Scheduling Analysis Integration
for Heterogeneous Multiprocessor SoC

Kai Richter, Razvan Racu, Rolf Ernst
Institute of Computer and Communication Network Engineering
Technical University of Braunschweig
D-38106 Braunschweig / Germany
{richter |racu |ernst }@ida.ing.tu-bs.de

Abstract

Today, only very few techniques out of the host of work on for- Many key components are either reused or supplied externally,
mal performance and timing analysis have been adopted in MpSe(ch as the MIPS and TriMedia processor cores. Tomorrows Mp-
(multiprocessor system-on-chip) design. One of the key reason$S&Cs will be even more complex, and using such IP library elements
a mismatch between the scheduling models assumed in most fior plug-and-playdesign style is the only way to reach the neces-
mal approaches and the heterogenous world of MpSoC schedulseyy design productivity.
techniques and communication patterns. This heterogeneity result$ience, systems integration is becoming the major challenge in
from IP reuse and alug-and-playdesign style, required to effec- MpSoC design. The complex hardware and software component in-
tively reach the necessary design productivity. A second problemésactions —including heterogeneous scheduling environments— pose
the model complexity. While complex, specialized models can fid@erious threat to all kinds of performance pitfalls, including tran-
their way into industry niches, their broad acceptance is extremedyent overloads, memory overflow, data loss, and missed deadlines.
doubtful. In this paper, we review the existing scheduling analysthe International Technology Roadmap for Semiconducttr®S,
techniques with respect to these key requirements and derive a gp2]) names system-level performance verification as one of the top
compromise between model simplicity on the one hand, and appliree codesign issues.
cability to MpSoC design on the other hand. The approach repre-It might surprize that —up to now— only very few of the count-
sents system-level scheduling analysis as a flow-analysis probliess formal analysis approaches from the real-time community have
for event streams that can be configured to reuse the existing loéalind their way into the SoC (system-on-chip) design community
scheduling analysis techniques. We define transformations betwegnmeans of tools. Regardless of the known limitations of sim-
few key event stream models to meet the interfacing requirementsiation such as incomplete corner-case coverage and pattern gen-
the compositional design style. An example demonstrates the apptation, timed simulation using e.g. Mentor Graphics Seamless-
cation of the approach, as well as the worthiness of the results. CVE [20], Axys MaxSim H], or Cadence VCCH] is still the pre-
ferred means of performance verification in MpSoC design. But
1. INTRODUCTION why is the acceptance of formal analysis still very limited?

- . , ity there i One of the key reasons is a mismatch between the scheduling
With increasing embedded system design complexity there 'Srfbdels assumed in most formal analysis approaches and the het-

trend towards heterogeneous architectures. Todays high-end né%genous world of MpSoC scheduling techniques and communica-

tiprocessor systems-on-chlp (MpSoCs) |nt§grate multlple_progra%n patterns that are a result of a) different application character-
able processor cores, specialized memories, and other intellectual

property (IP) components on a single chip using complex networks

on-chip (NoC). Several operating systems and bus protocols can be [External sorRAM |
fOUnd on SUCh MpSOCS) (P'\F/{‘gzio) Memory controller T;EP;\AA?ﬂ
Heterogeneous MpSoCs have become the architecture of cho cPU CPU

IF bus

£
>
=

Mem.

in major industries such as network processing, consumer electrd iz —
ics, and automotive systems. Since no homogeneous design strat ;
is sufficiently optimal for all aspects of MpSoC, their heterogeneity
inevitably increases with IP integration and component specializ é —— m
tion which designers use to optimize performance at low power coll g s [i setores e position _

2D-rendering engine Processor

sumption and competitive cost, | P
Figure1 shows an example MpSoC, the Vip&j processor for ——ulBON
_| nter—inteérate circuit

A
i i icati ili i y Tasync.
multimedia applications. Based on the Philips Nexperia platform, | | Unversalasync. | EEE 1304 Memory-based o
link layer controller scaler Synchronous

includes two cores, weakly programmable coprocessors, and fixe (UART)
function coprocessors, as well as various memories and caches orl ﬂ'—% S h
ted in the figure. A complex network of bridged high-speed an = —

peripheral buses connect these components. Figure 1: The VIPER Processor

TriMedia
Pl bus

Pl bus

i

MPEG
system proc.

|— serial interface

1

@

H

istics; b) system optimization and integration just as shown in thect [L0], all targeting at system load and process response time anal-
example of Figl which is still at the beginning of the MpSoC de-ysis. Communication network IP such as TT8|[and Sonics26)],
velopment towards even more complex architectures. supported by appropriate optimization tools based on formal analy-

Therefore, a new configurable analysis process is needed that s&nis becoming available. This shows that the systems community
easily be adapted to such heterogeneous architectures. We can igeim-fact seeking the assistance of formal real-time analysis. Unfor-
tify different approaches: the holistic approach that searches tonately, homogeneous scheduling strategies are assumed by these
techniques spanning several scheduling domains; and hierarchieddtively simple approaches, so they do not scale to large, hetero-
approaches that integrate local analysis with a global flow basgeneous systems.
analysis, either using new models or based on existing models and here exist few approaches considering larger systems sugh as [
analysis techniques. 22, 33, 31] analyzing and optimizing static priority task scheduling

