Inter val-Based Analysis of Software Processes

ES
D. Ziegenbein, F. Wolf, K. Richter, M. Jersak, R. Ernst
Institute for Computer and Communication Network Engineering
Technical University of Braunschweig
Hans-Sommer-Str. 66
38106 Braunschweig, Germany

{ziegenbein | wolf | richter | jersak | ernst}@ida.ing.tu-bs.de

ABSTRACT

A typical characteristic of complex embedded systems is
their large software share that consists of software processes
either being directly written in an implementation language
like C, or being created from abstract modeling tools (e.g.
Simulink or StateMate) using standard code generators, or
being reused from previous designs (e.g. legacy code). A
major challenge is the safe integration of these separately de-
signed system parts. This paper focuses on the formal analy-
sis of software processes with respect to their non-functional
properties like timing or power consumption. The proposed
approach yields safe upper and lower bounds on these prop-
erties and has advantages over previous work in terms of ac-
curacy and efficiency. Further, it is shown how the results of
this process-level analysis can be utilized to generate a model
for the system-wide validation of non-functional properties.
The applicability of the approach is demonstrated using an
example of a filter process operating on a packet stream.

Categoriesand Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques; C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems— Real-time and em-
bedded systems; D.4.7 [Operating Systems]: Organization
and Design— Real-time systems and embedded systems; C.4
[Computer Systems Organization]: Performance of Sys-
tems; D.4.8 [Operating Systems]: Performance—Opera-
tional analysis, modeling and prediction

General Terms
Algorithms, Design, Measurement, Performance, Theory

Keywords

Behavioral intervals, software execution cost analysis, system-
level timing validation

*This work was supported by the German DFG.

1. INTRODUCTION

Complex embedded systems such as mobile communication
devices and automotive control or multi-media systems typ-
ically have a large software share that commonly consists of
several software processes. The sources of these processes
can be classified firstly into functions written directly in an
implementation language, traditionally C and more recently
C++ based language extensions. Secondly, standard code
generators produce software processes from more abstract
modeling tools that are established industry praxis in certain
application domains (e.g. signal processing or communica-
tion protocols). Thirdly, reused components (legacy code,
IP) are increasingly included in the design to reduce the
amount of design work required. For the safe integration
of these different heterogeneous system parts not only the
function but also non-functional properties of the software
processes have to be analyzed and taken into account.

‘While there are several cosimulation-based approaches from
both academia and industry that are well suited for func-
tional validation and yield an easy understanding of the
complete system function, these approaches fail to reliably
validate non-functional constraints e. g. with respect to tim-
ing and power consumption. This is mainly due to their
lack to consider input data dependent behavior, which is
quite common for embedded systems and leads to intervals
instead of single values for non-functional properties. These
intervals are called behavioral intervals. Since exhaustive
simulation is infeasible in most cases, cosimulation can only
cover part of the system behavior and thus can not guaran-
tee that a corner case resulting e. g. in the worst case latency
time of a process is covered.

‘We propose a formal two-level approach that focuses on the
analysis of non-functional properties, in particular timing
and power consumption. The validation of the system func-
tion is not regarded. The intended analysis flow is shown
in Figure 1. At the process-level, behavioral interval analy-
sis is performed separately for each process, i.e. that upper
and lower bounds on non-functional properties of the pro-
cesses are obtained. Since these properties may depend on
the target architecture (i.e. the processor the process will
be executed on), the implementation has to be considered
in this step. The sources of behavioral intervals can be input
data dependent process behavior (due to input data depen-
dent control structures) or limited analyzability of the target
architecture (due to features like pipelining, caches etc.).

_

Software Processes

Targeting and
Compilation

Process
Level
) 4
Behavioral Interval Analysis
Bl \ 4
SPI Model
System 7'
Level
. A 4
System-Level Analysis
and Optimization

Figure 1: Proposed Two-Level Analysis Flow

At the system-level, the first step is to build a homogeneous
model of the whole system. This is done by means of an
intermediate design representation called the SPI (System
Property Intervals) model [18, 19] that is specially targeted
to analysis and synthesis of heterogeneously specified em-
bedded systems. In the SPI model, process behavior is rep-
resented by parameters such as latency times, power con-
sumption and the communicated amount of data. The val-
ues of these parameters are the behavioral intervals obtained
by the process-level analysis. Furthermore, SPI supports
the explicit specification of input data dependent behavior
by means of the concept of process modes.

