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Abstract
Today, only very few techniques out of the host of work on for-
mal performance and timing analysis have been adopted in MpSoC
(multiprocessor system-on-chip) design. One of the key reasons is
a mismatch between the scheduling models assumed in most for-
mal approaches and the heterogenous world of MpSoC scheduling
techniques and communication patterns. This heterogeneity results
from IP reuse and aplug-and-playdesign style, required to effec-
tively reach the necessary design productivity. A second problem is
the model complexity. While complex, specialized models can find
their way into industry niches, their broad acceptance is extremely
doubtful. In this paper, we review the existing scheduling analysis
techniques with respect to these key requirements and derive a good
compromise between model simplicity on the one hand, and appli-
cability to MpSoC design on the other hand. The approach repre-
sents system-level scheduling analysis as a flow-analysis problem
for event streams that can be configured to reuse the existing local
scheduling analysis techniques. We define transformations between
few key event stream models to meet the interfacing requirements of
the compositional design style. An example demonstrates the appli-
cation of the approach, as well as the worthiness of the results.

1. INTRODUCTION
With increasing embedded system design complexity there is a

trend towards heterogeneous architectures. Todays high-end mul-
tiprocessor systems-on-chip (MpSoCs) integrate multiple program-
able processor cores, specialized memories, and other intellectual
property (IP) components on a single chip using complex networks
on-chip (NoC). Several operating systems and bus protocols can be
found on such MpSoCs.

Heterogeneous MpSoCs have become the architecture of choice
in major industries such as network processing, consumer electron-
ics, and automotive systems. Since no homogeneous design strategy
is sufficiently optimal for all aspects of MpSoC, their heterogeneity
inevitably increases with IP integration and component specializa-
tion which designers use to optimize performance at low power con-
sumption and competitive cost.

Figure1 shows an example MpSoC, the Viper [9] processor for
multimedia applications. Based on the Philips Nexperia platform, it
includes two cores, weakly programmable coprocessors, and fixed-
function coprocessors, as well as various memories and caches omit-
ted in the figure. A complex network of bridged high-speed and
peripheral buses connect these components.

Many key components are either reused or supplied externally,
such as the MIPS and TriMedia processor cores. Tomorrows Mp-
SoCs will be even more complex, and using such IP library elements
in a plug-and-playdesign style is the only way to reach the neces-
sary design productivity.

Hence, systems integration is becoming the major challenge in
MpSoC design. The complex hardware and software component in-
teractions –including heterogeneous scheduling environments– pose
a serious threat to all kinds of performance pitfalls, including tran-
sient overloads, memory overflow, data loss, and missed deadlines.
TheInternational Technology Roadmap for Semiconductors(ITRS,
[25]) names system-level performance verification as one of the top
three codesign issues.

It might surprize that –up to now– only very few of the count-
less formal analysis approaches from the real-time community have
found their way into the SoC (system-on-chip) design community
by means of tools. Regardless of the known limitations of sim-
ulation such as incomplete corner-case coverage and pattern gen-
eration, timed simulation using e. g. Mentor Graphics Seamless-
CVE [20], Axys MaxSim [4], or Cadence VCC [6] is still the pre-
ferred means of performance verification in MpSoC design. But
why is the acceptance of formal analysis still very limited?

One of the key reasons is a mismatch between the scheduling
models assumed in most formal analysis approaches and the het-
erogenous world of MpSoC scheduling techniques and communica-
tion patterns that are a result of a) different application character-
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Figure 1 The Viper Processor combines a MIPS RISC processor, a TriMedia TM32 VLIW DSP,
weakly programmable co-processors, fixed function co-processors, and different types of
memories and caches (omitted in the figure). A complex network of bridged high-speed and
peripheral buses connects these components.

Figure 1: The VIPER Processor



istics; b) system optimization and integration just as shown in the
example of Fig.1 which is still at the beginning of the MpSoC de-
velopment towards even more complex architectures.

Therefore, a new configurable analysis process is needed that can
easily be adapted to such heterogeneous architectures. We can iden-
tify different approaches: the holistic approach that searches for
techniques spanning several scheduling domains; and hierarchical
approaches that integrate local analysis with a global flow based
analysis, either using new models or based on existing models and
analysis techniques.

In the following section, we will more deeply review the exist-
ing analysis approaches from the literature on real-time analysis and
identify key requirements for their application to MpSoC design. In
Section3, we define a six class event model that serves as a suf-
ficiently optimal compromise between model simplicity and appli-
cability to MpSoC design. Section4 presents all necessary event
model transformations to be fully applicable to the compositional
MpSoC integration style. Specialties of event stream dependency
cycles are investigated in Section5. A set of expressive experiments
is carried out in section6. We interpret the experimental results,
before we draw our conclusions.

2. KNOWN APPROACHES

2.1 The One-Model Approaches
Some well established classical analysis techniques such as Rate-

Monotonic Scheduling [19] (RMS) consider a system of indepen-
dent tasks, and use simple task activation models, such as periodic
activation. More complex activation can be considered using peri-
odic tasks with the so calledrelease jitter[2], sporadic tasks[27],
and sporadically periodictasks [2], also referred to assporadic
bursts[32]. Based on these models, efficient schedulability tests [19,
18] andresponse timealgorithms have been proposed [14, 17, 2, 32].

