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Abstract- Embedded system timing and power consumption
are state and input data dependent. Therefore, formar anarvsis
of such data leads to behaviorar intervars rather than singre var-
ues' These intervars depend on system concurrency, execution
paths and states ofprocesses, as weil as target architecture prop-
erties' The paper presents an approach to modering and anarysis
of process behavior using behavioral intervals. rt considers the
execution context, i.e. the current state and input of a process.
we show how the resurts can be used to model comprex process
networks with system modes. The exampre of an ATM packet
handler demonstrates significant improvements in modering pre-
cision.

Introduction

Embedded systems typicaily incrude reactive and transfor-
mative functions, often described in different languages and
semantics. A common representation caued sFI lsystem
Property Intervals) [rz, 13] has been developed which permits
the safe integration of different system parts and enables sys-
tem optimization across language boundaries. SpI is based on
the model of communicating processes, whose behaviors are
described on a very high lever by a set of parameters. The
use of parameters like data rates, latency times, or an activa-
tion function enables the adaptation to different input models
of computation.

The key point for the semantic flexibility of the model is the
ability to specify the parameters not only in terms of an exacr
value but also as ranges of possibre values, so called behavioral
intervals. while the necessity for these intervars is straight-
forward for parameters like ratency time, the extension of the
behavioral interval concept to include also parameters like data
rates, i. e. the amount of data consumed and produced at each
process execution, enables a variety of different applications
for the model. These include e. g. the representation of data-
dependent communication or the integration of system pans
in different design stages, ranging from possibry incomprete
specification to legacy code.

The necessity to consider behavioral intervals for the design
and verification of embedded systems becomes evident when
looking at the Iimits of simulation. profiling and simulation are
the current practice in industry, but since exhaustive simulation
is impractical, simulation results can only cover part of the sys-
tem behavior, often with unknown coverage of worst and best
cases due to partly unknown input data. verification is a more
complicated but attractive altemative. It provides lower and

Figure l: Packet dependent flow of execution in a base station

upper bounds reflecting data dependent control flow as well as
data dependent statement execution. In the past, these bounds
were very wide due to a lack of efficient control flow analysis
and architecture modeling techniques. In the rast few years,
there has been significant progress in both areas such that for-
mal behavioral interval analysis becomes practical.

Behavioral intervals depend to a certain extend on the pro-
cess control flow which depends on the process input data. In
other words, behaviorar intervars of the pro..rr", and, hence,
of the overall system are context dependent. Figure 1 gives
an example. It shows a simplified set of processes of a pico
cellular base station [5]. The solid lines represent the paths
on which different data packets are routed through the process
network. Important questions of the system architect can be
the power consumption for sending a data package or the time
to set up a connection in the base station. This should take the
context into account, since for each packet type the processes
react with a different control flow. of course, simulation is
always possible and statistical power and timing analysis are
feasible, but the first approach is not reliable andthe second is
just an approximation of the complex hardware activities when
executing the software of a base station. The analysis approach
on source code level provides reliable and narrow behavioral
intervals for context dependent process execution that is auto-
matically evaluated by the analysis tool.

This paper is organized as follows: In section 2, the spl
representation model is introducecl before we explain our path
analysis approach for the determination of behavioral intervals
in section 3. In section 4, intervals from data dependent in-
struction execution are explained. An example is presented in
section 5 before we conclude in section 6.
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2 The SPI Model

In this section, the basic concepts of the SPI (System Property

Intervals) model are introduced, but the main goal of this sec-

tion is to motivate the use of behavioral intervals. A more for-

mal definition of SPI can be found in [12, l3].
In the SPI model, the system is represented as a set of con-

current processes which communicate via unidirectional chan-

nels that are either FlFO-ordered queues (destructive read) or

registers (destructive write). Such models are usually repre-

sented as directed, bipartite graphs. A SPI graph consists of
process nodes (P), channel nodes (C) and directed communi-

cation edges (E).

While each channel node simply transfers data from the

sender to the receiver without any transformation, the func-

tionality of process nodes can be of arbitrary complexity. But,

the detailed internal process functionality does not have to be

known for the purpose of optimization at the process level.