The created system model then serves as a starting point for
the system wide analysis. Additionally, this system model
can also be used for optimization steps such as scheduling
or load balancing. This is denoted by the dotted line in
Figure 1 representing the control of implementation steps.
A more detailed description of the SPT methodology can be
found in [8].

The consideration of behavioral intervals is of integral signif-
icance for our approach, since for many system-level analysis
approaches not only upper but also lower bounds on system
properties are needed to guarantee the compliance with non-
functional constraints. Well-known examples are real-time
scheduling anomalies as mentioned e. g. by Gerber et al. [5].

This paper focuses on the behavioral interval analysis of soft-
ware processes. The proposed analysis method extends the
well-established sum-of-basic-blocks method [10], a formal
static software execution cost analysis approach where the
overall process execution cost is the sum of all basic block
execution costs multiplied by the corresponding execution
count for each of the basic blocks. The added value of our
approach is the automated path analysis that identifies and
clusters sequences of basic blocks that have a single input

data independent control flow. Furthermore, user informa-
tion on the execution context can be considered to enable
the modeling of internal as well as inter-process control flow
at the system-level. Both steps lead not only to more ac-
curate results but also raise the granularity level and thus
reduce the problem size of the embedded ILP problem.

Our approach does not only yield behavioral intervals for
timing and power consumption but also bounds the commu-
nicated amount of data per process execution. This is a pre-
requisite for system-level steps like communication schedul-
ing and memory allocation. Based on the obtained behav-
ioral intervals, approaches like [9] can easily estimate the
latency times of communications between processes.

The rest of the paper is organized as follows. In Section 2,
the basic concepts of the SPI model including behavioral in-
tervals and context dependent behavior are presented. Then
in Section 3, the analysis of behavioral intervals for software
processes is introduced. After the example application of
our approach on a filter process in Section 4, the paper is
concluded.

2. THE SPIMODEL

In this section, the basic concepts of the SPI model are in-
troduced, but the main goal of this section is to motivate
the need for behavioral intervals. A more formal definition
of SPI can be found in [18, 19].

2.1 Behavioral Intervals

In the SPI model, the system is represented as a set of
concurrent processes which communicate via unidirectional
channels that are either FIFO-ordered queues or registers.
While each channel node simply transfers data from the
sender to the receiver without any transformation, the func-
tionality of process nodes can be of arbitrary complexity.
However for scheduling, allocation and performance analy-

sis, knowledge about the detailed functionality of a process
is not needed. It is sufficient to know for each process the
resource requirements and the interaction with its environ-
ment.

These properties of the processes and channels are captured
by parameters that are annotated to the corresponding ele-
ments. This allows an easy adaption of the model to include
all required information for a certain optimization goal or
task in the design flow. In the context of this paper, we
consider data rates, latency times and power consumption.

The parameters need not be fixed but can be specified using
behavioral intervals, i. e. they are constrained by an upper
and lower bound. The sources for this non-determinism can
be abstraction of input data dependent functionality of a
process (e. g. due to if-then-else structures depending on
input data) or limited analyzability of the input model, on
the one hand, or incomplete specification resulting in esti-
mation of parameters, on the other hand. While for the
abstraction and limited analyzability the parameter may
switch between all possible values of the interval at run-
time, the non-determinism of the incomplete specification
will be eliminated before run-time such that it can be as-
sumed that the parameter will take just one of the possi-
ble values of the behavioral interval. For implementation
dependent parameters like timing and power consumption,
limited analyzability of the target architecture (e.g. caches,
pipelining, out-of-order execution) is another source of non-
determinism. In the SPT model, however, the different types
of non-determinism are not distinguished since the differ-
ences analysis and optimization methods could utilize are
minimal.

For the extraction of behavioral intervals from software pro-
cesses, not only the input data dependencies of control struc-
tures but also the limited analyzability of the target archi-
tecture have to be considered as sources for behavioral in-
tervals.

[3ms, 5ms] 3ms

1ms
2 [2, 5] 3
»1. It 3 C 4

Figure 2: SPI Example

An example of a SPI model is depicted in Figure 2. At
each execution, processes consume input data and produce
output data. However, since we are not interested in the
function performed by a process, the communicated data is
only represented by the amount of data which is important
for communication scheduling or memory allocation. For
example, process p; consumes 1 data token and produces 2
data tokens at each execution. The latency of p; is 1 ms.
Process p2 is an example for a process that is specified using
behavioral intervals, as it consumes at least 1 and at most 3
tokens from channel ¢; and produces at least 2 and at most
5 tokens on channel c2, respectively. The execution latency
is between 3 ms and 5 ms.