Ri = Ci + ∑
j∈HP(i)

⌈
Ri

Tj

⌉
Cj ≤ Ti (1)

Equation1shows the popular RMS response time (Ri) approach [14],
whereCi andTi are thecore execution timeand the period of taski,
andHP(i) is the set of all higher priority task s. The equation can be
iteratively solved usingR = 0 as a starting point [2]. The periodic
nature of task activation is accounted for in the term⌈

Ri

Tj

⌉
determining the number of (periodic) preemptions due to higher
level taskj during the response time of taski.

A similar set of analysis techniques is available for EDF (earli-
est deadline first) scheduling [19, 13]. An extensive overview on
EDF scheduling and analysis can be found in [28]. Time-driven
techniques such as TDMA (time division multiple access) and RR
(Round Robin) have also been investigated [15, 16].

Such elegantly simple approaches already found their way to prac-
tice some time ago, and there exist today an increasing number
of commercial analysis tools such as TriPacific’s RapidRMA [34],
TimeWiz [30] from TimeSys, and Livedevices’ Real-Time Archi-

tect [10], all targeting at system load and process response time anal-
ysis. Communication network IP such as TTP [35] and Sonics [26],
supported by appropriate optimization tools based on formal analy-
sis, is becoming available. This shows that the systems community
is in fact seeking the assistance of formal real-time analysis. Unfor-
tunately, homogeneous scheduling strategies are assumed by these
relatively simple approaches, so they do not scale to large, hetero-
geneous systems.

There exist few approaches considering larger systems such as [21,
22, 33, 31] analyzing and optimizing static priority task scheduling
combined with a TDMA bus protocol. The authors of [28] extend
this to EDF task scheduling.

These holistic analysis techniques are certainly very effective for
their respective applications. There are standard architectures such
as in automotive communication where it makes sense to develop
such specialized techniques. However, holistic approaches require a
model complexity that grows with the size of the systems and with
the number of different scheduling techniques. New combinations
require new holistic models which counters the need for flexible in-
tegration and rapid design space exploration. This could explain,
why such holistic approaches are largely ignored by the SoC com-
munity even though there are many proposals for multiprocessor
analysis in real-time computing.

Other, very sophisticated approaches liketimed automatas[1] or
modal processes[8] consider the system as the cross product of
all subsystem states (or modes) that result from scheduling. These
models are even more complex than the mentioned holistic ones,
and analysis algorithms generally suffer from exponential complex-
ity. We are not aware of an application of such approaches to hetero-
geneous SoC. Therefore, they will not be further considered here.

Analysis techniques and their configuration to an individual het-
erogeneous MpSoC should be simple, efficient, and follow the inte-
gration of the hardware and software components just like it is done
with the combination of models for simulation. It should follow
the compositional design style which has been adopted in MpSoC
design to reach the tremendous design productivity requirements.
Such a feature would support the introduction of formal analysis to
MpSoC design.

Compositional design requires interfaces that describe commu-
nication between components and subsystems. When formulating
such interfaces, it appears reasonable to resort to the body of knowl-
edge in intuitive event models developed in the real-time systems
community. We will first review scheduling techniques and their
respective event models before we propose such an interface.

2.2 Model Commonalities
The accepted models have a key commonality. They use intuitive

event models! The assumption of a periodic event with jitter even
lets an experienced engineer create worst-case task activation sce-
narios. And this is exactly what the formal techniques do. As seen
in Equation1, they calculate a maximum number of task activations
for a given amount of time, to be used in accumulative worst-case
response time equations.

Quite similar, but less often fully understood, are the minimum
numbers required for best-case analysis to resolve scheduling anoma-
lies in distributed systems [11].



Table 1: The nact-functions of the four most popular event
models

model params n+
act(∆t) n−act(∆t)

periodic < T >
⌈ ∆t

T

⌉ ⌊ ∆t
T

⌋
jitter < T,J>

⌈ ∆t+J
T

⌉
max

(
0,
⌊ ∆t−J

T

⌋)
sporadic < t >

⌈ ∆t
t

⌉
0

burst < T, t,b>
⌊ ∆t

T

⌋
b+min

(
b,

⌈
∆t−b ∆t

T cT
t

⌉)
0

Table 1 gives an overview about thesen+
act- and n−act-functions

(maximum and minimum number of activations) for the four most
popular event models in literature: periodic [19, 18, 3] (used in
Equation1), periodic with jitter [2], sporadic [27, 2], and burst [33]
(also known as sporadically periodic [2]).

The known techniques, especially the ones from Lehoczky [17]
and Tindell [32], which allow arbitrary deadlines and are thus less
constrained, could potentially deal withanyevent model, as long as
thenact-functions are known.

2.3 Subsystem Composition
So far for the commonalities among the majorly accepted models.

We will now briefly review recent contributions which – in contrast
to single componentor holistic approaches– heavily exploit the ex-
istence of suchnact-functions for acompositionalanalysis approach.