Thus, processes and channels are modeled only by their ab-

stract external behavior. This behavior is captured by a small

set of parameters which are extracted from the original speci-

fication and associated with the graph nodes.

A parameter does not have to be specified as a single value

but may be formulated as a behavioral interval that constrains

the possible values for the parameter by a lower and upper

bound. A main reason for the necessity of behavioral inter-

vals for the purpose of correct modeling is the possible uncer-

tainty about input data in combination with input data depen-

dent control flow inside a process that make it impossible to

find exact values for the parameters. Another advantage of be-

havioral intervals is the possibility to integrate system parts in

different design stages in a single coherent representation. The

system parts may range from possibly incomplete specification

to legacy code.

the executed program path inside the process. As we have

discussed in the introduction, program paths are context de-

pendent. To exploit context dependent behavior, we introduce

process modes. Each mode thereby represents a subset of all
possible program paths or external process behaviors. For ex-

ample, process pz can be represented as having two alternative

modes:

mr: ([3,3.8]ms,l,2)
rnz -- ([4.5,5]ms,3,5)

Then e. g. in mode ln1 process p2's latency is between 3ms

and 3.8ms, it consumes I token and produces 2 tokens, etc.

Nevertheless, without specifying rules for the selection of a
mode, the behavior of process Pz is still uncertain since p2

may execute in m1 or in m2.

Since the selected program path only depends on the proces!

input data (and its state), a process can change its mode with
every execution. Modes are local to a process and change as a

result of process communication. While otherwise all data are

abstracted to tokens with unknown values, the values of data

which may change a process mode must be visible in SPI to

be exploited. For this purpose, virtual mode tags may be asso-

ciated to data tokens to represent data values. Thus, a process

can select its mode depending on the presence of certain virtual

mode tags. Therefore, an activationfunction is associated with
each process that may be formulated as a set of rules. These

rules map input token predicates to modes. A predicate in this

case is either 'true' or 'false' depending on the number of to-

kens and the tag set of the first tokens on the input channels

of the process. For process p2 from the above example, these

rules could be:

a1: (c1.num) 1)A ('a' e c1.tag) v-l mt

a2: (c1.num) 3) A ('b' e. cr.tag) -r mz

Assuming that process p1 adds one of the tags 'a' or 'b' to the

tag set of all produced tokens, the behavior of p2 is completely

determinate. If there is at least I available token on channel

c1 and if the tag'a' is included in the tag set of this token,

process p2 is activated in mode m1. Analogously, if there are

at least 3 tokens available or c1 and the first one has 'b' in its

tag set, p2 is activated in mode rn2. Thus, by adding knowledge

about the input data, the behavioral intervals were substantially

narrowed. This technique will be explained in more detail in

the following section.

3 BehaviorallntervalDetermination

In this section, the determination of behavioral intervals of a

process is described. A process implemented in software has a

source code that can be analyzed. Input data can influence the

control flow as well as the instruction execution on hardware

level. When we investigate the control flow on the architecture

independent source code level, analysis can be divided to path

analysis and architecture modeling.

lms
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Figure 2: SPI Example

An example of a SPI model is depicted in Figure 2. At each

execution, processes map input data to output data. However,

since we are not interested in the function performed by a pro-

cess, the communicated data is only represented by the amount

of data which is important for communication scheduling or

memory allocation. For example, process Pl consumes I data

token and produces 2 data tokens at each execution. The la-

tency of pr (i. e. the difference between starting and comple-

tion time of pr) is lms. Process p2 is an example for a process

that is specified using behavioral intervals, as it consumes at

least 1 and at most 3 tokens from channel ct and produces at

least 2 and at most 5 tokens on channel c2, respectively. The

execution latency is between 3ms and 5ms.

Mostly, the parameters of a process are not independent of
each other but strongly correlated since they all depend on

[3ms.5ms]
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3.1 Path Analysis

For path analysis techniques [4] on source code level, a pro-
gram is divided into basic blocks, where a basic block is a pro-
gram segment which is only entered at the first statement and
only left at the last statement [1].