In the following section, we will more deeply review the existcombined with a TDMA bus protocol. The authors 8B[extend
ing analysis approaches from the literature on real-time analysis aht to EDF task scheduling.
identify key requirements for their application to MpSoC design. In These holistic analysis techniques are certainly very effective for
Section3, we define a six class event model that serves as a stheir respective applications. There are standard architectures such
ficiently optimal compromise between model simplicity and applias in automotive communication where it makes sense to develop
cability to MpSoC design. Sectiof presents all necessary eventssuch specialized techniques. However, holistic approaches require a
model transformations to be fully applicable to the compositionahodel complexity that grows with the size of the systems and with
MpSoC integration style. Specialties of event stream dependertbg number of different scheduling techniques. New combinations
cycles are investigated in SectibnA set of expressive experimentsrequire new holistic models which counters the need for flexible in-
is carried out in sectiol®. We interpret the experimental resultstegration and rapid design space exploration. This could explain,

before we draw our conclusions. why such holistic approaches are largely ignored by the SoC com-
munity even though there are many proposals for multiprocessor
2. KNOWN APPROACHES analysis in real-time computing.
Other, very sophisticated approaches likeed automatagl] or
2.1 The One-Model Approaches modal processef3] consider the system as the cross product of

all subsystem states (or modes) that result from scheduling. These

Some yvell establi_shed classical anal_ysis techniques S_UCh as Rﬁ%Saas are even more complex than the mentioned holistic ones,
Monotonic Scheduling9] (RMS) consider a system of |ndepen-and analysis algorithms generally suffer from exponential complex-

dent tasks, and use simple task activation models, such as per'(?fg}.CWe are not aware of an application of such approaches to hetero-

act.ivation. More complex activatiorl can be consio!ered using peHéneous SoC. Therefore, they will not be further considered here.
odic tasks _N'th the s_o c_allentélease Jiter[2], sporadic task$27]_, Analysis techniques and their configuration to an individual het-
and sporadically periodictasks P], also referred to asporadic erogeneous MpSoC should be simple, efficient, and follow the inte-
bursts{32). Based .on thes_e models, efficient schedulability teks | gration of the hardware and software components just like it is done
18 andresponse timalgorithms have been proposea17, 2, 32. with the combination of models for simulation. It should follow

R the compositional design style which has been adopted in MpSoC
_ _ {?—‘ Ci<Ti (1) design to reach the tremendous design productivity requirements.
jedP() 1 Such a feature would support the introduction of formal analysis to
Equationl shows the popular RMS response tirRg) @pproach14], MpSoC design.
whereC; andT; are thecore execution timand the period of task Compositional design requires interfaces that describe commu-
andHP(i) is the set of all higher priority task s. The equation can beication between components and subsystems. When formulating
iteratively solved usingk = 0 as a starting point?]. The periodic such interfaces, it appears reasonable to resort to the body of knowl-

R=GCG+

nature of task activation is accounted for in the term edge in intuitive event models developed in the real-time systems
R community. We will first review scheduling techniques and their
[f—‘ respective event models before we propose such an interface.
determining the number of (periodic) preemptions due to highgr'2 Model Commonalities
level taskj during the response time of task The accepted models have a key commonality. They use intuitive

A similar set of analysis techniques is available for EDF (earlevent models! The assumption of a periodic event with jitter even
est deadline first) schedulind 9, 13]. An extensive overview on lets an experienced engineer create worst-case task activation sce-
EDF scheduling and analysis can be found 28] Time-driven narios. And this is exactly what the formal techniques do. As seen
techniques such as TDMA (time division multiple access) and RR Equationl, they calculate a maximum number of task activations
(Round Robin) have also been investigatesl [L6]. for a given amount of time, to be used in accumulative worst-case

Such elegantly simple approaches already found their way to pregsponse time equations.
tice some time ago, and there exist today an increasing numbeQuite similar, but less often fully understood, are the minimum
of commercial analysis tools such as TriPacific's RapidRN3A][numbers required for best-case analysis to resolve scheduling anoma-
TimeWiz [30] from TimeSys, and Livedevices’ Real-Time Archi-lies in distributed system4]].

. 2.4 Models and System Composition
Table 1: The nacefunctions of the four most popular event o))
After reviewing a representative subset of formal real-time analy-

models _ / _
sis, we can rephrase our analysis requirements. The formal compo-
model params Nact(A%) Nace(At) sitional analysis should:
periodic <T> 4] k3 e support heterogeneous systems with different component and
jitter T3> 8 max(0, 2=]) s_ubsy_stem scheduling strategies, since current MpSoC look
like this.
H At
sporadic ~ <t> [F1 0 e capture communication via event models that are suitable to
At i 1 i i -
burst <Ttb> |&]btmin <b, (m{tﬂ T-‘ > 0 allow the local ap_phcatpn of standard analysis techniques be
cause these are industrially accepted.

e do this in a form that encompasses the indusplag-and-
Table 1 gives an overview about thesg.- and ny.functions play systems integration style.
(maximum and minimum number of activations) for the four most
popular event models in literature: periodit9] 18, 3] (used in
Equationl), periodic with jitter], sporadic R7, 2], and burst 83
(also known as sporadically periodi#]].
The known techniques, especially the ones from Lehoczky [
and Tindell B2], which allow arbitrary deadlines and are thus less ® AS @ prerequisite for composition based on event streams,

Our proposal closely follows the pros in the above overview. We
will use the simple event models (periodic, jitter, sporadic, and burst)
and apply the compositional idea of Thiele and Gresser to them.

This procedure reveals two previously unrecognized challenges:

constrained, could potentially deal witimyevent model, as long as component output streamsneed to be determined using only
the ngerfunctions are known. the simple (comprehensible) event models.
. e Additionally, each individual SoC component capnstrain

2.3 SUbSyStem Composmon the acceptable input streamto a particular model, e. g. be-

So far for the commonalities among the majorly accepted models. ~ cause of a fixed periodic scheduling (as found in DSP appli-
We will now briefly review recent contributions which — in contrast cations), or due to IP (intellectual property) protection. This
to single componentr holistic approaches— heavily exploit the ex- requirement arises from the industrigig&play integration
istence of suchycrfunctions for ascompositionalinalysis approach. style.

