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Abstract

With the termflexibility , we introduce a new design di-
mension of an embedded system that quantitatively charac-
terizes its feasibility in implementing not only one, but pos-
sibly several alternative behaviors. This is important when
designing systems that may adopt their behavior during op-
eration, e.g., due to new environmental conditions, or when
dimensioning a platform-based system that must implement
a set of different behaviors. Ahierarchical graph modelis
introduced that allows to model flexibility and cost of a sys-
tem formally. Based on this model, an efficient exploration
algorithm to find theoptimal flexibility/cost-tradeoff-curve
of a system using the example of the design of a family of
Set-Top boxes is proposed.

1. Introduction

Designing a system to best meet a set of requirements
on cost, speed, power, etc. for a given, single application is
challenging, but has been formalized already by means of
graph-based allocation and binding problems such as [2].
Such graphical mapping models found acceptance also in
commercial systems such as [3].

In areas such as platform-based design, however, a sys-
tem should be dimensioned such that it is able to implement
not only one particular application optimally, but instead a
complete set of different applications or variants of a cer-
tain application. Hence, the question here becomes to find
a tradeoff between the flexibility of the architecture that is
able to implement several alternative behaviors and its cost.

Another scenario where flexibility is necessary is in sys-
tems that may react to changes of the environment during
operation (adaptive systems). There also, it is necessary or
desired to implement different behaviors with the price of
additional cost.
∗This work was supported by the German Science Foundation (DFG),

SPP 1040.

Yet there exist no approaches to the best of our knowl-
edge that quantitatively tradeoff the price one has to pay in
terms of additional memory, hardware, network, etc. for the
flexibility one gains when dimensioning a system such that
it is able to implement multiple behaviors. Pop et al. [10]
perform mapping and scheduling such that there is a high
probability that new functionality can easily be mapped on
the resulted system. Nevertheless, this basically similar idea
of flexibility can not guarantee that future applications do
not interfere with the already running functionality.

Here, we introduce the notion offlexibility as a tenta-
tive to quantitatively describe the functional richness that
the system under design is able to implement (Section 3). In
order to describe a set of applications, a hierarchical speci-
fication is useful such as [4] and [11]. Here, we introduce a
hierarchical graph-modelfor describing alternatives of the
behavior of a system. The same idea may be used in order
to describe reconfigurable architectures on the implementa-
tion side, i.e., systems that change their structure over time.

With this model, we are then able to define the prob-
lem of dimensioning a system that is able to dynamically
switch its behavior and/or structure at run-time. Basically,
this problem extends previous approaches such as [2] to re-
configurable, platform-based systems that implement time-
dependent functionality.

Finally, an efficient exploration algorithm for exploring
the flexibility/cost-tradeoff-curve of a system under design
is presented that efficiently prunes solutions that are not op-
timal with respect to both criteria (Section 4). The example
of a flexible video Set-Top box is used as the guiding exam-
ple throughout the paper.

2. Hierarchical Specification Model

Each embedded system is developed to cover a certain
range of functionality. This coverage depends on the differ-
ent types of tasks as well as on the scope every task is able
to process. A specification of such an embedded system is
depicted in Fig. 1.
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The specification shows interacting processes of a digi-
tal television decoder. There are four top-level processes,
PA to handle the authentification process,PC to control
channel selection, frequency adjustment, etc.,ID which per-
forms decryption, andIU for uncompression. Here, the un-
compression process requires input data from the decryp-
tion process. Furthermore, the controller and authentifica-
tion process are well known and are most likely to be im-
plemented equally in each decoder.
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Figure 1. Specification of a Digital TV Decoder

The main difference between TV decoders is made up by
the implemented combinations of decryption and uncom-
pression algorithms. As shown in Fig. 1, we use hierarchi-
cal refinement to capture all alternative realizations. There
are three decryption and two uncompression processes used
in this decoder. Obviously, if we implement even more of
these refinements, our decoder will support a greater num-
ber of TV stations. Consequently, the decoder possesses an
increased flexibility.

