning that the
big version of the picture is computed. This leads to tighter in-
tervals because the execution path through the filter is known
as well as the loop bounds for the picture. The only MFP is
caused by the control structure depending on picture data. The
communicated data rate is exactly known due to the known
picture size for the mode.

Worst cases for timing and power consumption get tighter
for a worst case annotation because the known sequences for
the context lead to higher analysis precision.

Table 3: Behavioral Intervals for different annotation scenarios

[Annotation [Latency ms | PowermWs | Sentbytes | Received |
Mode Small 4.955,66.71] | [2.099,24.61 [0,5865] [6197,6197]
Mode Large 19.24,680.8] | [8.474,116.2 [0,24393] [25045,25045]
No Mode 4.771,680.8] | [2.099,116.2 [0,24393] [6197,25045]
Small+Address 38.49,63.62] [[21.03,23.61] | [5865,5865] [6197,6197]
Large+Address 264.6,572.0] | [97.3,106.5] |[24393,24393] | [25045,25045]
No Mode+Address | [38.49,572.0] | [21.03,106.5] | [5865,24393] | [6197,25045]

In table 3, different scenarios for process modes and data an-
notation have been explored. In the first three lines, just modes

or no modes have been annotated, while the address and the lu-

minance calculation have been annotated in the last three lines.
Using the results from the annotations of picture size and

address, the mode set of the process in SPI is as follows:

M= {mSmallrmLarge}
msman =< [38.49,63.62]’11.5‘,6197,5865 >
Marge =< [264.6,572.0]ms,25045,24393 >

Each mode is a tuple of latency, input data rate and output data
rate. In comparison with the description with a single behavior
(last line in table 3), the behavioral intervals have been sub-
stantially narrowed.

6 Conclusion

Process timing and power consumption can be highly context
dependent. Process modes are introduced to distinguish con-
texts with significantly different timing and power consump-
tion. An existing symbolic analysis approach is extended to
capture context dependent behavioral intervals of single pro-
cesses which are then used to model concurrent process net-
works in the SPI representation. A wireless IP base station is
given as a motivational example. The results demonstrate a
significant improvement in process modeling accuracy.

References

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compiler Principles, Techniques
and Tools. Bell Labs, 1987.

[2] S. Furber. ARM System Architecture. Addison Wesley, 1996.

[3]1 J. Gong, D. Gajski, and S. Narayan. Software execution from executable
specification. The Journal of Computer and Software Engineering, 1994.

[4] Y. LiandS. Malik. Performance Analysis of Real-Time Embedded Soft-
ware. Kluwer, 1999.

[5] J.Liu, G.Maguire, M. Mateescu, A. Schmidt, and R. Ruppelt. Document
of network architecture strategies and tradeoffs. ESPRIT MEDIA report,
KTH Stockholm, 1999.

[6] A.Mok. Evaluating tight execution time bounds of programs by annota-

tions. In Proceedings of the Workshop on Real Time Operating Systems

and Software, 1989.

J. Montanaro. A 160-MHz,32-b,0.5W CMOS RISC microprocessor.

IEEE Journal of Solid State Circuits, 1996.

[8] C.Y.Parkand A.C. Shaw. Experiments with a program timing tool based
on source level timing shema. In Proceedings of the Real-Time Systems
Symposium (RTSS ’90), 1990.

[9] P. Puschner and C. Koza. Calculating the maximum execution time of

real time programs. The Journal of Real Time Systems, 1989.

F. Wolf and R. Ernst. Software timing and power estimation of tele-

com systems. ESPRIT MEDIA report, Technical University of Braun-

schweig, 1999.

W. Ye and R. Ernst. Embedded program timing analysis based on clus-

tering and architecture classification. In International Conference on

Computer-Aided Design (ICCAD ’97), 1997.

D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and L. Thiele. Combin-

ing multiple models of computation for scheduling and allocation. In

Proceedings of Codes/CASHE, 1998.

D. Ziegenbein, K. Richter, R. Emst, J. Teich, and L. Thiele. Repre-

sentation of process mode correlation for scheduling. In International

Conference on Computer-Aided Design (ICCAD ’98), 1998.

[7

—

[10]

[11]

[12]

[13]

78