Gresser [12] and Thiele [29] established a different view on schedul-
ing analysis. The individual components or subsystems are seen
as entities which interact, or communicate, via event streams. In
their compositional approach, an output event stream of one com-
ponent turns into an input event stream of a connected component.
Schedulability analysis, then, becomes a flow-analysis problem for
event streams that, in principle, can be solved iteratively using event
stream propagation.

Both approaches use a highly generalized event stream represen-
tation to tame the complexity of the event streams. Gresser uses a
superpositionalevent vector system, which is then propagated us-
ing complex event dependency matrices. Thiele et. al. use a more
intuitive model. They usenumericalupper and lower bound event
arrival curvesfor event streams, and similarservice curvesfor exe-
cution modeling. Linear approximation [7] is used to feed the curves
into an existing recurring task approach [5]. The approach has al-
ready been adopted to network processor design, where numerical
(or statistical) stream modeling is commonly used. But it suffers
from its missing abstraction level, since its is not straight-forward to
re-extract key event model properties such as a period –required in
most real-time scheduling techniques– from these numerical curves.
Finally, the approach is currently limited to worst case curves (due
to the used local analysis techniques) such that scheduling anoma-
lies as described above are not covered.

But both compositional approaches are a good starting point for
the following considerations. They use some event stream represen-
tation to allow component-wise local analysis. The local analysis
results are, then, propagated through the system to reach a global
analysis result.

2.4 Models and System Composition
After reviewing a representative subset of formal real-time analy-

sis, we can rephrase our analysis requirements. The formal compo-
sitional analysis should:

• support heterogeneous systems with different component and
subsystem scheduling strategies, since current MpSoC look
like this.

• capture communication via event models that are suitable to
allow the local application of standard analysis techniques be-
cause these are industrially accepted.

• do this in a form that encompasses the industrialplug-and-
playsystems integration style.

Our proposal closely follows the pros in the above overview. We
will use the simple event models (periodic, jitter, sporadic, and burst)
and apply the compositional idea of Thiele and Gresser to them.

This procedure reveals two previously unrecognized challenges:

• As a prerequisite for composition based on event streams,
component output streamsneed to be determined using only
the simple (comprehensible) event models.

• Additionally, each individual SoC component canconstrain
the acceptable input streamto a particular model, e. g. be-
cause of a fixed periodic scheduling (as found in DSP appli-
cations), or due to IP (intellectual property) protection. This
requirement arises from the industrialplug&play integration
style.

These challenges are not specific to our proposed approach. Rather,
they are key to generally making the compositional analysis com-
prehensibleandapplicable to current industrial designs.

3. OUTPUT EVENT MODELS
In the compositional approach, events are seen astravelingthrough

a network of components, thereby triggering task and communica-
tion execution.

Each input event experiences a delay when traveling through a
component. With a constant delay, the relative timing of events in
the stream remains constant, only the absolute time offset changes
from input to output. Thus, the event model does not change, either.
However, resource sharing –irrespective whether processor, bus, or
network– induces non-constant delays. This is reflected by are-
sponse time interval, constrained by upper and lower response time
bounds. This introduces uncertainty to the output timing, we can
not predict the exact event arrival time, anymore. In other words, a
non-constant delay adds jitter characteristics to the event stream.

An example system is shown in Figure2 interating two function-
ally independent subsystems via a shared bus or network (NoC). The
purely periodic data stream coming from theIP1 component enters
the network on channelC3. Communication scheduling analysis can
use the simple model of periodic events to capture this communica-
tion. Due to interference with the other channels, the data on chan-
nel C3 experiences non constant network delays. Hence, the data
arrives at the DSP generally periodic but with a jitter, determined by
the difference between the maximum and minimum network delay
(or network response time). We can directly use the known jitter



Table 2: The nact-functions of the new models
model params constraints both periodic sporadic

n+
act(∆t) n−act(∆t)

simple < T > T > 0
⌈

∆t
T

⌉ ⌊
∆t
T

⌋
0

w/ jitter < T,J> T > J≥ 0
⌈

∆t+J
T

⌉
max

(
0,
⌊

∆t−J
T

⌋)
0

w/ burst < T,J,d> J≥ T > 0, d≥ 0 min
(⌈

∆t+J
T

⌉
,
⌈

∆t
d

⌉)
max

(
0,
⌊

∆t−J
T

⌋)
0

event model [2] to analyze the DSP scheduling. In effect, the net-
work just transformed the stream from onewell knownmodel into
another, and existing analysis techniques can be safely applied to
each component.

Unfortunately, this is not always the case, as the question marks
at the outputs of the remaining network channels,C1 andC2, in Fig-
ure2 show. The alreadyjittered output from the CPU will experi-
ence additional distortion on the network, possibly resulting in a jit-
ter that exceeds the period. But in many analysis approaches which
support periodic events with jitter [2], the jitter must not exceed the
given period. However, the above example shows that every com-
ponent potentially increases the jitter, so at some point, we would
need to transition to Tindell’s model of sporadic bursts, because we
do not know of a model of periodic events with burst.