Any program can be partitioned into disjoint basic blocks.
Then, the program structure is represented on a directed pro-
gram flow graph with basic blocks as nodes. Figure 3 shows
an example. For each basic block a cost with respect to each
behavioral interval is determined. Then, a longest or shortest
path analysis on the program flow graph is used to identify a
global behavioral interval. This procedure does not yet provide
sufficient accuracy. For acceptable analysis accuracy one must
identify feasible paths through a program. A feasible program
path or trace is a path in this flow graph corresponding to a pos-
sible sequence of basic blocks when the program is executed,
that means leading from the first to the last basic block of a

program. A program segment PS is a segment of a program
flow graph. This definition implies a hierarchy of program
segments. A program path segment PPS is a path through a
program segment. Not all paths in the program flow graph rep- It is possible to exploit progam properries to simplify path
resent feasible program paths. A false Fogram path is a path analysis for the determination of the sequence-of-basic-blocks.
in the program flow graph which cannot be executed under any Large parts oftypical embedded syst€m programs have a single
input condition. program path only. An FIR filter is a simple example and a fast

False path identification is mandatory for progams with fourier hansform is a more complex one. In other words, there
loops since loops correspond to cycles in the flow graph which is only one path execuied for any input pattem, even though
lead to an infinite number of potential paths. The approaches this path may wrap around many loops, conditional statements
by Mok [6], Puschner and Koza [9], Park and Shaw [8] require and even function calls which are used for program structuring
iteration bounds for all loops in the program which the user and compacting. A programias a Single Feasible Path SF?,
must Fovide by loop annotation. The approach by Gong and when paths thrcugh the program are not depending on input
Gajski [3] can partially consider false paths because the user data. A program segment with the SFP property is called an
can sp€cify the branching probabilities. While making formal SFP-segment. Previous analysis approaches give more than
analysis feasible, loop bounding alone is not sufncient for ac- one execution path for SFP programs because they do not dis-
curate path analysis, Nested loops are often i erdependent and tinguish between input data dependent control flon, and pro-
conditions depend on each other. These dependencies can be gram structuring aids, In the best case, they may be accurale
rather complex. Therefore, as a second step in [4] and in [8], but require much user interaction for SFP programs such as [4]
the user is asked to annotate false paths. The nurnber of false and still do not deliver the sequence-{f-basic-blocks, In case
paths can be very large, Instead of enumerating false paths or, of SFP, simulation would choose the one correct path for aay
conversely, feasible paths, a language for user annotation with input pattern without llnher user interaction, but most practi-
regular expressions is introduced in [8]. Still, the number of cal systems also contain non-SFP parts. These have the multi-
required path annotations can be extremely large in practice, ple feasible path property MFP. A prcgram segment has Multi-
as demonstrated with even small examples in [41. A rnajor ple Feasible Paths MF?, yhen paüs th.rough the progam are
slep forward was the introduction of impiicit path enumeration --t-äffig.on-inpmfüi'A program segm--ent wirh rhe MFP
[4] . Here, the user provides linear (in)equations to define false Foperty is called an MFP-segment. Isolation of SFP and MFP
paths. To evaluate these (in)equations, Li and Malik map the parts can help to exploit the SFP prop€rty and the resulting se-
upper and lower bound identification to two ILP optimization quence in all programs. To apply different techniqu€s to MFP
problems, the one optimizing for the lower, the other one for and SFP parts, disjoint prograrn partitioning is needed.
the upper inlerval bound.

3.4 SFP Identification and Clustering
3'2 Local Path Cost 

Hierarchical Flow craph rhe input program is mapped to
The execution time model in [4] is established as a standard a hierarchical conhol flow graph like the bubble son example
model for static approaches. Here, the general term cort c is in frgure 3. In this figure, ev€ry conhol construct, such as if,
used since this analysis holds for many cost measures, such as case, loop, is represented by a shaded area. The nodes in these

timing, power consumption or data rates. The execution cost areas are the basic blocks ofthe program, Each of the control
model is the sum-of-basic-blocks model. Let a prognm con- constructs has an associated condition that decides which of

sist of N basic blocks with x; execution count of basic block
BB; and ci execution cost. Then, the sum-of-basic-blocks
model defines for the total program execution cost C:

This model assumes that all executions of a basic block cost
lhe same, which is true for data rates. However, data depen-
dent instruction execution and superscalar or superpipelined
architectures with overlapped basic block execution lead to
widely varying local path cost with respect to latency time and
power consumption. They have a substantial effect on the over-
all behavioral interval. For these common architectures, the
sum-{f-basic-blocks model cannot provide close bounds, but
must be pessimistic to be correct. For higher accuracy, basic
block sequences must be considered. This shall be called the
sequence-of-basic-blocks model.