Gresser]2] and Thiele R9] established a different view on schedul- o
ing analysis. The individual components or subsystems are Seer‘{'hese challenges are notspgcnﬁcto ourpropqsed approa(.:h. Rather,
as entities which interact, or communicate, via event streams. tney are key to gen_erally making th? composmor_lal analysis com-
their compositional approach, an output event stream of one Coﬁqghensmland applicable to current industrial designs.
ponent turns into an input event stream of a connected component.
Schedulability analysis, then, becomes a flow-analysis problem ?gr OUTPUT EVENT MODELS
event streams that, in principle, can be solved iteratively using evenin the compositional approach, events are se¢raaslingthrough
stream propagation. a network of components, thereby triggering task and communica-
Both approaches use a highly generalized event stream repredi&m execution.
tation to tame the complexity of the event streams. Gresser uses &ach input event experiences a delay when traveling through a
superpositionakvent vector systemvhich is then propagated us-component. With a constant delay, the relative timing of events in
ing complex event dependency matrices. Thiele et.al. use a mtne stream remains constant, only the absolute time offset changes
intuitive model. They usaumericalupper and lower bound event from input to output. Thus, the event model does not change, either.
arrival curvesfor event streams, and similaervice curvefor exe- However, resource sharing —irrespective whether processor, bus, or
cution modeling. Linear approximatiof|[is used to feed the curves network— induces non-constant delays. This is reflected e a
into an existing recurring task approadj.[The approach has al- sponse time intervatonstrained by upper and lower response time
ready been adopted to network processor design, where numerimalnds. This introduces uncertainty to the output timing, we can
(or statistical) stream modeling is commonly used. But it suffersot predict the exact event arrival time, anymore. In other words, a
from its missing abstraction level, since its is not straight-forward toon-constant delay adds jitter characteristics to the event stream.
re-extract key event model properties such as a period —required ifAn example system is shown in Figu2énterating two function-
most real-time scheduling techniques— from these numerical curvally independent subsystems via a shared bus or network (NoC). The
Finally, the approach is currently limited to worst case curves (dysirely periodic data stream coming from tiilg component enters
to the used local analysis techniques) such that scheduling anoth&-network on chann€l;. Communication scheduling analysis can
lies as described above are not covered. use the simple model of periodic events to capture this communica-
But both compositional approaches are a good starting point fiwn. Due to interference with the other channels, the data on chan-
the following considerations. They use some event stream represeelC3 experiences non constant network delays. Hence, the data
tation to allow component-wise local analysis. The local analysésrives at the DSP generally periodic but with a jitter, determined by
results are, then, propagated through the system to reach a gldbaldifference between the maximum and minimum network delay
analysis result. (or network response time). We can directly use the known jitter

Table 2: The ngcrfunctions of the new models

model params constraints both periodic sporadic
Nac(At) Nac(At)

simple <T> T>0 [%W {%J 0

w/jiter < T,J> T>J>0 (%1 max(O,

w/burst <T,JJd> J>T>0 d>0 minq%w?[%ﬂ) max(O,

event model 2] to analyze the DSP scheduling. In effect, the net3.1 A Simple Self-Contained Event Model Set

work just transfqrmed the strgam from owell knownmodel into. We define two classepgriodic andsporadic and we have three
another, and existing analysis techniques can be safely applied{gqels in each classimple with jitter, andwith burst

each component. That means that we keep on with periodic and periodic with jit-

Unfortunately, this is not always the case, as the question magks ¢ define durstas ajitter, that exceeds the periodn order
atthe outputs of the remaining network chann€lsandCa, in Fig- {4 |imit the maximum transient frequency, we additionally define a
ure 2 show. The alreadjittered output from the CPU will experi- minimum distancel between any two events, similar to Tindell's
ence additional distortion on the network, possibly resulting in a jifrner period[32]. Table2 contains thacrfunctions of the models.
ter that exceeds the period. But in many analysis approaches whickp,q sporadicclass generalizes the classEriodic models, in
support periodic events with jitteg], the jitter must not exceed the 4, ¢ only then,,, functions are set to zero. That means, every spo-

given period. However, the above example shows that every COfic model can be assumed to be the corresponding periodic model

ponent potentially increases the jitter, so at some point, we woyldine \orst case, which goes along with the early applications of

need to transition to Tindell's model of sporadic bursts, because ‘é’ﬁoradic events in real-time analysesT.

do not know of a model of periodic events with burst. _ There are three advantages of these six models over the four pre-
Surprisingly, this transition is relatively complex, since Tindell' ioysly identifiedwell knownones. First, the transitions frosim-

model is not intended to provide large jitter support. Based on sp@e 1 jitter to burstis even more intuitive than it was possible with

radic events, it has to be treated independent of the known periogifye|is burst model. It just accounts for large jitters. Secondly,

models. Hence, we further lose the generally periodic nature of the, heriodic and sporadic models use the same underlying models,
stream. This s, as we will see later in Sectipone of the key event |, nich further reduces the complexity.

stream properties with respect to analysis accuracy and adaptabilitmowever, the major advantage of this new set of models is a con-
As another example, look at the sporadic event stream from thgyional one: The new set of models is self-contained with respect
sensoiSens. The network adds jitter characteristics, but there is nQ e previously mentioned propagation step. In other words, no
model of “sporadic events with jitter”. Again, we would need tq,5yagation brings us out of these six models, which was the first
conservatively transition into sporadic with burst. major challenge mentioned in Secti@. Jitters are allowed to
This lack of appropriate output event models shows that such @iceeq the period far over, and our new definitiorbofst is just
fects have received only little attention in literature, so far.24[he intuitive characterization of the effects of large jitters. This suf-
we developed complex propagation functions to stay within the fojgiency of a bounded set of intuitively structured models is likely

models. However, we finally decided to define a slight, intuitive & attract MpSoC designers attention to the overall ideas of formal
tension into a comprehensive set of six models as a better matchdg_time analysis.

the simulation pattern sequences that SoC designers are used to. \ith respect to the previous example (F&), we can now rep-

resent all event streams using only the six new models: ch&nnel

outputssporadic events with jitteto the CPU, while channel,
o turns theperiodic with jitter at the CPU output into periodic with

% periodic .