Before defining a system’s flexibility formally, we have
to introduce a specification model that is able to express
flexibility. As shown in Fig. 1, our specification model is
based on the concept of hierarchical graphs.

Definition 1 (hierarchical graph) A hierarchical graphG
is a tupleG = (V,E,Ψ,Γ), with V andE being the set
of vertices and edges, respectively.Ψ denotes a set of so
called interfaces, i.e., the set of hierarchical vertices, which
are refined by the use of alternativeclustersγ ∈ Γ, i.e.,
subgraphs.

Figure 1 shows a digital TV decoder as a hierarchical graph
with its top-level graph depicted at the bottom. The top-
level graph consists of two non-hierarchical vertices,V =
{PA,PC} and two interfaces (Ψ = {ID, IU}). The de-
cryption interfaceID itself can be refined by three clusters
γD1, γD2, and γD3, where each cluster represents an al-
ternative refinement ofID. The set of clusters is given by
Γ = {γD1, γD2, γD3, γU1, γU2}.

Clusters (subgraphs) are defined in analogy to hierarchi-
cal graphs. Since the in-degree and out-degree of an inter-
face is not limited, we need the notion ofports. Interfaces

are connected with vertices or other interfaces via ports.
These ports are used to embed clusters into a given inter-
face. In the following, this process is calledport mapping.

All clusters associated with the interfaceψ represental-
ternative refinementsof ψ. The process ofcluster-selection
associated with each interfaceψ determines exactly one
cluster to implementψ at each instant of time. In order to
avoid a loss of generality, we do not restrict cluster-selection
to system start-up. Thus, reconfigurable and adaptive sys-
tems may be modeled via time-dependent switching of clus-
ters.

The set of leaves of a hierarchical graphG is defined by
the recursive equation:1

Vl(G) = G.V ∪
⋃

ψ∈G.Ψ

⋃
γ∈ψ.Γ

Vl(γ) (1)

As defined by Equation (1), the set of leavesVl(G) of graph
G shown in Figure 1 computes toVl(G) = {PA,PC} ∪
{γD1.P1

D, γD2.P2
D, γD3.P3

D} ∪ {γU1.P1
U, γU2.P2

U}.
So far, we only considered the behavioral part of the

specification. For implementation, we also require infor-
mation about the possible structure of our system, i.e., the
underlying architecture. This leads to a graphical model for
embedded system specification, the so calledspecification
graphGS = (GP, GA, EM). It mainly consists of three
components: aproblem graph, anarchitecture graph, and
user-defined mappingedges (see also [2]). The respective
graphsGP andGA are based on the concept of hierarchical
graphs as defined in Def. 1.

Problem Graph. The problem graphGP is a directed
hierarchical graph(VP, EP,ΨP,ΓP) for modeling the re-
quired system’s behavior (see Fig. 1). Verticesv ∈ VP and
interfacesψ ∈ ΨP represent processes or communication
operations at system-level. The edgese ∈ EP model de-
pendence relations, i.e., define a partial ordering among the
operations. The clustersγ ∈ ΓP are possible substitutions
for the interfacesψ ∈ ΨP.

Architecture Graph. The class of possible architec-
tures is modeled by a directed hierarchical graphGA =
(VA, EA,ΨA,ΓA), called architecture graph. Functional
or communication resources are represented by vertices
v ∈ VA and interfacesψ ∈ ΨA, interconnections are speci-
fied by the edgese ∈ EA. Again, the clustersγ ∈ ΓA repre-
sent potential implementations of the associated interfaces.
All the resources are viewed as potentially allocatable com-
ponents.

Mapping Edges.Mapping edgese ∈ EM indicate user-
defined constraints in the form of a “can be implemented
by”-relation. These edges link leavesVl(GP) of the prob-
lem graphGP with leavesVl(GA) of the architecture graph
GA.