3.3 Path Classification

N
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thepathsoftheconstructisexecuted.Conditionsofthecontrol
Structurescanbenodesaswellbecauseanexecutionleading
to a basic block and therefore a node may be necessary,for the

evaluation of the condition' In this graph' a Program.Control

i.g*.n, pcs is aprogram Segment with an associated control

stÄcture in the control flow graph. Each control structure as

well as the nodes are classifi.ä ut being either SFP or MFP'

for ( i=o;
1<14,
i++ )

{

for ( j=i+1,
j <15;
j++ )

{

if(atil<alJl)
swaP(atil,aljl);

)

)

Figure3:Flowgraphwithacontrolstructurehierarchy

Feasible Paths in the Control Flow Graph Figure 3 shows

abubble sort algorithm and its control flow graph' A conserva-

tive analysis assumes that the program paths branch at.the f or

and the i/ statements [4] such that all the coffesponding pro-

fu sejments have the MFP property' In figure 4a two pos-

sible paths tor "u.f 
iteration of tttl loop can be seen' one of

whichisbeing.ut..nforeveryiteration.Iftheconditioninthe
i/ statement is evaiuated, it can be recognized^that values in a[

are not known, meaning two potentral paths for every loop it-

eration leading 1o y'oop"iteraiois potential paths. The first major

step is to splii the program in two segments' the i/ construct

and the rest. The two"putttt through PS2 are now considered

to be merged into a single MFP segment' As a consequence'

the paths of figure +aatJ'merged into a single path through the

segments PS1 and PS3 in figuie 4b which winds around the two

n^iO, and hence input data independent loops' In other terms'

PSrandP,s3becomeanSFPsegmentwhichincludesthepro-
;;; segmJnt PS2 with separately analyzed cost bounds'

SFPldentificationAsweseeintheexample,theflowgraph
nodes need to be partitioned into SFP and MFI nodes' Every

frogru* control ,igttn'which does not contain an input data

dependent .ontrollonstruct must be SFP' Nodes of the CFG'

i.e. basic blocks, are SFP by definition' A control structure

isSFP,ifitonlycontainsSFPnodesanditsassociatedcondi-
tion is independent of input data' The input data dependency

of conditions can be deteimined by an algorithm. It requires a

global data flow analysis [1] which forms a transitive closure

overalldatadependenciesofvariablesincontrolstatements.
A global data no* analysis does typically not cover dependen-

Figure 4: a: Program paths of bubble sort code shown above'

b: Separation of the if construct

ciesacrossiuTayelementsandpointeroperations.Therefore,
ihe gloUal data flow analysis is complemented with symbolic

simulation of basic blocks [11]. There is a simple recursive

clustering approach to flow graph partitioning' It automati-

cally cuts the program into Spp anO MFP segments' This is

shown in the following:

SFP Clustering Algorithn:

t" 
iltnä3t.:1.:?3"tlliä"'"' with svmbolic expressions

if condition is independent itorn data: PCS is SFP

else: PCS is MFP' cut out Pcs

tor aff basic blocks nodes of the PCS

basic Ufo":t node follows PCS classification
t""nt"il'uiy tittx all sub PCS and sub BB nodes

SFP clustering is not sufficient when MFP path segments

are embedOed. ftre bubble sort in figure 3 is an example' The

clustering algorithm is extended to merge adjacent SFP blocks:

Iftheassociatedconditionofahierarchicalnodedependson
itp", data, this PCS has the MFP property' Cut points are set at

the beginning und the end of the MFP nodes and clustering is

repeated ignorinf Äe MFP n:{abu'regarding the cut points'