Surprisingly, this transition is relatively complex, since Tindell’s
model is not intended to provide large jitter support. Based on spo-
radic events, it has to be treated independent of the known periodic
models. Hence, we further lose the generally periodic nature of the
stream. This is, as we will see later in Section4, one of the key event
stream properties with respect to analysis accuracy and adaptability.

As another example, look at the sporadic event stream from the
sensorSens. The network adds jitter characteristics, but there is no
model of “sporadic events with jitter”. Again, we would need to
conservatively transition into sporadic with burst.

This lack of appropriate output event models shows that such ef-
fects have received only little attention in literature, so far. In [24],
we developed complex propagation functions to stay within the four
models. However, we finally decided to define a slight, intuitive ex-
tension into a comprehensive set of six models as a better match to
the simulation pattern sequences that SoC designers are used to.
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Figure 2: Propagation Jitter due to Network Arbitration

3.1 A Simple Self-Contained Event Model Set
We define two classes,periodicandsporadic, and we have three

models in each class:simple, with jitter, andwith burst.
That means that we keep on with periodic and periodic with jit-

ter, but define aburst as ajitter, that exceeds the period. In order
to limit the maximum transient frequency, we additionally define a
minimum distanced between any two events, similar to Tindell’s
inner period[32]. Table2 contains thenact-functions of the models.

The sporadicclass generalizes the class ofperiodic models, in
that only then−act functions are set to zero. That means, every spo-
radic model can be assumed to be the corresponding periodic model
in the worst case, which goes along with the early applications of
sporadic events in real-time analysis [27].

There are three advantages of these six models over the four pre-
viously identifiedwell knownones. First, the transitions fromsim-
ple to jitter to burst is even more intuitive than it was possible with
Tindell’s burst model. It just accounts for large jitters. Secondly,
the periodic and sporadic models use the same underlying models,
which further reduces the complexity.

However, the major advantage of this new set of models is a con-
ceptional one: The new set of models is self-contained with respect
to the previously mentioned propagation step. In other words, no
propagation brings us out of these six models, which was the first
major challenge mentioned in Section2.4. Jitters are allowed to
exceed the period far over, and our new definition ofburst is just
the intuitive characterization of the effects of large jitters. This suf-
ficiency of a bounded set of intuitively structured models is likely
to attract MpSoC designers attention to the overall ideas of formal
real-time analysis.

With respect to the previous example (Fig.2), we can now rep-
resent all event streams using only the six new models: channelC1

outputssporadic events with jitterto the CPU, while channelC2

turns theperiodic with jitterat the CPU output into aperiodic with
burstat the input ofHW.

This six class model appears as an efficient compromise between
model simplicity and intuition on the one hand, and completeness on
the other hand. As we have explained in Sec.2.2, it can be directly –
without any approximation– applied in connection with established
local analysis techniques which we consider a major advantage.

It should, however, be mentioned that the six models still do not
fully cover arbitrary event stream properties. This is an almost
unavoidable limitation, since the extensions to more general mod-
els exhibit conceptional disadvantages, as mentioned earlier in Sec-
tion 2.3. It will, therefore, not be further considered, here.



4. EVENT MODEL TRANSFORMATIONS
In the previous section, we solved the Challenge 1 where we con-

sidered the specialties of component output streams. Now, we tackle
the second challenge identified in Section2.4, that is concerned with
component input streams. We want to underline that this is not a
specific problem of the newly defined event models. It also exists
for any other set of models [23]. However, the new set of models
allows much more elegant solutions.

As already mentioned in Section2.4, there are –in the SoC de-
sign world– situations, where the input stream of some component
is constrained to meet a particular models, as shown in Figure3(a)
. If the input stream is represented using another model, the anal-
ysis can not be directly applied. However, many of such seeming
incompatibilities can be solved by event model transformations.

We distinguish two types of transformations: those transforma-
tions that only transform the formal stream representation, we call
them Event Model Interfaces (EMIF); and those which require to
also adapt the timing of the stream to find an EMIF, we call them
Event Adaptation Functions (EAFs).

4.1 Event Model Interface–EMIF
We start introducing EMIFs using the already known example,

but this time, we focus on the input of theHW component. From
Section3, we know that the input stream is periodic with burst.
Let us now assume that theHW component is an IP component,
i. e. we do not know the internal details nor did the IP supplier
give us an analysis. We just know –possibly from the components
specifications– that there exists a maximum allowed input frequency,
a situation which is not uncommon for HW coprocessors.

The information of a maximum frequency directly translates into
a minimum distance of input events, which –in turn– equals asim-
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periodic
w/ jitter

?

?

given

required
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required

M2DSP
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simple
sporadic

C1

C3NoC C2
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(a) Input Stream Incompati-
bilities

EMIF    
w/ EAF      

M2DSP
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simple
sporadic

C3

simple
periodic

C2

periodic
w/ burst

periodic
w/ jitter

(b) Event Model Interfaces
and Adaptation Functions

Figure 3: Solving Input Event Stream Incompatibilities
using EMIFs and EAFs

ple sporadicevent model, as defined in Section3.1. We see, that the
given model is periodic with burst, so the models seem incompati-
ble. But in this example, we can derive the required simple sporadic
parameter of thetarget modelfrom the parameters of the given pe-
riodic with burstsource model. Moreover, the minimum distanced
of the burst model already is the sought-after parametert (minimum
interarrival time) for the sporadic model (t = d).