£ W/burst burstat the input ofHW.

This six class model appears as an efficient compromise between
model simplicity and intuition on the one hand, and completeness on
the other hand. As we have explained in S22. it can be directly —
without any approximation— applied in connection with established
local analysis techniques which we consider a major advantage.

It should, however, be mentioned that the six models still do not
fully cover arbitrary event stream properties. This is an almost
unavoidable limitation, since the extensions to more general mod-
els exhibit conceptional disadvantages, as mentioned earlier in Sec-
Figure 2: Propagation Jitter due to Network Arbitration tion 2.3. It will, therefore, not be further considered, here.

sporadic

sporadic - wl/ jitter

35 periodic
35 w/ jitter

periodic

periodic >
-

4. EVENT MODEL TRANSFORMATIONS ple sporadicevent model, as defined in Sectidri. We see, that the

In the previous section, we solved the Challenge 1 where we cdiven model is periodic with burst, so the models seem incompati-
sidered the specialties of component output streams. Now, we tadig- Butin this example, we can derive the required simple sporadic
the second challenge identified in Sectid, that is concerned with Parameter of théarget modefrom the parameters of the given pe-
component input streams. We want to underline that this is nofigdic with burstsource modelMoreover, the minimum distanae
specific problem of the newly defined event models. It also exigt the burst model already is the sought-after paranigtamimum

for any other set of model2f]. However, the new set of models Interarrival time) for the sporadic model- d). _
allows much more elegant solutions. We can formally prove this through thgcrfunctions from Ta-

As already mentioned in Sectidh4, there are —in the SoC de- ble 2. We have to guarantee that the following two equations hold
sign world— situations, where the input stream of some componéfHe:
is constrained to meet a particular models, as shown in Figfae N A
. If the input stream is represented using another model, the anal- Nactsourcd At)
ysis can not be directly applied. However, many of such seeming n- (A1)
incompatibilities can be solved by event model transformations. actsoure
We distinguish two types of transformations: those transforma-
tions that only transform the formal stream representation, we Ca”Theseevent model compatibility testheck whether the source

them Event Moc_ie! Interfaces (EMIF); gnd those which require [&ream behavior is covered by the target stream model, if both —the
also adapt the timing of the stream to find an EMIF, we call thergnCtual stream, and the required model- are fully specified.
Event Adaptation Functions (EAFs). We have shown that finding the right target model parameters can
be complex when allowing arbitrary modef®3]. But within our
4.1 Event Model Interface-EMIF self-contained set of models, most transformations are relative sim-
We start introducing EMIFs using the already known examplgle and straight-forward. This is because we —in contrast to the
but this time, we focus on the input of th&/V component. From work in [23]- are consistently extending two simgbase models
Section3, we know that the input stream is periodic with burst(periodic and sporadic), rather than allowing arbitrary model com-
Let us now assume that tHéWW component is an IP component,binations.
i.e. we do not know the internal details nor did the IP supplier
give us an analysis. We just know —possibly from the components
specifications— that there exists a maximum allowed input frequency,
a situation which is not uncommon for HW coprocessors.
The information of a maximum frequency directly translates into
a minimum distance of input events, which —in turn— equagra

NEcttarged At) 2

!
<
|
> Nacrrarge(At) (3)

simple
periodic

Figure 4: Existing Lossy and Lossless EMIFs in the Gen-
eral Case

simple
sporadic

- simple .
i sporadic required

?

Basically, an EMIF is always possible, when the target model is
more general than the source model. Two classes of EMIFs can be

periodic ¥ periodic easily distinguished:

: w/ burst given = w/ burst
= Lossless Transformation.Each base model can be directly trans-
formed into the corresponding models with jitter or burst. The pa-
rameters are the same, and any new parameter —a parameter that was
not defined in the source model- can be safely set to zero. This is
o inar given indicated by the solid arrows in Figure In these EMIFs, we can

show equality in both equatior®sand3, and we consider the trans-
formations adosslessi. e. the target model is able to capture the
full details of the source stream.

Such transformations can besslesslyreversible (not shown in
the figure), but only if the source stream represersisexial casef
the target model, e. g. jitter models with the jittebeing zero.

(a) Input Stream Incompati- (b) Event Model Interfaces Lossy Transformation. Each periodic model can be directly

simple required
periodic

bilities and Adaptation Functions transformed into the corresponding sporadic event model (indicated
) _ o by dashed arrows). Such transformationslassy[23], i. e. the tar-
Figure 3: Solving Input Event Stream Incompatibilities get model is less expressive than the source model. Due toske

using EMIFs and EAFs nature of these transformations, they are not invertible.

There are few additional lossy EMIFs such as the transformation i 0% simple
from sporadic with jitterinto simple sporadic The new sporadic < periodic
period can be calculated as the difference between the source period
and the source jitter: -, - ==
J : Sens! CPU : HW JI
R— | T Y
Ttarget: Tsource— Jsource ! Z periodic ¥

- w/ burst !

sporadic 3

And the example at the beginning of this section already demon- —

strated the transformation from a bursty model into the simple spo-
radic model.

Clearly, we can combine subsequent transformation steps, e. g. from
simple periodido simple sporadito sporadic with jitter However,
there are still certain missing EMIFs.