In this case we ?.,nout the MFP from the graph' analyze it

separately regarding SFP segments on lower levels and MFP

cost, and add its .oJt to the sFp assuming worst case intervals

atthecutpoints.FortheSFP'MFPcostcissetto0'Thetotal
cost C i, compor.d by the cost for the SFP c5pp' the cost for

the transition'ut the beginning and the er,d c1'46;sion'wc illd the

cost for the MFP :MFP'

c : csFP *2ctransition,*c* cMrP

ThenewclustersfoundshallalsobedefinedasSFP'sincethere
is only on. puiltäer separation of the embedded MFP blocks'

To be conservative for correct analysis' it is sufficient to an-

alyzethe MFP node separately and assume worst case anal-

ysis behavior at the remaining cut points' This is guaranteed

by leaving the cut points inside the SFP clusters' Then' no
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false sFP paths leading to incorrect bounds can be introduced
in the next steps. The result is still correct, but SFp segmenr
lengths are maximized. For most higher performance architec-
tures with pipelines as well as for architectures with caches,
analysis precision increases with path length. Figure 5 shows
the result for the example in figure 3. only the condition basic
block, the comparison and the swapQ are in MFp path seg-
ments.

USER:VCI=3 
i. -_-.1

int mvector [8];
intVCI:

.,noia-"io6 switch code

if (VcI:3)
T

if (type: 1)

t
MpI];

)
else

IHje{monitoring Q;

l i r...(l?,rrjL:.:r 
...

Figure 6: Path selecting property of the known VCI of a cell

3.6 Classification of Input Data

Process analysis needs to identify the context dependency in
the source code. It is given by input data for a mode or context
in the control structures. Therefore, all input data in control
structures leading to MFP segments in the previous approach
has to be classified. constants in control structures leading to
SFP segments are not regarded to be input data. Input data is
given to the process at execution time and belongs to one of
the following categories.

Constant Data

for(i = 0;i < const_fourteen;i++)
for ...

Constant input data may have a predefined value that is
known by the user like the value of 14 for the loop bound.
This may be the case for unused header fields that are put to a
defined default value. This case is obvious and not expected to
have great impact because few control structures will depend
on constant data that are not found by SFP analysis. Control
flow gets predictable for this kind of control structures accord-
ing to the SFP definition like in figure 5.

Unknown Data

for(i = 0;i < const_fourteen;i++)
for(j = i;j < const_fifteen;j++)

if (atil . atjl ) { | /* ^ is unknown */

While the loop bounds belong to the previous class of data,
the contents of the array al are not known. This class of input
data is variable, meaning that it is not known in any case. This
is the default case used in the state of rhe art [4] leading to MFp
that are isolated.

OAM Header

t
I

f ArM s-rdl
I Simulation 

I

Figure 5: Single Feasible Path property wirh isolated Multiple
Feasible Path among the distinct paths

3.5 Context Dependency and SPI

The path analysis approach presented above is based on the
identification of input data independent control flow defining
single feasible paths. This improves the accuracy compared to
the approach by Malik in [4]. On the other hand, it does not ex-
ploit context dependent execution patterns as they are utilized
in SPI for the concept of process modes [13]. Figure 6 gives an
example. System simulation of an ATM switch identifies some
of the cells in the data cell stream as so called operation and
maintenance cells oAM which control the ATM connection
[10]. They do not cary user data so they are irrelevant for data
transmission. Figure 6 shows a typical code segment to han-
dle the operation and maintenance component of the switch.
The control flow graph is shown in figure 7. When process-
ing OAM cells, the shaded else program segment in figure 6
cannot be reached. It should not be included in further anal-
ysis. The context "VCI = 3" selects a subset of all program
paths rather than a single path. It corresponds to a mode at the
level of a SPI process network. More precisely, every mode
can be annotated by a corresponding context. This is, then,
used for a context dependent analysis of the spl process which
provides one cost interval per context. The cost interval can
be back annotated to the sPI process as behavioral interval of
the respective mode for a given target architecture. This way,
sPI process network analysis and individual process analysis
have been tightly integrated. The next sections shown how the
context dependent analysis is implemented.