We can formally prove this through thenact-functions from Ta-
ble 2. We have to guarantee that the following two equations hold
true:

n+
act,source(∆t)

!
≤ n+

act,target(∆t) (2)

n−act,source(∆t)
!
≥ n−act,target(∆t) (3)

Theseevent model compatibility testscheck whether the source
stream behavior is covered by the target stream model, if both –the
actual stream, and the required model– are fully specified.

We have shown that finding the right target model parameters can
be complex when allowing arbitrary models [23]. But within our
self-contained set of models, most transformations are relative sim-
ple and straight-forward. This is because we –in contrast to the
work in [23]– are consistently extending two simplebase models
(periodic and sporadic), rather than allowing arbitrary model com-
binations.

simple
periodic

periodic
w/ jitter

periodic
w/ burst

simple
sporadic

sporadic
w/ jitter

sporadic
w/ burst

Figure 4: Existing Lossy and Lossless EMIFs in the Gen-
eral Case

Basically, an EMIF is always possible, when the target model is
more general than the source model. Two classes of EMIFs can be
easily distinguished:

Lossless Transformation.Each base model can be directly trans-
formed into the corresponding models with jitter or burst. The pa-
rameters are the same, and any new parameter –a parameter that was
not defined in the source model– can be safely set to zero. This is
indicated by the solid arrows in Figure4. In these EMIFs, we can
show equality in both equations2 and3, and we consider the trans-
formations aslossless, i. e. the target model is able to capture the
full details of the source stream.

Such transformations can belosslesslyreversible (not shown in
the figure), but only if the source stream represents aspecial caseof
the target model, e. g. jitter models with the jitterJ being zero.

Lossy Transformation. Each periodic model can be directly
transformed into the corresponding sporadic event model (indicated
by dashed arrows). Such transformations arelossy[23], i. e. the tar-
get model is less expressive than the source model. Due to thelossy
nature of these transformations, they are not invertible.



There are few additional lossy EMIFs such as the transformation
from sporadic with jitter into simple sporadic. The new sporadic
period can be calculated as the difference between the source period
and the source jitter:

Ttarget= Tsource−Jsource.

And the example at the beginning of this section already demon-
strated the transformation from a bursty model into the simple spo-
radic model.

Clearly, we can combine subsequent transformation steps, e. g. from
simple periodicto simple sporadicto sporadic with jitter. However,
there are still certain missing EMIFs.

4.2 Event Adaptation Function – EAF
Obviously, we can never transform a sporadic model into a peri-

odic model. The irregular nature [2] of sporadic streams (n−act = 0)
makes the compatibility equation3 fail –except the useless case of
a zero period. Similarly, we can –in the general case– not reduce
a burst into a jitter into a simplemodel. But we canforce a more
general event stream into a more constrained model by reducing the
uncertainty related to the jitter.

We again start with a simple, intuitive example. Recall the DSP
subsystem in Figure2. The periodic output ofIP1 was distorted by
the network and arrives at the DSP input with a jitter. But the DSP
requires exactly periodic input to run efficiently as planned. We can
simply insert a buffer between the network and the DSP that elimi-
nates the network-induced jitter. As a result, we have reconstructed
a purely periodic event stream the DSP can deal with. Similarly, we
canresynchronizeperiodic event streams with burst.

In [23], we have shown, how tight buffer sizes can be derived
directly from the model parameters1. This helps designers to opti-
mize buffer memory which is a limited resource on MpSoCs. Anal-
ogously, we can easily derive the upper and lower bound buffering
delays which add to the overall event stream latency [23].

To conclude the overview about EMIFs and EAFs, Figure3(b)
shows the integration of EMIFs and EAFs as design elements into
the system model. This gives designers an adequate understand-
ing of the effects of system integration under real-time constraints.
They do not actually need to understand the transformations in de-
tail, the transformations rather offload the complexity from the sys-
tems designers and lets them focus on their top priority problems,
i. e. putting the components together.

5. CYCLIC EVENT STREAM DEPENDEN-
CIES

While the above buffering example was straight-forward and in-
tuitive, the insertion of EAFs can be of central concern in systems
with cyclic event stream dependencies.

Cyclic data dependencies through feed-back are heavily used for
implementing complex filter functions in control or signal process-
ing applications. Designers of such systems intuitively insert resyn-
chronization buffers to break up such cycles.

More complex are situations, where cyclic dependencies are not
reflected in the system function. Figure5 shows an example of a

1Note that in [23], we used a periodic version of Tindell’s specific
burst model; however, the key ideas remain.
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Figure 5: Non-Functional Dependency Cycle

non-functional event stream dependency in the system of Figure2
which was only introduced by communication sharing between the
channelsC1 andC2.