4.2 Event Adaptation Function — EAF
Obviously, we can never transform a sporadic model into a peri-

odic model. The irregular naturg][of sporadic streamsf;=0) non-functional event stream dependency in the system of Figjure
makes the compatibility equatidhfail —except the useless case ofwhich was only introduced by communication sharing between the
a zero period. Similarly, we can —in the general case— not redugigannel<C; andC,.
aburstinto ajitter into asimplemodel. But we carforce a more Upon receipt of new sensor data, the CPU activates prdegss
general event stream into a more constrained model by reducing {{igich preempt#3 and thus distorts the (initially periodic) execu-
uncertainty related to the jitter. tion timing of P3. P3’s output, in turn, enters the network on chan-
We again start with a simple, intuitive example. Recall the DSRel C,, where it now interferes with the arriving sensor dataCgn
subsystem in Figur. The periodic output ofP; was distorted by The interference of the two functionally independent chanr@ls,
the network and arrives at the DSP input with a jitter. But the DSEhdC,, closes the dependency cycle.
requires exactly periodic input to run efficiently as planned. We cansuch event flow cycles are not an artificial result of global anal-
simply insert a buffer between the network and the DSP that elinyisis but exist in practice. They represent a complex performance
nates the network-induced jitter. As a result, we have reconstructegzard in MpSoC design, since the dependencies are subtle and dif-
a purely periodic event stream the DSP can deal with. Similarly, Weult to detect with current design practices.
canresynchronizgeriodic event streams with burst. With the approach of Sectid designers can now analyze such
In [23], we have shown, how tight buffer sizes can be derivegycles by iterative propagation of event streams until the event stream
directly from the model parametérsThis helps designers to opti- parameters converge (non-critical cycle) or a deadline or other tim-
mize buffer memory which is a limited resource on MpSoCs. Anaing constraint is violated (critical cycle). This iteration process ter-
ogously, we can easily derive the upper and lower bound bufferifiginates, because the event timing uncertainty —that is the best-case
delays which add to the overall event stream late@6}. [to worst-case response time jitter interval- grows monotonically
To conclude the overview about EMIFs and EAFs, FigB(e) with every iteration (see Se8).
shows the integration of EMIFs and EAFs as design elements intoFor cases in which no convergence occurs automatically, we can
the system model. This gives designers an adequate understaé EAFs to break up the dependency cycle and enforce conver-
ing of the effects of system integration under real-time constrainigence by reducing the timing uncertainty, illustrated by the addi-
They do not actually need to understand the transformations in dgnal EAF buffer in Figures. Hence, the approach allows designers
tail, the transformations rather offload the complexity from the sy$o also optimize buffering in far less obvious situations, compared
tems designers and lets them focus on their top priority problems,simple, functionafeed-bacicycles which the individual function
i. e. putting the components together. designers could fully oversee.

5. CYCLIC EVENT STREAM DEPENDEN- 6. EXPERIMENTS

CIES ' _ ~ So far, we defined the models and presented event stream model
While the above buffering example was straight-forward and igsopagation, interfacing, and adaptation based on these models.
tuitive, the insertion of EAFs can be of central concern in systemsygw we demonstrate the applicability of the approach by fully
with cyclic event stream dependencies. analyzing the MpSoC example in Figuausing only the six event

~ Cyclic data dependencies through feed-back are heavily used f@5els and a well known analysis techniques, namely Tindell’s ap-
implementing complex filter functions in control or signal Processsroach B2.

ing applications. Designers of such systems intuitively insert resyn-tpe experiments will heavily exploit the new ideas, but will at the
chronization buffers to break up such cycles. same time assume a design engineer from the SoC community per-

More complex are situations, where cyclic dependencies are ggfming the experiments. In other words, we will hide all the com-
reflected in the system function. Figuseshows an example of a pjexity in the local component analysis —which is already accepted
INote that in P3], we used a periodic version of Tindell's specifichy this community—, to demonstrate the tremendous simplification
burst model; however, the key ideas remain. of our proposed approach.

- .

<« Ssimple
< periodic
-

Figure 5: Non-Functional Dependency Cycle

6.1 Set-Up The communication times of the network packets depend on the
network speed. Since we perform several experiments with differ-
The Actuators ent network speeds, the actual time values are provided at the corre-

) sponding experiment results sections.
There are three actuators: The sensor sporadically sends data blocks

of 8kb size toP1, with a maximum sending frequency of7kHz,

which corresponds to gporadic event modevith a minimum spo- 7. RESULTS
radic period ofﬁlk—HZ =588us Proces#; is periodically activated We explored several different networks with different bit widths
by the RTOS (real-time operating system) on the CPU with a pand clock speeds. The tables below will show the large differences
riod of m}ﬁz = 50us The high-performance DSP application orbetween different network speeds. Furthermore, we performed one
IP; has a sending frequency of 1dz, corresponding to a period set of experiments with a buffer inserted between the CPU and the

of 7,143us network to eliminate the possible jitter on the input of chargl
just as explained in Sectidn In the second set of experiments, we
The Network omitted the buffer.

Instead of sending the complete data block, the data packets 29 Experiments with Buffer

fragmented to avoid too long blocking times. EadtB&lata block

from the sensor is split into 32 packets of §Beeach, 25Bytes The buffer at the input of chann€b resynchronizes the possibly
plus Bytesprotocol overhead—address, length, and CRC. Kig 3bursty —or at least jittery— stream froRy on the CPU (see Fig-
blocks fromPs are split into 24 packets dfl28+ 6) = 134oytes Uré 5) to a purely periodic stream. Hence, the network inputs are
This channel, has a higher priority than chann@]. The highest- fully specified, allowing us analyze the netwoskthout the itera-
priority channelCs does not split the DSP data packets, but onl{fons mentioned in SectioB. After the network is analyzed, we

adds the Byteprotocol information. ave the input stream &f;, and we can analyze the CPU schedul-
The overall average network loaget is: ing. This will not only yield the performance of proce3s but also
Lnet = Lsensor T Lepu T Lpsp the output event stream &%, which is finally required for dimen-
= 14,2528Vibyte/s + 64,32Mbyte/s + 144 2Mbyte/s sioning the buffer23].
222 7Mbyte/s We performed experiments with three different network speeds:
480Mbyte/s, 300Mbyte/sand 24Mbyte/s, corresponding to an av-
Execution and Communication Times erage network utilization dfinet = 92,82%, 7426%, and 4641%,