CFG
4 Bit

VPI
E Bit

VCI
l6 Bit

PT
4Bil

CRC
8 Bit 48 Byte Payload

aIi]<aIj]

swap(atil,aljl)
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Context Dependent Input Data

if{VCI == ll /* Designer: VCI = 3, known from contexL */
if{type == 1}

ur""{' 
' '}

I}

Process modes in SPI can give values for some input data

in the context. This is the value of the VCI in figure 6 for the

OAM execution mode. Control flow gets predictable at analy-

sis time leading to a single flow of execution in the hierarchical

nodes that depend on this data in the control flow graph' In fig-

ure 6, the known VCI selects the upper part of the if statement.

This is a Context Dependent Path. A PCS has the Context De-

pendent Path property CDP, if paths through the PCS only

depend on known input data. A PCS with the CDP property

is called a CDP-segment. The same discussion for the gain in

accuracy for CDP as in [11] applies because longer sequences

are achieved than with SFP identification alone.

3.7 ExtendedClustering

CDP segments are only found within MFP segments. With-

out a modification to the clustering approach they stay isolated

improving only estimation accuracy of the MFP parts. At the

transitions between SFP and CDP segments, no cut points are

needed and the clusters can be extended. CDP segments and

SFP segments are merged for a given context by extending the

clustering algorithm. The longer clusters result in higher anal-

ysis precision.

Figure 7: SFP, CDP and BB collapse to program path segments

After clustering, the graph consists of SFP/CDP clusters

with a single flow of control and isolated MFP. The SFP/CDP

clusters can be treated like basic blocks in the following giving

the possibility to reduce the control flow graph to a graph of
program path segments PPS. This is shown in figure 7, where

the control flow graph for our example is collapsed. Program

path segments like PP.l1p from CDP segments and PPS3,5

from SFP segments on lower levels as well as program path

segments PPS; from single basic blocks are reduced to sin-

gle nodes in the resulting control flow graph that needs to be

analyzed using the methodology in [4] for MFP segments.

Before we get to the analysis of MFP segments, the cost of
the program segments is needed. The path analysis approach

that has been described up to this point is shown in the upper

part of figure 8. Local analysis of the encapsulated program

segments is shown on the left side. These results are known
in the global path analysis on the right side of figure 8 that we

explain in the following. Their determination is described in
section 4.

PathAndydl

Figure 8: The toolflow with analysis steps and interfaces

3.8 Global Analysis

For the global analysis, the cost for the program path segments,

as e.g. in figure 7 is assumed to be known. For the MFP pro-

gram segments the methodology proposed in [4] and used by

the first clustering approach in [11] is adopted. The execution

cost C is assumed to be the sum of all basic block or program

path segment execution costs cr multiplied with their execution

counts x1 when basic block and path cost is the same for every

execution.
N

C:Lcixxi
i:0

In figure 7, this means that the overall execution time ? as an

example for the behavioral interval of the MFP is

T: xr,3 X /1; * x4,6xt4,6*x6xt6*x7 xt1

with t being the execution times and x the execution counts of
the nodes. Intervals for the MFP cost /" are needed as the ex-

ecution count of the program path segments in an MFP can be

an interval with a minimum execution count x;p;4 lrrd a max-

imum execution count xi,max. For the program path segment

execution count interval fui,^inrri,^*1, the user provides an im-

plicit description of the path by means of linear equations for

execution counts. For example, this could be x4,5 ) 2x6 mean-

ing that i=VPItable IVPI] ,... is executed more than twice

::.::-\::.,::'*,::ti,t,

Execution

I'il- Context
i,. , ,/_/

t/
Constraints

l..,ll.\,:,':,;,,,C nn"fisis

l :i:,: ::'l : i::: r . l

Y

Interval
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as often as f H_perf _monitoring ( ) in figure 7. Annota_tions may be given for the MFp part. This kind of user anno-tation requires a deeper understanding of the software underinvestigation than the annotation oi known input data ava'_able from process modes. It requires the execution constraintsshown in figure g. The execution count inflow d of aprogrampath segment PPS in fig_ure 7 equals its execution count x andits execution count ourflow d. it defines anorher ;;i equa-tions [4].

are not avairabre, b.ecause the segment is not reached in sim_ulation or derivered by data flow anarysis, ICA must be used.The worst case cost from the table is needed in this case. As anarternative, a set of data for the paths and basic blocks can beassumed where not ava'able anä pSS is used. Ail; rhat, thecost for the data dependent instruction, *. .o,nparJi wittr theworst cases in the instruction tabres. The differen.. b.r*..nthe varues for the assumed data and the worst case is addedafterwards.