Upon receipt of new sensor data, the CPU activates processP1

which preemptsP3 and thus distorts the (initially periodic) execu-
tion timing of P3. P3’s output, in turn, enters the network on chan-
nel C2, where it now interferes with the arriving sensor data onC1.
The interference of the two functionally independent channels,C1

andC2, closes the dependency cycle.
Such event flow cycles are not an artificial result of global anal-

ysis but exist in practice. They represent a complex performance
hazard in MpSoC design, since the dependencies are subtle and dif-
ficult to detect with current design practices.

With the approach of Section3, designers can now analyze such
cycles by iterative propagation of event streams until the event stream
parameters converge (non-critical cycle) or a deadline or other tim-
ing constraint is violated (critical cycle). This iteration process ter-
minates, because the event timing uncertainty –that is the best-case
to worst-case response time jitter interval– grows monotonically
with every iteration (see Sec.3).

For cases in which no convergence occurs automatically, we can
use EAFs to break up the dependency cycle and enforce conver-
gence by reducing the timing uncertainty, illustrated by the addi-
tional EAF buffer in Figure5. Hence, the approach allows designers
to also optimize buffering in far less obvious situations, compared
to simple, functionalfeed-backcycles which the individual function
designers could fully oversee.

6. EXPERIMENTS
So far, we defined the models and presented event stream model

propagation, interfacing, and adaptation based on these models.
Now, we demonstrate the applicability of the approach by fully

analyzing the MpSoC example in Figure6 using only the six event
models and a well known analysis techniques, namely Tindell’s ap-
proach [32].

The experiments will heavily exploit the new ideas, but will at the
same time assume a design engineer from the SoC community per-
forming the experiments. In other words, we will hide all the com-
plexity in the local component analysis –which is already accepted
by this community–, to demonstrate the tremendous simplification
of our proposed approach.



6.1 Set-Up

The Actuators
There are three actuators: The sensor sporadically sends data blocks
of 8kb size toP1, with a maximum sending frequency of 1,7kHz,
which corresponds to asporadic event modelwith a minimum spo-
radic period of 1

1,7kHz = 588µs. ProcessP3 is periodically activated
by the RTOS (real-time operating system) on the CPU with a pe-
riod of 1

20kHz = 50µs. The high-performance DSP application on
IP1 has a sending frequency of 140kHz, corresponding to a period
of 7,143µs.

The Network
Instead of sending the complete data block, the data packets are
fragmented to avoid too long blocking times. Each 8kB data block
from the sensor is split into 32 packets of 262byteeach, 256bytes
plus 6bytesprotocol overhead–address, length, and CRC. The 3kB
blocks fromP3 are split into 24 packets of(128+ 6) = 134bytes.
This channelC2 has a higher priority than channelC1. The highest-
priority channelC3 does not split the DSP data packets, but only
adds the 6byteprotocol information.

The overall average network loadLnet is:
Lnet = Lsensor + LCPU + LDSP

= 14,2528Mbyte/s + 64,32Mbyte/s + 144,2Mbyte/s
= 222,77Mbyte/s

Execution and Communication Times
For simplicity, thecore execution timesof the two processes on the
CPU are assumed constant: 250µs for P1 and 10µs for P3. This
is not a limitation of the approach but rather a clarification of the
following tables.
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w/ EAF      

M2DSPIP2M3IP1

HW
M1CPU
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sporadic sporadic
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     EMIF
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1kB→→→→ 1×××× ( 1024 + 6 ) byte

3kB→→→→ 24×××× ( 128 + 6 ) byte

Figure 6: Example System with EMIFs and EAFs

The communication times of the network packets depend on the
network speed. Since we perform several experiments with differ-
ent network speeds, the actual time values are provided at the corre-
sponding experiment results sections.

7. RESULTS
We explored several different networks with different bit widths

and clock speeds. The tables below will show the large differences
between different network speeds. Furthermore, we performed one
set of experiments with a buffer inserted between the CPU and the
network to eliminate the possible jitter on the input of channelC2,
just as explained in Section5. In the second set of experiments, we
omitted the buffer.

7.1 Experiments with Buffer
The buffer at the input of channelC2 resynchronizes the possibly

bursty –or at least jittery– stream fromP3 on the CPU (see Fig-
ure 5) to a purely periodic stream. Hence, the network inputs are
fully specified, allowing us analyze the networkwithout the itera-
tions mentioned in Section5. After the network is analyzed, we
have the input stream ofP1, and we can analyze the CPU schedul-
ing. This will not only yield the performance of processP1 but also
the output event stream ofP3, which is finally required for dimen-
sioning the buffer [23].

We performed experiments with three different network speeds:
480Mbyte/s, 300Mbyte/sand 240Mbyte/s, corresponding to an av-
erage network utilization ofUnet = 92,82%, 74,26%, and 46,41%,
respectively. We expect that the propagation jitter on channelC1 in-
creases with increasing network utilization. In effect, the input jitter
of P1 will increase, in turn increasing the output jitter (or burstiness)
of P3, finally resulting in increasing buffering requirements.

Detailed results are provided in the appendix. In each table, the
first column contains the process or network channel identifier, the
second column provides the input jitter. The actual process or packet
response time is given in the third column, and the output jitter is
provided in the fourth column. Note thatP1 has no output. For
each experiment, we also recorded the number of iterations of the
response time calculation (fifth column). Finally, we also recorded
the number ofbusy period windowsas defined by [17, 32] which
have to be analyzed in the presence of bursts. They represent some
measure of the dynamic complexity of the component’s schedule.