For simplicity, thecore execution timesf the two processes on therespectlve]y. We expgct that the pr(').pag.atlon Jiter on cha@pm-“
CPU are assumed constant: p§@or P; and 1Qusfor P3. This creases with increasing network utilization. In effect, the input jitter
8f P1 will increase, in turn increasing the output jitter (or burstiness)

of P3, finally resulting in increasing buffering requirements.
Detailed results are provided in the appendix. In each table, the
first column contains the process or network channel identifier, the
< simple second column provides the input jitter. The actual process or packet
< g response time is given in the third column, and the output jitter is
- provided in the fourth column. Note th&; has no output. For
each experiment, we also recorded the number of iterations of the
response time calculation (fifth column). Finally, we also recorded
%odic the number obusy period windowsas defined by 17, 32] which
simple 2 . F W/ burst
sporadic > jv?:;?::ci EMIF
£

is not a limitation of the approach but rather a clarification of th
following tables.

sporadie measure of the dynamic complexity of the component’s schedule.
Experiment 1: The network speed is 48Mbyte/s. The packet
SkB—s 325(256+ 6) byte communication times are 15us 6,7us and 215us for a com-
plete data packet —possibly consisting of several network packets
(see Sec6.1)— on channel’;, C,, andC,, respectively. The tim-
ing analysis results are shown in Tadlen the appendix. Using the
approach in23], we can bound the buffer size. In a worst case situ-
ation, we need to stor{ez‘%f} = 12 events, each representingkd3
data block, resulting in a 3® buffer.

Experiment 2: The network speed is 3Mbyte/s. The packet
communication times are 295us 10, 72us and 343uson channel
Cq, Gy, andCy, respectively. For the results, see Tahld he differ-
ences compared to Experiment 1 are in bold letters. We see, that the
network output jitters have actually increased. Also the number of
Figure 6: Example System with EMIFs and EAFs iterations for the response time calculation has increased. However,

i simple have to be analyzed in the presence of bursts. They represent some
Juax=1,7kHz, s=8kB w/ EAH

f=140kHz, s=1kB

- b
periodic periodic
->

this has not yet affected the execution of the CPU, i. e. the response Table 3: Results Overview

times are still the same as in experiment 1. So, also the bufferingnetwork || network | buffer | C; output | C, input | C; worst-
requirements remain constant. This will change in the next experi- speed util size jitter jitter case resp.
ment. [MByte/s] [%] [kB] (Mg [Hg (K
Experiment 3: The network speed is reduced to Rlfiyte/s. 480 46,41 36 17,45 — 34,95
The packet communication times are, 83us 13 4us and 429us 300 74,26 36 69,46 — 97,41
on channely, C;, andC,, respectively. For the results, see Talle 240 92,82 37 256,29 — 291,22
Now, the output jitter ofP3 has increased, and the buffer is now 480 46,41 — 85,85 265 103,35
required to store 13 events (@). Furthermore, 33 response timg 300 74,26 — 276,13 275 304,08
iterations [13usy-period windowsvere necessary compared to 14 250 89,11 — >987,82| >515 > 1ms
[7]in the previous experiment.
7.2 Experiments without Buffer grow, and the deadline of chanr@] is quickly violated (after the

_ _ third iteration step).
_ In the second set of_experlments, we gmltted the buffer at theThe results of the experiments show two things: First, our ap-
input of channelC,. This has —as theoretically explained in Secyoach can be configured to analyze heterogeneous MpSoC designs
tion 5- severe consequences for the overall analysis procedure. Y\ ot the need for highly specialized and complex formal models.
now have to start the network analysis with an assumption on thg ysed formalisms are of similar complexity than the ones already
not yet known output oP3. We start by assuming a periodic streanyigely accepted in industry. And secondly, the approach proved ap-
with a frequency of 2kHz—just as in the experiments with buffer—,yjicaple and efficient. Especially the cyclic dependencies could be

and analyze the network and the CPU. Then, we have to check {Bgq|ved without major convergence problems. This demonstrates
actual output oP3 against our assumption. This process is iteratgglo general validity of the approach.

until the assumption is met, or —in case of the last experiment— the
given deadline for packets on chanfgl(1mg is missed.

Experiment 4: The network speed is 48@byte/s, just as in Ex- 8. CONCLUSION
periment 1. The results are shown in TalBleIn the final results ~ The component integration step is critical in MpSoC design since
after iteration 2, we can see that the bursty output of chafipel it introduces complex component performance dependencies. For
now heavily distorts the timing of chann€}. In the previous ex- instance, the cyclic dependencies in Figbrean not be fully over-
periments this was not the case because of the buffer. However, s@en by anyone in a design team. Finding simulation patterns cov-
observe no severe consequences for the overall system performaetsg all corner cases will soon become virtually impossible as Mp-
mainly due to the very conservative over-dimensioning of the nésoCs grow in size and complexity, and performance verification is
work. If we reduce the network performance as in Exp. 2 and 3, viecreasingly unreliable. In industry, there is an urgend need for for-
expect notable changes. mal performance verification support in MpSoC design.