4.2 Simulation for Timing and power
As an exampre for pss that derivers timing and power con-sumption of the program path segments, a StrongARM sim_urator core is combined *ittt ttr."oINERo III cache simura-tor derivering both instruction and data cache behavior. Bothsource codes have been recompired to one simulator to achievebetter performance. Architecture modering regarding timing isderived from [2] wh'e the energy dissipation moder is rakenfrom [7J. Data rates are directrf oerivea from the amount ofdata produced or consumed on a path and its execution countinterval' simuration results for timing and power consumptionof program path segments are used in the grobal analysis tocalcurate the grobar intervar. The resurts for a pps regardingtiming and power are arready intervars because data de-ienoentinstruction execution for division, ,un be present and cachesimulation can start from both nrst hit as the best case and firstmiss as the worst case if applied.
For data rates, the communicated amount of data is directrygiven by the number of executions of a send or receive state_ment and the size of rhe data block it is comm"ri.;;i;g:

5 Experiment

The behavioral intervar determination has been appried to asingle process that reads a packet and loads a picture. If thepicture is addressed to the system component, it performs an"unlikely dot" filter on the picture data and sends it to anotherbuffer. Loop bounds for the case that no mode is serected havebeen annotated. The StrongARM frequency is set to g0 MHz,the.bus frequency to 40 MHz and the memory access time to 25ns in the pSS. A pseudo code descriprion is liven u, ioflo*r.

fir4tor,.*: 
ri,pps = Z dnu, r,o,

In figure 7 the equations are dt = xt,slrl,3 = dz*dc.. Theseequations and inequations for the upper and the rower exe_cution count bound are mapped to two ILp problems whichcan be solved to derive the widest execution count intervar
\i,1i2,xin*] for each MFp. The execution cost c; of the ba_sic brock is determined by architecture modering assuming aconstant execution cost c; in the first approach. so the costintervar I, for an MFp segment can be carcurated. when c;is not constant for every execution because ofdata dependentinstruction execution oi pipeline hazards and register alroca_tion due to unpredictable e*".ution sequences in MFp parts,

,TffffiLft,,^,n,ci,^*f 
for the cosr is needed, ,.O"nni'g *,.

," : ik, ^in,ci,^*ffxi,^io,xi,^*f

Just assuming the *orr, case- for c; which is common practiceinvalidares the best case for ttre comftete inrerval oeriäo bythe ILP solver because of the overhäd that is arways added.

4 Architecture Modeling
Now' the locar analysis from figure g for the program path seg-ments is exprained. The cost is determined by siÄutattn uringone of the followinS tyg techniques when upp.op.i*.

rnstruction cost Addition ice rn" instruction or state_ment execution costs in a basic brock or along rpurt, ,.g,n"n,are added. These execution costs are hken from a tabre. Thisis a very computation time efficient approach. Minimum andmaximum instruction execution cost can be considered.
Program segment simuration pss The basic ;ü or pro_gram segment is simurated using a cycre true procerror,nooet

which can exactly model hardwle cosr.

4.1 Instruction Execution Interval
Instruction execution cost can be dependent on input data. Apopular exampre is a shift-and-add implementation of a mur_tiplication in a processor d_elivering an interval for c;. Beforethe.program path segment functioni .un be executed, the usedvariables must be initiarized to legal varues to avoid for exam_ple divide-by-zero effects. A sta-ndard data flow anarysis [l]provides the variabres to be decrared and initiarized inciuoingthe user annotations for cDp parts. where varues at pps starts

if(address == My ADDRESS) { /* Ar-. address, linefor all pixefs ttor ä :*i pixer window , /* rine
if (without_center)/i ar,rr. cencer, Lineaverage = sum,/g;
else average = sum/g,.