The SPI (System Property Intervals) model is specifically
targeted to heterogeneous system design and allows to cap-

ture the coordination semantics of various established mod-
els of computation, such as dataflow, finite state machines,
time-driven models or Petri nets. Therefore, the basic struc-
ture and properties of the SPI model resemble the structure
and coordination semantics of those models. The main dif-
ference between SPI and those models is the fundamental
support of behavioral intervals that makes the SPI model
an excellent choice for our analysis approach.

2.2 Context DependentBehavior

Behavioral intervals of a process depend to a certain ex-
tend on the process control flow which in turn depends on
process input data. Hence, behavioral intervals are context
dependent where a context is a value definition for a subset
of input data variables. Thus, a context determines control
structures and thereby selects a subset of execution paths
through the process. The analysis of such a path set typi-
cally yields behavioral intervals with much narrower bounds.
But even the analysis of a single execution path may still
yield behavioral intervals and no fixed values for implemen-
tation dependent parameters due to limited analyzability
of target architecture features like caches, pipelines or data
dependent instruction execution times.

Context dependent behavior can be modeled in SPI using
the concept of process modes. Each process mode represents
the behavioral intervals for a certain context. For example,
the analysis of process p» with two different contexts may
yield the following two alternative modes:

m1 = ([3,3.8]ms, 1, 2)
mgo = ([4.5, 5]ms, 3, 5)

Then in mode m; process p2’s latency is between 3 ms and
3.8 ms and p2 consumes 1 token and produces 2 tokens, while
in mode my its latency is between 4.5 ms and 5 ms and it
communicates 3 and 5 tokens, respectively. Nevertheless,
without also representing the context that corresponds to
the process execution described by the respective mode, the
behavior of process p2 is still uncertain since p» may show
either the behavioral intervals represented by m; or ms.

As mentioned above, in the SPI model data is abstracted
to tokens without information about values. However, con-
texts have to be visible in order to analyze the reaction of
processes or systems on certain input data. A typical ex-
ample is a base station for wireless communication, where
there are several paths on which different data packets are
routed through a network of processes. Important questions
for the system designer can be the power consumption for
sending a data packet or the time to set up a connection
in a base station. This should take the system context into
account, since for each packet type the processes react with
a different control flow.

To model such inter-process correlations, virtual mode tags
may be associated to data tokens to represent contexts. The
correspondence between contexts and their respective pro-
cess modes is modeled by a set of activation rules that is
associated with each process. These rules map input token
predicates to modes. A predicate in this case is either ‘true’
or ‘false’ depending on the number of tokens and the tags
of the first tokens on the input channels of the process. For

process p2 of the above example, these rules could be:

a1 : (c1.num > 1) A (‘a’ € c1.tag) — mq
az : (c1.num > 3) A (‘D € c1.tag) — mo

Assuming that process p; adds one of the tags ‘a’ or ‘b’
to the tag set of all produced tokens, the communication
behavior of py is completely determinate. If there is at least
1 available token on channel ¢; and if the tag ‘a’ is included
in the tag set of this token, process p» is activated in mode
mi. Analogously, if there are at least 3 tokens available on
c1 and the first one has ‘b’ in its tag set, p2 is activated in
mode mo.

The designer typically has knowledge of execution contexts
and process correlations for the system or system part she
designed. By utilizing this knowledge for analysis and pa-
rameter extraction, the behavioral intervals not only of a
single process but also of the whole system can be substan-
tially narrowed.

3. BEHAVIORAL INTERVAL ANALYSIS

In this section, our approach to behavioral interval analy-
sis including its limitations and advantages over previous
approaches is presented. We consider latency time, power
consumption and the sent and received amounts of data of
a software process. Since the overall methodology for the
determination of these different properties is very similar,
we will use the general term ezecution cost in the following
text and will only refer to each property where the methods
differ.