Experiment 5: The network speed is now set to 3@byte/s, We have seen that the host of work in formal real-time analysis
as in Experiment 2. The results are shown in Tabl&Ve can see can be nicely applied to individual, local components or subsystems.
that the iteration does not terminate before step 3. The jitters ha¥et the well established view on scheduling analysis has shown to
increased but can still be bounded. be incompatible with the component integration style which is com-

Experiment 6: In the final experiment, the network speed is senon practice in MpSoC design due to heavy component reuse. Not
250Mbyte/s, already very close to 240byte/s in Experiment 3. surprizingly, output event models and their importance in system-
The packet communication times are 33us 12 86us and 412us level analysis integration have been widely neglected, so far.
on channelCy, Cp, andCy, respectively. In Tabl®, we see that We saw that the existing input event models are incompatible
the jitters on the channels constantly increase. This further leaslgh the event streams at component outputs, thereby prohibiting the
to burst execution oP;, and the process response times quicklgystem-level composition of several local techniques. By slightly
increase. We can stop the iteration after step 3, since the deadlinextending the most popular and comprehensible event models —with-
channelC; is violated. out increasing their complexity at the same time— we could over-
. come these incompatibilities. The newly defined self-contasied
7.3 Result Interpretatlon class modehppears as an efficient compromise between model sim-

Table3 gives an overview about the six experiments. We can seécity and completeness.
that the jitter on the lower priority chann€l gradually increases Starting from these models, we then developed model transfor-
with decreasing network performance. However, the buffer at tineations in order to satisfy the interfacing requirements. As a result,
input of C, resynchronizes these effects. So, the bus load is (come obtained a configurable and compositional analysis procedure
pared to the experiments without buffer) relatively determinate. that is —in general— capable to analyze the performance of arbitrar-

When the buffer is removed, the system is difhbleas long ily complex MpSoC designs. The transformations consider event
as the network performance is above a certain limit. Only we catream propagation, event model interfacing, and iterations in cyclic
see that the jitters increase much faster compared to experimensydtemswvithoutdegrading model simplicity. Ultimately, this com-
to 3. If the network performance becomes too low, the jitters on boffositional approach can pave the way for a general application of
points of interestC; output andC, input) seem to exponentially real-time analysis techniques in MpSoC design.

9. REFERENCES [18] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average

case behavior. Ifroceedings Real-Time Systems Sympasiom

pages 166-171, IEEE Computer Society Press, 1989.
[1] Rajeev Alur and David L. Dill. A theory of timed automata. [19] C. L. Liu and J. W. Layland. Scheduling algorithms for

Theoretical Computer Scienck26(2):183-235, 1994. multiprogramming in a hard-real-time environmefaurnal

[2] N.C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and of the ACM 20(1):46-61, 1973.

A. J. Wellings. Applying new scheduling theory to static ~ [20] Mentor GraphicsSeamless Co-Verification Environment
priority preemptive schedulingournal of Real-Time http://www.mentorg.com/seamless/.
SystemsB(5):284-292, 1993. [21] P. Pop, P. Eles, and Z. Peng. Bus access optimization for

[3] N.C. Audsley, A. Burns, M. F. Richardson, and A. J. distributed embedded systems based on schedulability
Wellings. Hard real-time scheduling: The deadline monotonic analysis. InProc. Design, Automation and Test in Europe
approach. IrProceedings of the 8th IEEE Workshop on (DATE 2000) Paris, France, 2000.

Real-Time Operating Systenpages 133-137, 1991. [22] P. Pop, P. Eles, and Z. Peng. Schedulability analysis and

[4] AXYS Design.MaxSim Development Suite optimization for the synthesis of multi-cluster distributed
http:/iwww.axysdesign.com/products/produntaxsim.asp. embedded systems. Rroc. Design, Automation and Test in

[5] S. Baruah. Dynamic- and static-priority scheduling of Europe (DATE 2003)Munich, Germany, 2003.
recurring real-time tasksournal of Real-Time Systems [23] K. Richter and R. Ernst. Event model interfaces for
24(1):93-128, 2003. heterogeneous system analysisPhoc. of Design,

[6] CadenceCierto VCC Environment Automation and Test in Europe Conference (DATE'@2ris,
http://www.cadence.com/products/vcc.html. France, March 2002.

[7] Samarijit Chakraborty, Simoniizli, and Lothar Thiele. [24] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model
Approximate schedulability analysis. Rroceedings IEEE composition for scheduling analysis in platform design. In
Real-Time Systems Symposidrastin, TX, USA, 2002. Proceeding 39th Design Automation Confereriéew

[8] P.Chou and G. Borriello. Modal processes: Towards Orleans, USA, June 2002.
enhanced retargetability through control composition of [25] Semiconductor Industry Associatic2001 International
distributed embedded systems.RAroc. Design Automation Technology Roadmap for Semiconductors
Conference (DAG)pages 88-93, San Francisco, USA, June http://public.itrs.net/Files/2001ITRS/Home.htm.

1998. [26] Sonics.SiliconBackplane puNetwork

[9] S. Dutta, R. Jensen, and A. Rieckmann. Viper: A http://www.sonicsinc.com/Pages/Networks.html.
multiprocessor soc for advanced set-top box and digital tv [27] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling
systems|EEE Design & Test of Computersages 21-31, for hard real-time systemgournal of Real-Time Systems
Sip—Oct. 2001. 1(1):27-60, 1989.

[10] ETAS, formerly LivedevicesReal-Time Architect [28] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo.
http://www.livedevices.co.uk/realtime.shtml. DEADLINE SCHEDULING FOR REAL-TIME SYSTEMS —

[11] R. Graham. Bounds on multiprocessor timing anomalies. EDF and Related Algorithm&luwer Academic Publishers,
SIAM Journal on Appl. Math., 196917:416-429, March Boston, Massachusetts, USA, 1998.
1969. [29] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele.

[12] K. Gresser. An event model for deadline verification of hard Real-time calculus for scheduling hard real-time systems. In
real-time systems. IRroceedings 5th Euromicro Workshop Proceedings International Symposium on Circuits and
on Real-Time Systemsages 118-123, Oulu, Finland, 1993. Systems (ISCASFeneva, Switzerland, 2000.

[13] K. Jeffay and S. Goddard. A theory of rate-based execution.[30] TimeSys.TimeSys
In Proceedings Real-Time Systems SympadRitaenix, http://www.timesys.com/index.cfm?bdy=todisly_ model.cfm.
Arizona, 1999. [31] K. Tindell. Adding time-offsets to schedulability analysis.