1TheG.V notation is used as decomposition operation, e.g., to access
the set of verticesV inside the graphG.
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Additional parameters, like priorities, power consump-
tion, latencies, etc., which are used for formulating imple-
mentational and functional constraints are annotated to the
components ofGS. For simplicity, a specification graph
can also be represented only by its vertices and edges:
GS = (VS, ES). The set of verticesVS covers all non-
hierarchical vertices, interfaces, and clusters contained in
the problem or architecture graph. The set of edgesES

consists of all edges and port mappings in the specification
graph.

An example of a specification graph is shown in Fig-
ure 2. Again, the problem graph specifies the behavior of
our digital TV decoder. The architecture graph is depicted
on the right. It is composed of aµ-Controller (µP), an ASIC
(A), and an FPGA. There are two bussesC1 andC2 to han-
dle the communication between theµ-Controller and FPGA
and ASIC, respectively. Figure 2 also shows the allocation
costs for each resource in the architecture graph.
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Figure 2. Hierarchical Specification Graph

The mapping edges (dotted edges in Fig. 2) outline the
possible bindings of processes of the problem graph to re-
sources of the architecture graph. The latencies to execute
a given process on a specific resource are annotated to the
respective mapping edges. For example, the uncompression
processP1

U is executable on resourceµP with a latency of
40 ns or on resourceA with a latency of 15 ns.

As shown in Figure 2, the hierarchical specification
graph permits modeling of adaptive systems by interchang-
ing clusters in the problem graph. In our example, we have
to select a certain decryption and uncompression process to
match the requirements imposed by the TV station. Gener-
ally, an adaptive system responds to environmental changes
by selecting clusters according to the requirements of in-
put/output data at runtime. Therefore, clusters with various
parameters or perhaps totally different functionality are ac-
tivated in the problem graph. On the other hand, interchang-
ing clusters in the architecture graph modifies the structure
of the system. If this cluster-selection is performed at run-
time, the architecture model characterizes reconfigurable
hardware. For example, in order to execute processP3

D,

we have to configure the FPGA with the respective design
D3 (see Figure 2).

In order to specify animplementation, i.e., a concrete
mapping, Blickle et al. [2] introduce the concept ofactiva-
tion of vertices and edges. The activation of a specification
graph’s vertex or edge describes its use in the implementa-
tion. Since we use hierarchical graphs, we have to define
hierarchical timed activationor, for short,hierarchical ac-
tivation, where thehierarchical activationof a specification
graph is a boolean function that assigns to each edge and to
each vertex the value 1 (activated) or 0 (not activated) at a
given timet ∈ T (= R).

Hierarchical activation should support synthesis in such
a way that no infeasible implementations are caused by the
following rules. Due to space limitations, we summarize
these implications informally. For full description, see [6].

1. The activation of an interface at timet implies the ac-
tivation of exactly one associated cluster at the same
time.

2. The activation of a clusterγ at timet activates all em-
bedded vertices and edges inγ.

3. Each activated edgee ∈ ES has to start and end at an
activated vertex. This must hold for all timest ∈ T .

4. Due to (perhaps implied) timing constraints, the ac-
tivation of all top-level vertices and interfaces in the
problem graphGP is required.

For a given selection of clusters, the hierarchical model
can be flattened. With the formalism of hierarchical acti-
vation rules, we are able to determine the overall activation
of the specification graph. The result is a non-hierarchical
specification.

With the definition of hierarchical activation, we are able
to formally define the termimplementation, where a feasi-
ble implementation consists of a feasibleallocation and a
corresponding feasiblebinding.
Definition 2 (timed allocation) A timed allocationα(t) of
a specification graphGS is the subset of all activated ver-
tices and edges of the problem and architecture graph at
timet.

Definition 3 (timed binding) A timed bindingβ(t) is the
subset of all activated mapping edges at timet.