Our approach is performed off-line, i. e. before the deploy-
ment of the system, and consists of the following three steps

e Identification and classification of possible paths across
basic block boundaries called process segments (Sec-
tion 3.1)

e Determination of execution cost intervals for each pro-
cess segment (Section 3.2)

e Combination of process segment execution costs us-
ing the execution count intervals obtained by an ILP
approach (Section 3.3)

in order to determine the overall behavioral intervals of a
given software process. In Section 3.4, the SYMTA tool
that implements the approach is presented. A more formal
introduction of the process-level behavioral interval analysis
approach can be found in [16].

3.1 Static Path Analysis

Behavioral intervals for process execution cost can be highly
input data dependent. This may be caused by input data
dependencies of control flow and of instruction execution,
e. g. for microcoded multiplication or library functions. The
test pattern selection for the coverage of the extreme cases to
obtain exact bounds on the execution cost using simulation
is an undecidable problem. Formal analysis of input data
dependencies is a feasible alternative because it can guar-
antee that the actual execution cost interval falls into the
predicted behavioral interval. This can be independent of

any designer decision like test pattern selection. As all stan-
dard formal software analysis approaches (e. g. [10]), our ap-
proach assumes structured programs, i.e. code without the
use of jump-like statements. Thus, goto is not allowed as
well as break statements within loops. Another restriction
is that pointers are currently not supported. However, the
approach could be extended in a way similar to [13] where
pointers and also dynamic memory allocation are resolved.

3.1.1 Basic Approach

The latency time model in [10] is established as a standard
model for static approaches, which is also called the sum-
of-basic-blocks model. Here, the overall process execution
cost is the sum of all basic block execution costs multiplied
by the corresponding execution count for each of the ba-
sic blocks. Evidently, the execution cost of a basic block
depends on the target architecture whereas the execution
count is architecture independent.

Both values, cost and count, are intervals representing the
worst case and best case bounds. It is assumed that all exe-
cutions of one basic block have the same cost interval. How-
ever, data dependent instruction execution and pipelined
architectures as well as unpredictable cache behavior and
register allocation lead to widely varying basic block exe-
cution cost. This effect is referred to as overlapping basic
block execution. For these architectures, the sum-of-basic-
blocks model cannot provide close bounds, but must use
very pessimistic basic block cost intervals to be correct for
all executions of the basic block because empty pipelines or
cache flushes have to be assumed for basic block beginnings.
Many other approaches are also based on the analysis gran-
ularity of basic blocks [3], single basic block transitions [6]
or require complex modifications to cost determination [11].

A way to achieve a higher analysis accuracy is to consider ba-
sic block sequences for the determination of execution costs.
This way, pipeline and cache behavior between basic blocks
in such a sequence can be exactly modeled without assuming
worst cases in between them.

3.1.2 Sngle Feasible Paths

Large parts of typical embedded system processes have a sin-
gle path independent of input data, even though this path
may wrap around many loops, conditional statements and
even function calls which are used for source code struc-
turing and compacting. Examples are an FIR filter or a
Fast Fourier Transformation. These input data independent
paths are called Single Feasible Paths (SFP).

A Process Segment (PrS) is a sequence of nodes with exactly
one first and one last basic block. This follows the defini-
tion of basic blocks in [1]. The execution cost of a PrS is
delimited by an upper and lower bound. The key to finding
SFP process segments (SFP-PrS) is to distinguish between
input data dependent control flow and source code structur-
ing aids. SFP-PrS are characterized by input data indepen-
dent control structures. We use a very efficient depth-first
search algorithm on the syntax graph which is sufficiently ac-
curate in praxis combined with symbolic execution of basic
blocks to determine these dependencies. The syntax graph
has been chosen because it contains the hierarchy of control
structures. In the approach in [10], path analysis by func-

tional constraint annotation for SFP-PrS may be accurate
but requires much tedious and error-prone designer inter-
action while the approach still uses the sum-of-basic-blocks
cost model with its drawbacks regarding accuracy. Basic
block sequences are easy to consider for SFP-PrS because
their execution cost can be determined using simulation.
For process-level analysis, SFP-PrS can be treated like basic
blocks.

Obviously, most practical systems also contain non-SFP pro-
cess segments. A process segment is said to have Multiple
Feasible Paths (MFP), when paths through the process seg-
ment depend on input data. An MFP-PrS only consists of
a control structure with input data dependent control flow.
A more formal classification of PrS is given in [16].