Experiment 1: The network speed is 480Mbyte/s. The packet
communication times are 17,5µs, 6,7µs, and 2,15µs for a com-
plete data packet –possibly consisting of several network packets
(see Sec,6.1)– on channelC1, C2, andC2, respectively. The tim-
ing analysis results are shown in Table4 in the appendix. Using the
approach in [23], we can bound the buffer size. In a worst case situ-
ation, we need to stored 265µs

50µs e= 12 events, each representing a 3kB
data block, resulting in a 36kBbuffer.

Experiment 2: The network speed is 300Mbyte/s. The packet
communication times are 27,95µs, 10,72µs, and 3,43µson channel
C1, C2, andC2, respectively. For the results, see Table5. The differ-
ences compared to Experiment 1 are in bold letters. We see, that the
network output jitters have actually increased. Also the number of
iterations for the response time calculation has increased. However,



this has not yet affected the execution of the CPU, i. e. the response
times are still the same as in experiment 1. So, also the buffering
requirements remain constant. This will change in the next experi-
ment.

Experiment 3: The network speed is reduced to 240Mbyte/s.
The packet communication times are 34,93µs, 13,4µs, and 4,29µs
on channelC1, C2, andC2, respectively. For the results, see Table6.
Now, the output jitter ofP3 has increased, and the buffer is now
required to store 13 events (39kB). Furthermore, 33 response time
iterations [13busy-period windows] were necessary compared to 14
[7] in the previous experiment.

7.2 Experiments without Buffer
In the second set of experiments, we omitted the buffer at the

input of channelC2. This has –as theoretically explained in Sec-
tion 5– severe consequences for the overall analysis procedure. We
now have to start the network analysis with an assumption on the
not yet known output ofP3. We start by assuming a periodic stream
with a frequency of 20kHz–just as in the experiments with buffer–,
and analyze the network and the CPU. Then, we have to check the
actual output ofP3 against our assumption. This process is iterated
until the assumption is met, or –in case of the last experiment– the
given deadline for packets on channelC1 (1ms) is missed.

Experiment 4: The network speed is 480Mbyte/s, just as in Ex-
periment 1. The results are shown in Table7. In the final results
after iteration 2, we can see that the bursty output of channelC2

now heavily distorts the timing of channelC1. In the previous ex-
periments this was not the case because of the buffer. However, we
observe no severe consequences for the overall system performance,
mainly due to the very conservative over-dimensioning of the net-
work. If we reduce the network performance as in Exp. 2 and 3, we
expect notable changes.

Experiment 5: The network speed is now set to 300Mbyte/s,
as in Experiment 2. The results are shown in Table8. We can see
that the iteration does not terminate before step 3. The jitters have
increased but can still be bounded.

Experiment 6: In the final experiment, the network speed is set
250Mbyte/s, already very close to 240Mbyte/s in Experiment 3.
The packet communication times are 33,53µs, 12,86µs, and 4,12µs
on channelC1, C2, andC2, respectively. In Table9, we see that
the jitters on the channels constantly increase. This further leads
to burst execution ofP1, and the process response times quickly
increase. We can stop the iteration after step 3, since the deadline of
channelC1 is violated.

7.3 Result Interpretation
Table3 gives an overview about the six experiments. We can see

that the jitter on the lower priority channelC1 gradually increases
with decreasing network performance. However, the buffer at the
input of C2 resynchronizes these effects. So, the bus load is (com-
pared to the experiments without buffer) relatively determinate.

When the buffer is removed, the system is stillstableas long
as the network performance is above a certain limit. Only we can
see that the jitters increase much faster compared to experiments 1
to 3. If the network performance becomes too low, the jitters on both
points of interest (C1 output andC2 input) seem to exponentially

Table 3: Results Overview

network network buffer C1 output C2 input C1 worst-
speed util size jitter jitter case resp.

[MByte/s] [%] [kB] [µs] [µs] [µs]

480 46,41 36 17,45 — 34,95
300 74,26 36 69,46 — 97,41
240 92,82 37 256,29 — 291,22

480 46,41 — 85,85 265 103,35
300 74,26 — 276,13 275 304,08
250 89,11 — > 987,82 > 515 > 1ms

grow, and the deadline of channelC1 is quickly violated (after the
third iteration step).

The results of the experiments show two things: First, our ap-
proach can be configured to analyze heterogeneous MpSoC designs
without the need for highly specialized and complex formal models.
All used formalisms are of similar complexity than the ones already
widely accepted in industry. And secondly, the approach proved ap-
plicable and efficient. Especially the cyclic dependencies could be
resolved without major convergence problems. This demonstrates
the general validity of the approach.

8. CONCLUSION
The component integration step is critical in MpSoC design since

it introduces complex component performance dependencies. For
instance, the cyclic dependencies in Figure5 can not be fully over-
seen by anyone in a design team. Finding simulation patterns cov-
ering all corner cases will soon become virtually impossible as Mp-
SoCs grow in size and complexity, and performance verification is
increasingly unreliable. In industry, there is an urgend need for for-
mal performance verification support in MpSoC design.