In order to restrict the combinatorial search space, it would
be useful to determine the set of feasible timed allocation
and feasible timed binding. First, we consider the feasibil-
ity of a binding for a given specification graphGS and a
given timed allocationα(t). A feasible timed bindingβ(t)
satisfies the following requirements:

1. Each activated edgee ∈ β(t) starts and ends at a ver-
tex, activated at timet.

2. For each activated leafv ∈ {Vl(GP) ∩ α(t)} of the
problem graphGP, exactly one outgoing edgeE ∈
EM is activated at timet.
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3. For each activated edgee = (vi, vj) ∈ EP ∩ α(t):
• either both operations are mapped onto the same

vertex, i.e.,
• or there exists an activated edgeẽ = (ṽi, ṽj) ∈
{EA ∩ α(t)} to handle the communication asso-
ciated with edgee, i.e.,

Now, we are able to define the feasibility of a given timed
allocation. Afeasible timed allocationis a timed allocation
α(t) that allows at least one feasible timed bindingβ(t) for
all timest.

In Figure 2, an infeasible binding would be caused by
binding decryption processP2

D onto the ASICA and the
uncompression processP1

U onto the FPGA. Since no bus
connects the ASIC and the FPGA, there is no way to estab-
lish the communication between these processes.

Note that our hierarchical model introduced here ex-
tends the model of [2] by two important features:

a) hierarchical graphs allow to model alternatives
b) time-variant allocations and bindings.

These major extensions are necessary to model flexibil-
ity (reconfigurability) of the behavior (architecture).

So far, we have not accounted for system performance.
Whether or not the implementation meets the applica-
tion’s performance requirements in terms of throughput
(e. g. frames per second) and latencies, depends on the
existence of afeasible schedule. Although it is possible
to schedule any feasible implementation as defined above,
the resulting schedule may fail performance requirements.
Such scheduling or performance analysis is complex, es-
pecially for distributed systems, and is not the scope of
this paper. Thus, we do not include a complete analysis
in the exploration in Section 4. Rather, we quickly esti-
mate the processor utilization and use the 69% limit as de-
fined in [7] to accept or reject implementations due to per-
formance reasons. The approach presented in [10] may be
used for scheduling of specifications with data-independent
subgraphs.

3. Definition of Flexibility

With the hierarchical specification model described
above, we are able to quantify the amount of implemented
functionality. Subsequently, we denote this objectiveflex-
ibility . The basic idea, as stated here, is to enumerate the
possible interchanges of implementing clusters in the whole
system’s problem graph. For example, the flexibility of a
trivial system with just one activated interface directly in-
creases with the number of activatable clusters.

The key concepts offlexibility are as follows:
• Since each cluster represents an alternative for the

same functionality, we know that implementing more
clusters for a given interface increases system flexibil-
ity in the sense that the system may switch at runtime
to select a different cluster.

• A cluster itself can contain interfaces, which can be
implemented with different degrees of flexibility.

• Although flexibility depends on the implementation,
we neglect the impact of the underlying architecture
on flexibility, e.g., we do not distinguish whether the
flexibility of a system is obtained by the use of either
reconfigurable or dedicated hardware components.

With these assumptions, we can define flexibility as:

Definition 4 (flexibility) The flexibility fimpl of a given
clusterγ is expressed as:

fimpl(γ) = a+(γ) ·


[∑

ψ∈γ.Ψ
∑
γ̂∈ψ.Γ fimpl(γ̂)

]
−(|γ.Ψ| − 1) for γ.Ψ 6= ∅
1 otherwise

where the terma+(γ) describes the activation of the cluster
γ in the future. If clusterγ will be selected at any time in
the future,a+(γ) = 1, otherwise 0, meaning it will not be
implemented at all.

In other words: The flexibility of a clusterγ, if ever ac-
tivated, is calculated by the sum of all its interfaces’ flex-
ibilities minus the number of its interfaces less 1, and 1 if
there is no interface in the given cluster. The flexibility of
an interface is the sum of flexibilities of all its associated
clusters. The flexibility of a never activated cluster is 0.