Experiment:

header_ = receive (INpUf, HEADER SIZE) ;for all pixels
picturetyl txj = recej,ve(INPUT, 1),.

if (abs (pi.crure_[y] [x] _averan"l,.(J"rtiSioiut -,
send(OUTpUT, average, 1) ;

, else send(ourpur, pictuie'tvl't*l , tl ,I

./* line Bg */

t22 */
tz4 */

tq3 */

.l
I
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Table l: Behavioral Intervals without mode or annotation

89 SFP 4.92,38.01 t2.0,8.s1 [0,0 [6197,25045

t'2'2 MFP [4] Jns,2475ns] l50nWs,lTEnwsl [0,0 t0,01

124 CDP 139.5,32e1 1t7.5.12.61 t0,0 t0,01

r43 MFP t.)4,I [0.65,14.7] [0,0 [0,01
MFP lo./,1özl 2.85,20.41 [0,24]ell t0,01

Best 4.955 2.099 0 6t97
Worst 680.847 16.21 24393 25045

In table 1, behavioral intervals without mode or address an-

notation are given. Due to the loop bounds given above, we

know the minimum and maximum number of pixels leading

to a CDP in line L24. The intervals for latency time, power

consumption and data rates as well as the path classification

are given for every program segment that is referenced by the

line number it is starting with. They can be very wide because

worst cases assume a cache flush for the beginning of the seg-

ment while best cases assume hits. SFP segments may be parts

of CDP segments, so they may not be visible in the results.

Sent numbers of data bytes do not equal the received numbers

of data bytes because headers have to be received and the outer

pixels are not sent to the output buffer.

Table 2: Behavioral Intervals: Large mode, MY-ADDRESS

89 SFP t 19.2,38.01 [8.4,8.5] [0,0 t5045,250451

t22 CDP lr64,3Z9l 172.6,72.61 [0,0 U,U

t43 CDP tJ. t,z/,.öl t4.4,s.001 t0,01 u,u

I5l MFP [64.9,182] l.E,20.Jl 124393,24393 t0,01

Best 264.604 97.J0E 24393 25tJ45

Worst 572.012 106.514 24393 25045

In table 2, the address has been annotated to a match which

leads to a CDP instead of an MFP in line l2?whichis clustered

with the CDP in line I24. The calculation of the luminance in-

cluding the center pixel has been annotated as well affecting

line 143 which is not clustered with other segments. The pro-

cess mode has been annotated as LARGE, meaning that the

big version of the picture is computed. This leads to tighter in-

tervals because the execution path through the filter is known

as well as the loop bounds for the picture. The only MFP is

caused by the control structure depending on picture data. The

communicated data rate is exactly known due to the known
picture size for the mode.

Worst cases for timing and power consumption get tighter

for a worst case annotation because the known sequences for
the context lead to higher analysis precision.

Table 3: Behavioral Intervals for different annotation scenarios

Annotation Latency ms Power mWs I Sent bytes Received

Mode Small 4.955,66.7rj 12.099,24.611 0,58651 16t97,61911

Mode Large I 19.24,6E0.E 18.474,116.2 J,243931 l25o45,2s04s)
No Mode [4.771,6E0.El 12.099,116.2 IO,Z43e3l 5197,250451

Small+Address 138.49,63.62 2t.03,23.611 [5865,5E651 6t97,619'1

Laree+Address 264.6.572.01 [97.3,106.51 124393,243931 25045,25045

38.49,572.0\ lzl.uJ,luo.l [5865,24393] 16191,250451

In table 3, different scenarios for process modes and data an-

notation have been explored. In the first three lines, just modes

or no modes have been annotated, while the address and the lu-
minance calculation have been annotated in the last three lines.

Using the results from the annotations of picture size and

address, the mode set of the process in SPI is as follows:

M: {ms^allrmutrge}

tnsmay -< [38.49 ,63.62]ms,6197,5865 >
tlt rarse - < 1264.6, 57 2.01ms,25045,24393 >

Each mode is a tuple of latency, input data rate and output data

rate. In comparison with the description with a single behavior
(last line in table 3), the behavioral intervals have been sub-

stantially narrowed.

6 Conclusion

Process timing and power consumption can be highly context

dependent. Process modes are introduced to distinguish con-

texts with significantly different timing and power consump-

tion. An existing symbolic analysis approach is extended to

capture context dependent behavioral intervals of single pro-

cesses which are then used to model concuffent process net-

works in the SPI representation. A wireless IP base station is
given as a motivational example. The results demonstrate a

significant improvement in process modeling accuracy.
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