We have seen that the host of work in formal real-time analysis
can be nicely applied to individual, local components or subsystems.
But the well established view on scheduling analysis has shown to
be incompatible with the component integration style which is com-
mon practice in MpSoC design due to heavy component reuse. Not
surprizingly, output event models and their importance in system-
level analysis integration have been widely neglected, so far.

We saw that the existing input event models are incompatible
with the event streams at component outputs, thereby prohibiting the
system-level composition of several local techniques. By slightly
extending the most popular and comprehensible event models –with-
out increasing their complexity at the same time– we could over-
come these incompatibilities. The newly defined self-containedsix
class modelappears as an efficient compromise between model sim-
plicity and completeness.

Starting from these models, we then developed model transfor-
mations in order to satisfy the interfacing requirements. As a result,
we obtained a configurable and compositional analysis procedure
that is –in general– capable to analyze the performance of arbitrar-
ily complex MpSoC designs. The transformations consider event
stream propagation, event model interfacing, and iterations in cyclic
systemswithout degrading model simplicity. Ultimately, this com-
positional approach can pave the way for a general application of
real-time analysis techniques in MpSoC design.
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Appendix A — Tables

Table 4: Experiment 1
ID input resp. output iter- # of

jitter [µs] time [µs] jitter [µs] ations windows

C1 0 [17,5;34,95] 17,45 3 1
C2 0 [6,7;11,55] 4,85 3 1
C3 0 [2,15;2,70] 0,55 1 1
P1 17,45 [250;265] — 1 1
P3 0 [10;275] 265 14 7

Table 5: Experiment 2
ID input resp. output iter- # of

jitter [µs] time [µs] jitter [µs] ations windows

C1 0 [27,95;97,41] 69,46 6 1
C2 0 [10,72;25,31] 14,59 4 1
C3 0 [3,43;4,3] 0,87 1 1
P1 69,46 [250;265] — 1 1
P3 0 [10;275] 265 14 7

Table 6: Experiment 3
ID input resp. output iter- # of

jitter [µs] time [µs] jitter [µs] ations windows

C1 0 [34,93;291,22] 256,29 16 1
C2 0 [13,4;40,24] 26,84 5 1
C3 0 [4,29,5,39] 1,10 1 1
P1 256,29 [250;265] — 1 1
P3 0 [10;285] 275 33 13

Table 7: Experiment 4
ID input resp. output iter- # of

jitter [µs] time [µs] jitter [µs] ations windows

Iteration 1
C1 0 [17,5;34,95] 17,45 3 1
C2 0 [6,7;11,55] 4,85 3 1
C3 0 [2,15;2,70] 0,55 1 1
P1 17,45 [250;265] — 1 1
P3 0 [10;275] 265 14 7

Iteration 2
C1 0 [17,5;103,35] 85,85 7 1
C2 265 [6,7;11,55] 4,85 3 1
C3 0 [2,15;2,70] 0,55 1 1
P1 85,85 [250;265] — 1 1
P3 0 [10;275] 265 14 7

Iteration terminates after this step!!!

Table 8: Experiment 5
ID input resp. output iter- # of

jitter [µs] time [µs] jitter [µs] ations windows

Iteration 1
C1 0 [27,95;97,41] 69,46 6 1
C2 0 [10,72;25,31] 14,59 4 1
C3 0 [3,43;4,3] 0,87 1 1
P1 69,46 [250;265] — 1 1
P3 0 [10;275] 265 14 7

Iteration 2
C1 0 [27,95;283,07] 255,12 10 1
C2 265 [10,72;25,31] 14,59 4 1
C3 0 [3,43;4,3] 0,87 1 1
P1 255,12 [250;265] — 1 1
P3 0 [10;285] 275 33 13

Iteration 3
C1 0 [27,95;304,08] 276,13 11 1
C2 275 [10,72;25,31] 14,59 4 1
C3 0 [3,43;4,3] 0,87 1 1
P1 276,13 [250;265] — 1 1
P3 0 [10;285] 275 33 13

Iteration terminates after this step!!!

Table 9: Experiment 6
ID input resp. output iter- # of

jitter [µs] time [µs] jitter [µs] ations windows

C1 0 [33,53;233,79] 200,26 13 1
C2 0 [12,86;34,51] 22,65 4 1
C3 0 [4,12;5,17] 1,05 1 1
P1 200,26 [250;265] — 1 1
P3 0 [10;275] 265 14 7

Iteration 2
C1 0 [33,53;619,33] 585,8 18 1
C2 265 [12,86;34,51] 22,65 4 1
C3 0 [4,12;5,17] 1,05 1 1
P1 585,8 [250;512,7] — 1 1
P3 0 [10;525] 515 53 20

Iteration 3
C1 0 [33,53;1021,35] 987,82 21 1
C2 515 [12,86;34,51] 22,65 4 1
C3 0 [4,12;5,17] 1,05 1 1
P1 987,82 [250;1314,4] — 1 1
P3 0 [10;985] 975 >100 >30

Termination because of deadline violation on channelC1.
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