For example, consider the problem graphGP shown in Fig-
ure 3. This graph is an extension of the TV decoder ex-
ample in Figure 1. Here, our goal is to design a Set-Top
box family which supports multiple applications. Besides
the already known digital TV decoder, there are two more
possible applications:

1. An Internet browser, consisting of a controller process
PI

C, parser processPP for parsing HTML pages and a
formatter processPF for formatting the output.

2. A game console, modeled by a controller processPG
C ,

the game’s core interfaceIG, and the graphics accel-
eratorPD. The game’s core interface can be refined
by three different game classes denotedP1

G, P2
G, and

P3
G in Fig. 3. Since the output is constrained to a

minimal frame period and the graphic accelerator de-
pends on data produced by the game core process, also
the game’s core process has to obey some timing con-
straints.

The flexibility f(GP) of this problem graph is computed
as follows:
f(GP) = a+(GP) · [f(γI) + f(γG) + f(γD)]

= a+(GP) ·
[
a+(γI) + a+(γG) ·

[
a+(γG1) +

a+(γG2) + a+(γG3)
]

+ a+(γD) ·[
a+(γD1) + a+(γD2) + a+(γD3) +
a+(γU1) + a+(γU2)− 1

]]
Based on this equation, the system’s flexibility is obtained
by specifying the utilization of each clusterγ in the fu-
ture, denoted bya+(γ). If all clusters can be activated
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Figure 3. Example for System’s Flexibility

in future implementations, system’s flexibility calculates to
f(GP) = 8. This is also the maximal flexibility. If, e.g.,
clusterγG is not used in future implementations the flexi-
bility will decrease tof(GP) = 5.2 For the sake of simplic-
ity, we have omitted the architecture graph and the mapping
edges. Obviously, a cluster only contributes to the total flex-
ibility if it is bindable as described above.

4. Design Space Exploration

Because of the accepted use of tools on lower design lev-
els of abstraction, exploration becomes the next step in or-
der to prevent under- or over-designing a system. Typically,
a system has to meet many constraints and should optimize
many different design objectives and constraints simultane-
ously such as execution time, cost, area, power consump-
tion, weight, etc.

A single solution that optimizes all objectives simulta-
neously is very unlikely to exist. Instead, it should be pos-
sible to first explore different optimal solutions or approx-
imations, and subsequently select and refine one of those
solutions.

In this paper, we consider the two objectivesflexi-
bility fimpl(α(t)), as described in Section 4, andcost
cimpl(α(t)). Here we use the so-calledallocation cost
modelcimpl(α(t)), wherecimpl(α(t)) is the sum of all real-
ization costs of resources in the allocationα(t).

Figure 4 shows a typical tradeoff-curve between cost and
the reciprocal value of flexibility. As already mentioned
we are concerned with a MOP (Multiobjective Optimiza-
tion Problem). Our MOP consists of two objective func-
tionscimpl(α(t)) and 1

fimpl(α(t)) , where the parameterα(t)
is the decision vector. The optimization goal is to minimize
cimpl(α(t)) and 1

fimpl(α(t)) simultaneously, i.e., to maxi-
mize system’s flexibility for minimal cost implementations.

2Note that more sophisticated flexibility calculations are possible, e.g.,
by using weighted sums in Def. 4.

f impl

1

c impl

f
1

max

1

Pareto−optimal
Solutions

Pruned 
possible
Solutions

Figure 4. Cost-Flexibility-Design Space

A formal definition of MOPs can be found in [12].
Figure 4 shows four Pareto-optimal design points. A de-

sign point is said to be Pareto-optimal iff there is no other
design point that is better in all objectives (see also [9]).
The goal of design space exploration is to findall Pareto-
optimal design points that in addition fulfill all timing re-
quirements. The points in Figure 4 represent possible so-
lutions, where not every solution has to be feasible in the
sense of a feasible binding and feasible allocation, and not
every feasible solution has to meet the timing requirements.
If we have found a Pareto-optimal solutionx that meets all
requirements, the class of all design points dominated by
x can be pruned. This is shown in Figure 4 by boxes. In
the following, we will introduce an algorithm for efficiently
exploring flexibility/cost-tradeoff-curves.