3.1.3 Context Dependent Paths

As already mentioned in Section 2.2, processes often have
context dependent behavior. A context is a value definition
for a subset of input values that is specified by the designer.
In each context, only a subset of paths through a process
segment can be executed, since the control flow is defined by
context dependent input data. This usually means tighter
execution cost bounds for a given context. In other words,
the contexts turn an MFP-PrS into an SFP-PrS. We call
such a path a Context Dependent Path (CDP). Thus, for
further analysis of the given context, a CDP-PrS is treated
like an SFP-PrS.

3.2 ProcessSegmentExecution Cost

In the following, different approaches to obtain execution
costs of a single process segment and their application to
the determination of latency times, power consumption and
communicated data are presented.

The Instruction Cost Addition (ICA) approach uses a gen-
eralization of the sum-of-basic-blocks approach to calculate
the execution costs of a PrS. Since an SFP-PrS or basic block
has a single path only, it just needs to be executed on a host
system to derive the execution counts for all basic blocks in
the PrS. There is no input data dependent control flow in
such an SFP-PrS; so this execution yields the exact instruc-
tion counts. A sum-of-basic-blocks calculation provides the
total cost of one PrS execution by using a cross compiler
and instruction cost tables with respect to the target archi-
tecture. This leads to good results for simple architectures
without overlapping basic block execution.

The execution cost analysis approach to choose for archi-
tectures with overlapping basic block execution is cycle true
process segment simulation (PSS). Since the SFP-PrS ex-
ecution path is fixed like in a basic block, the execution
costs are fixed such that a single simulation of the SFP-
PrS is sufficient. A conservative overhead is added to cover
the worst case of all different entry paths into the SFP-PrS
which can represent different states for register allocation,
pipelines and caches. The major improvement is the ex-
tension of basic blocks to SFP-PrS, so an execution cost
simulation of this segment with any off-the-shelf processor
simulator automatically chooses the one correct path and
exploits the basic block sequence without designer interac-
tion. Too pessimistic overheads between basic blocks can be
replaced by the exact pipeline and cache behavior.

Both, ICA and PSS require process execution or simula-
tion. Clearly, the input patterns should be selected such
that all PrS are executed at least once but some process
segments may be difficult to reach. These are automatically
detected and can be simulated separately to guarantee full
code coverage. In case of input data dependent instruction
execution cost, the result must be corrected for each execu-
tion of a data dependent instruction to obtain the correct
cost interval. In both approaches the influence of caching is
accounted for by using a cache tracing tool [7] or the tar-
get system cache model. An overhead assuming first misses
for the SFP-PrS start must be included that can be refined
using global data flow analysis for cache line contents [15].

3.21 Latency Time

For ICA, latency time intervals for single machine instruc-
tions can be taken from data books. When using PSS, most
off-the-shelf simulators deliver the execution timing of the
single machine instructions as well as the complete process
segment. Thus, the latency time of a PrS is straightforward
to determine.

3.2.2 Power Consumption

The software power consumption of a PrS can be simu-
lated using a simplification of the methodology presented
in [14]. It proposes an ICA approach with base and transi-
tion power values for a sequence of instructions given by host
simulation. For RISC architectures, experiments show that
the simulation adequately matches the measured power con-
sumption. Influences of data values or cache behavior can
be modeled via additional processor cycles that add to the
instruction power consumption.

3.2.3 Communicated Data

For the analysis of the communicated data of an SFP-PrS,
we assume only explicite communication. The amount of
data sent or received by a process influences timing and
power consumption of communication components like buf-
fers, busses or memories. We can use an ICA approach to
determine the data sent or received on an SFP-PrS where
the cost is given by the size of the communicated data block.

3.3 Process-lgel Analysis

The process-level execution cost is an interval bound by the
lower and upper execution costs given by the SFP-PrS cost
intervals multiplied with their execution count intervals. In
previous approaches (e. g. [10]), the designer has to provide
an implicit description of the possible paths by means of
linear equations in order to determine the execution count
intervals. These so called functional constraints specify the
relations of the execution counts of the basic block nodes in
the control flow graph to each other. Another set of equa-
tions captures structural constraints, e.g. that the execu-
tion count inflow of a basic block node equals its execution
count and its execution count outflow. These (in)equations
are mapped to two ILP optimization problems, one for the
upper and one for the lower execution count bound. These
are solved to derive a conservative execution count interval
for each basic block.