[14] M. Joseph and P. Pandya. Finding response times in a Technical Report YCS 221, Department of Computer
real-time systemrhe Computer JournaR9(5):390-395, Science, University of York, UK, 1994.
19909. [32] K. Tindell, A. Burns, and A. Wellings. An extendible

[15] H. Kopetz and G. Gruensteidl. TTP - a time-triggered approach for analysing fixed priority hard real-time systems.
protocol for fault-tolerant computing. IRroceedings 23rd Journal of Real-Time Systen©{2):133-152, Mar 1994.
International Symposium on Fault-Tolerant Computipgges [33] K. Tindell and J. Clark. Holistic schedulability analysis for
524-532, 1993. distributed real-time systemblicroprocessing and

[16] Hermann KopetzReal-Time Systems — Design Principles for Microprogramming - Euromicro Journal (Special Issue on
Distributed Embedded Applicationisluwer Academic Parallel Embedded Real-Time Systerd€)117-134, 1994.
Publishers, Boston, Massachusetts, april 1997. [34] Tri-Pacific Software, INcRAPID RMA

[17] J. Lehoczky. Fixed priority scheduling of periodic task sets http://www:.tripac.com/html/prod-fact-rrm.html.

with arbitrary deadlines. IRroceedings Real-Time Systems [35] TTTech AG.TTP - Time-Triggered Protocol
Symposionmpages 201-209, 1990. http://www.tttech.com/.

Appendix A — Tables

Table 4: Experiment 1 Table 8: Experiment 5
ID input resp. output iter- # of ID input resp. output iter- # of
jitter [pug time [ug jitter [ug || ations | windows jitter [us time [pg jitter [ug || ations | windows
C1 0 [17,5;34,95]| 17,45 3 1 Iteration 1
C 0 [6,7;11,55] 4,85 3 1 G 0 [27,95;97,41] 69,46 6 1
C3 0 [2,15;2,70] 0,55 1 1 Co 0 [10,72;25,31] 14,59 4 1
Py 17,45 [250;265] — 1 1 Cs 0 [3,43:4,3] 0,87 1 1
P3 0 [10;275] 265 14 7 Py 69,46 [250;265] — 1 1
P3 0 [10;275] 265 14 7
Iteration 2
) Cy 0 [27,95283,07 | 255,12 10 1
Table 5: Experiment 2 G || 265 | [10,722531]| 1459 || 4 1
ID) input . resp. ”output itgr— '# of Cs 0 [3,43:4,3] 0.87 1 1
jitter [pug time [ug jitter [ug || ations | windows P, 255,12 [250;265] — 1 1
G 0 [27,9597,41]| 69,46 6 1 P3 0 [10;285 275 33 13
Cs 0 [10,72;25,31] 14,59 4 1 lteration 3
G 0 [3:43:4.3] 0.87 1 1 G 0 [27,95304,08 | 27613 || 11 1
Py 69,46 [250;265] — 1 1 [275 [10,72;25,31] | 14,59 4 1
P3 0 [10;275] 265 14 7 Cs 0 [3,43:4,3] 0,87 1 1
P 276,13 [250;265] — 1 1
P3 0 [10;285] 275 33 13
Table 6: Experiment 3 | Iteration terminates after this step!!!
ID input resp. output iter- # of
jitter [pug time [ug jitter [ug || ations | windows
C 0 [34,93;291,22]| 256,29 16 1
[0 [13,4,40,24] | 26,84 5 1 _ i
c o [4.29.5.39] 110 1) _ Table 9: Experiment 6 .
P, || 25629 | [250:265] — 1 1 D |} input fesp. output) iter- 1 #of
jitter [ug time [ug jitter [ug || ations | windows
P3 0 [10;285] 275 33 13
G 0 [33,53;233,79] | 200,26 13 1
C 0 [12,86;34,51] 22,65 4 1
C3 0 [4,12;5,17] 1,05 1 1
Table 7: Experiment 4 Py || 20026 | [250:265] — 1 1
ID input resp. output iter- #of P3 0 [10;275] 265 14 7
jitter [ug time [ug jitter [ug || ations | windows Iteration 2
lteration 1 Cy 0 [33,53619,33 585,8 18 1
C1 0 [17,5,34,95] 17,45 3 1 Cy 265 [12,86;34,51] 22,65 4 1
C 0 [6,7;11,55] 4,85 3 1 G 0 [4,12;5,17] 1,05 1 1
Cs 0 [2,15,2,70] 0,55 1 1 Py 585,8 [250512,7 — 1 1
P, || 1745 [250;265] — 1 1 Ps 0 [10;529 515 53 20
P3 0 [10;275] 265 14 7 Iteration 3
lteration 2 Cy 0 [33,531021,3% | 987,82 21 1
C1 0 [17,5:103,35 85,85 7 1 Co 515 [12,86;34,51] 22,65 4 1
C 265 [6,7;11,55] 4,85 3 1 G 0 [4,12;5,17] 1,05 1 1
Cs 0 [2,15;2,70] 0,55 1 1 P1 987,82 [250:1314,4 — 1 1
P 85,85 [250;265] _ 1 1 P3 0 [10;985 975 >100 >30
P3 0 [10;275] 265 14 7 | Termination because of deadline violation on charthel

Iteration terminates after this step!!!

	Introduction
	Known Approaches
	The One-Model Approaches
	Model Commonalities
	Subsystem Composition
	Models and System Composition

	Output Event Models
	A Simple Self-Contained Event Model Set

	Event Model Transformations
	Event Model Interface--EMIF
	Event Adaptation Function -- EAF

	Cyclic Event Stream Dependencies
	Experiments
	Set-Up

	Results
	Experiments with Buffer
	Experiments without Buffer
	Result Interpretation

	Conclusion
	REFERENCES -9pt