In the presented approach, basic block nodes are clustered
to SFP-PrS. Since the ILP problem treats SFP-PrS execu-

89: header = receive(INPUT, HEADER_SIZE);

for all pixels

/* Context: Size */

picture[y] [x] = receive(INPUT, 1);

122: if(address == MY_ADDRESS) { /* Context: Address */

124: for all pixels {

for a 3*3 pixel window {

143: if (without_center)
average = sum/8;
else average = sum/9;
}
151: if (abs (picturel[y] [x]-average)>threshold)

send (QUTPUT, average, 1);
else send(OUTPUT, picturely][x], 1);

}
}

Figure 3: Pseudo code of the filter process

tion cost in the same way as basic block execution cost, it
only needs to be solved for the input data dependent control
structures between SFP-PrS. For different contexts, SFP-
PrS and additional functional constraints for the remaining
MFP-PrS stay the same, while a different set of CDP-PrS
can be extracted from the MFP-PrS. When all input data
that influences control flow is context dependent, no ILP
analysis is necessary and each context dependent execution
cost can be obtained by simulation.

Besides the higher achieved analysis accuracy that leads to
tighter behavioral intervals, the use of process segments in-
stead of basic blocks has another major advantage. Due
to the raised granularity, the size of the ILP problem for
the process-level solution can be significantly reduced. This
yields a shorter computation time of the ILP solution, but
more importantly enables the application of our approach
to much more complex processes as compared to previous
approaches.

3.4 The SYMTA Tool

The presented approach is implemented in the SYMTA tool
suite (SYMbolic Timing Analysis) that in contrast to its
name is not only capable to determine behavioral intervals
for latency times but also for power consumption and com-
municated data. A major advantage of our approach is its
flexibility with respect to its front end (possible input lan-
guages) as well as to its back end (possible target architec-
tures).

Since the path analysis of our approach is based on a syn-
tax graph and a control flow graph, we do not restrict our-
selves to a specific input language. Currently, one front end
has been implemented for C® [2], a C derivative that ex-
tends ANSI-C by generic send and receive functions which
implement the inter-process communication. Very similar
notations can also be found in more recent C++ deriva-
tives targeted to system-level design like SpecC [4] and Sys-
temC [12]. Here, interface methods (e.g. write and read)
are used to access external channels. Our analysis approach
can be easily enhanced to also support these languages.

For process segment cost analysis, ICA and PSS have been
implemented for a set of target architectures covering very
different domains. ICA has been implemented for Intel 8051

where it can deliver accurate results because no overlapping
basic block execution is present. PSS has been implemented
for StrongARM and SPARC including pipeline and cache
tracing [16]. Due to the drawbacks regarding performance
and availability of cycle-true simulators for complex archi-
tectures, the PrS execution cost can also be obtained by
measuring the corresponding physical values. Then, code
instrumentation and bus observation are used to measure
execution costs for a specific PrS between predefined and
automatically inserted trigger points. The results are auto-
matically back annotated to be used in SYMTA. This mea-
surement approach has been implemented for a SPARClite
evaluation board [17]. The possibility to use off-the-shelf
simulators as well as evaluation platforms enables us to ex-
plore different target architectures in a very flexible way.

4. EXAMPLE: FILTER ON PACKET DATA

The behavioral interval extraction has been applied to a
single filter process that reads a packet containing a picture.
If the packet is addressed to its system component, the filter
process performs an ”unlikely dot” filtering on the picture
data and sends it to another process. Possible execution
contexts are the processing of a ”large” or a "small” picture
and address match or miss. The pseudo code of the process
is given in Figure 3.

Tables 1 and 2 show the behavioral intervals of the filter
process with respect to latency time, power consumption
of the processor core and communicated data for all com-
binations of execution contexts. The intervals are of the
form [bmin, bmaz] Where bmin denotes the lower bound on
the value of the respective property while b4, denotes the
upper bound. The values were obtained using the SYMTA
tool for a StrongARM with 80 MHz core frequency, 40 MHz
bus frequency and 25 ns memory cycle time including local
cache simulation.

When comparing the values for the different combinations
of contexts, it can be seen that the utilization of specified
contexts during analysis of the filter process helps to sub-
stantially narrow the extracted behavioral intervals. For the
communicated amount of data, this context dependent anal-
ysis even yields deterministic values i. e. the upper and lower
bounds of an interval are equal.

Latency, Power

Receive Send

Latency [ms] Power [mnWs] Send [kB] Recv. [kB]

Values for SPI representation with single mode

Msingle_-mode — ((6, 572], [2, 107], [0.0, 24.4], [6.2,25.0])
Values for SPI representation with four modes

Mgmall,match — ([387 64]5 [215 24]5 [5-97 5-9]5 [6-25 6-2])
Msmall,miss = ([67 13], [2, 4]’ [0, 0]7 [62, 62])
Mlarge,match = ([265, 572], [97, 107], [24.4, 24.4], [25.0, 25.0])
Mlarge,miss = ([207 39]5 [87 9]’ [07 O]z [25-07 25-0])

Figure 4: SPI representations of filter process

Latency [ms] Address not | Address | Address
Power [mWs] considered miss match
Size not Latency 5, 681 [6, 40] 38, 681
considered Power 2, 117 [2, 9] 21, 117
Large Latency (19, 572] [20, 39] | [265, 572]
Picture Power [8, 107] (8, 9] [97, 107]
Small Latency 5, 67 [6, 13] 38, 64
Picture Power 2, 25 [2, 4] 21, 24

Table 1: Behavioral intervals for latency and power

consumption of the filter process

Send Data [kB] Address not Address Address
Receive Data [ms] | considered miss match
Size not Snd [0, 24.4] [0, 0] 5.9, 24.4
considered Rec | [6.2, 25.0] [6.2, 25.0] 6.2, 25.0
Targe Snd | [0, 24.4] [0, 0] 244, 24.4
Picture Rec [25.0, 25.0] [25.0, 25.0] 25.0, 25.0
Small Snd [0, 5.9] [0, 0] 5.9, 5.9
Picture Rec [6.2, 6.2] [6.2, 6.2] 6.2, 6.2

Table 2: Behavioral intervals for sent and received
data amounts of filter process

An interesting effect is that the maximum latency of 681
ms without considering any execution context (see upper
left element of Table 1) is not contained in the behavioral
intervals for neither the large nor the small picture context
(572 ms and 67 ms respectively). This is due to the fact,
that for each of both contexts two process segments have
merged such that the worst case assumptions on the cache
and pipeline state for the beginning of the second segment
can be dropped.

In comparison to our approach, a standard basic block based
approach that does not exploit SFP properties yields far
wider intervals due to the overlapping basic block effects in
the nested loops. Using the approach from [10] including
functional constraint annotations for the loops with respect
to both picture sizes, the worst case bounds on the latency
of the filter process have been calculated. The results were
6368 ms and 887 ms for a large and a small picture re-
spectively compared to 572 ms and 67 ms obtained by our
approach.

Further experiments comparing the results of our approach
and of the approach from [10] can be found in [16]. These
experiments validate the improved accuracy of the SYMTA
tool. The range of improvement is usually in the range of
about 20% and increases to one order of magnitude in the
presence of nested loops as common for signal processing
algorithms.

Based on the obtained behavioral intervals, a SPI represen-
tation of the filter process can be created that may be used
to analyze the overall system performance. Two SPI repre-
sentations of the filter process using the obtained behavioral
intervals with a single mode and four modes are depicted in
Figure 4.

Note that for the representation with a single mode, the used
behavioral intervals for latency ([6, 572] ms) and power con-
sumption ([2, 107] mWs) are narrower than the intervals
obtained without considering any context depicted in the
upper left element of Table 1 ([5, 681] ms and [2, 117] mWs).
This reduction of the interval width is possible due to a com-
plete context dependent analysis, i.e. if all possible paths
through a context dependent control structure have been
covered by different contexts, the overall behavioral inter-
vals can be reduced to the union of the obtained behavioral
intervals for these contexts. In case of several context depen-
dent control structures, the cross product of all contexts has
to be considered. Thus for the example, the overall behav-
ioral intervals can be combined from the four table elements
in the bottom right corner of tables 1 and 2, e.g. the lower
bound on the latency equals the minimum of 20, 265, 6, and
38.

5. CONCLUSION

‘We have presented a formal analysis approach for software
processes that yields safe behavioral intervals for key pro-
cess properties like timing, power consumption and commu-
nicated data. Due to the automated path classification and
clustering that raises the granularity level of the analysis
from basic blocks to process segments, our approach is ad-
vantageous in terms of accuracy (narrower intervals because
of less pessimistic worst case assumptions) and efficiency
(smaller problem size of embedded ILP formulation).

User information on the execution context of processes can

be utilized to further narrow the obtained behavioral inter-
vals and to enable the explicit modeling of internal as well
as inter-process control flow. The approach has been im-
plemented in a modular way so that it is very flexible with
respect to the possible input languages, the possible target
architectures, and the execution cost determination meth-
ods.

The presented approach is part of the SPI workbench, a
system-level analysis and optimization approach for the de-
sign of heterogeneously specified embedded systems that is
currently being implemented in an international coopera-
tion.

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
Reading, GB, 1988.

[2] Th. Benner, A. Osterling, and R. Ernst. Comparison
of Context Switching Methods for Fine Grain Process
Scheduling. Technical Report CY-96-1, Institute of
Computer Engineering, Technical University of
Braunschweig, Germany, 1996.

[3] C. Ferdinand and R. Wilhelm. On predicting data
cache behavior for real-time systems. In Proceedings of
the ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems, Montreal,
Canada, June 1998.

[4] D. D. Gajski, J. Zhu, R. Démer, A. Gerstlauer, and
S. Zhao. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers, 2000.

[5] R. Gerber, W. Pugh, and M. Saksena. Parametric
dispatching of hard real-time taks. IEEE Transaction
on Computers, 44(3):471-479, March 1995.

[6] C. Healy, R. Arnold, F. Miiller, D. Whalley, and
M. Harmon. Bounding pipeline and instruction cache
performance. IEEE Transactions on Computers, pages
53-70, January 1999.

[7] M. Hill. DINERO III Cache Simulator: Source Code,
Libraries and Documentation.
www.ece.cmu.edu/ ece548/tools/dinero/src/, 1998.

[8] M. Jersak, D. Ziegenbein, F. Wolf, K. Richter,
R. Ernst, F. Cieslok, J. Teich, K. Strehl, and
L. Thiele. Embedded system design using the spi
workbench. In Proceedings 3rd Forum on Design
Languages, Tibingen, Germany, September 2000.

[9] P. V. Knudsen and J. Madsen. Communication
estimation for hardware/software codesign. In Sizth
International Workshop on Hardware/Software

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Codesign CODES/Cashe 98, pages 55-59, Seattle,
USA, March 1998.

Y. S. Li and S. Malik. Performance Analysis of
Real-Time Embedded Software. Kluwer Academic
Publishers, 1999.

T. Lundquist and P. Stenstrom. Integrating path and
timing analysis using instruction level simulation
techniques. In Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for
Embedded Systems, Montreal, Canada, June 1998.

Open SystemC Initiative. SystemC.
http://www.systemc.org/.

L. Semeria, K. Sato, and G. De Micheli. Resolution of
dynamic memory allocation and pointers for the
behavioral synthesis from c. In Design Automation
and Test in Europe DATE’00, pages 312-319, Paris,
France, March 2000.

V. Tiwari, S. Malik, and A. Wolfe. Instruction level
power analysis and optimisation of software. The
Journal of VLSI Signal Processing, 13(2/3):223-238,
August 1996.

F. Wolf and R. Ernst. Data flow based cache
prediction using local simulation. In Proceedings of the
IEEE High Level Design Validation and Test
Workshop, pages 155-160, Berkeley, USA, November
2000.

F. Wolf and R. Ernst. Execution cost interval
refinement in static software analysis. Journal of
Systems Architecture, The EUROMICRO Journal,
Special Issue on Modern Methods and Tools in Digital
System Design, 47(3-4):339-356, April 2001.

F. Wolf, J. Kruse, and R. Ernst. Segment-wise timing
and power measurement in software emulation. In
Proceedings of the IEEE/ACM Design, Automation
and Test in Europe Conference, Designers’ Forum,
pages 165-169, Munich, Germany, March 2001.

D. Ziegenbein, R. Ernst, K. Richter, J. Teich, and

L. Thiele. Combining multiple models of computation
for scheduling and allocation. In Proceedings Sizth
International Workshop on Hardware/Software
Co-Design (Codes/CASHE ’98), pages 9-13, Seattle,
USA, March 1998.

D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and

L. Thiele. Representation of process mode correlation
for scheduling. In Proceedings International
Conference on Computer-Aided Design (ICCAD ’98),
San Jose, USA, November 1998.