Figure 4 shows an example distribution of design points.
At this stage, we do not distinguish between feasible and
non-feasible solutions. Our objective is to find all Pareto-
optimal solutions that meet all timing constraints. The prob-
lem is, that the set of possible implementations is unknown.
Since binding is a NP-complete problem (see [2]), an ex-
haustive search approach (there are2|VS| possible solutions)
seems not to be a viable solution.

To avoid superfluous computation of non-Pareto-optimal
solution, we propose methods for search space reduction:

1. Possible Resource Allocations. A possible resource
allocation is a partial allocation of resources in the ar-
chitecture graph which allows the implementation of
at least onefeasible problem graph activation by ne-
glecting the feasibility of binding first. Usually, we
have to investigate all2|VS| design points. But only the
elements covering a possible resource allocation repre-
sent meaningful activations such that at least a required
minimum of problem graph vertices is bindable.

2. Flexibility Estimation . With the possible resource
allocations we are able to sort the remaining design
points by increasing costs. If we inspect the elements
of this sorted list by increasing costs, a new calculated
solution is Pareto-optimal, iff it possesses a greater
flexibility than each solution that has been already im-
plemented.

858



As shown in our case study (see Section 5), by using these
two techniques, we dramatically reduce the invocations of
the solver for the NP-complete binding problem.

With our approach of hierarchical specification and ac-
tivations, we are able to first determine the set of possible
resource allocations: For each vertexvi inside a given clus-
ter γj , we determine the setRij of reachable resources. A
resourcer is reachable if a mapping edge betweenvi and
r exists. Derived from the hierarchical activation rules,
only leavesv ∈ GA.V of the top-level architecture graph
or whole clusters of the architecture graph are considered.
Next, we set up the outer conjunctionRj of all power
sets2Rij . Consequently, the setRj describesall combi-
nations of resource activations for implementing the non-
hierarchical verticesv ∈ γj .V of clusterγj by ignoring the
feasibility of binding.

Finally, we have to inspect all hierarchical components
γj .Ψ of clusterγj . Since all clusters associated with an
interfaceψ ∈ γj .Ψ represent alternative refinements ofψ,
we compute the union of possible resource allocations for
the associated clusters. For example, the setA of possible
resource allocations for the specification given in Figure 2
computes to:

A = {µP, µPC1, µPC2, µPC1C2, µPD3, µPU2,
µPC1D3, µPC2D3, µPC1U2, µPC2U2,
µPC1C2D3, . . . , µPC1C2D1U2A}

Now, the elements of the set of possible resource allo-
cations are inspected in order of increasing allocation costs
cimpl (see Fig. 4). For every possible resource allocation,
we remove all resources that are not activated from the ar-
chitecture graph. By removing these elements, also map-
ping edges are removed from the specification graph. Next,
we delete all vertices in the problem graph with no incident
mapping edge. This results in a reduced specification graph.

With Def. 4, the maximal flexibility of this specifica-
tion can be calculated. Since we explore flexibility/cost-
objective-space by increasing costs (see Figure 4), we are
only interested in design points with a greater flexibility
than already implemented! With the known maximal im-
plemented flexibility, we therefore may skip specifications
with a lower implementable flexibility. For specifications
with greater expected flexibility, we try to construct a feasi-
ble implementation next.

Generally, more than one activatable cluster for a prob-
lem graph’s interface remains in the specification graph.
Consequently, we have to identify so-calledelementary
cluster-activations, which are defined as follows. LetΓact

denote the set of activatable clusters. An elementary cluster-
activationecs is a setecs = {γi | γi ∈ Γact}, where exactly
one cluster is selected per activated interface. Since every
activatable cluster has to be part of the implementation to
obtain the expected flexibility, we have to determine a cov-
erage [5] ofΓact by elementary cluster-activations.

As example consider Figure 2. For a given resource allo-
cationµPC2A, the clustersγD1, γD2, γU1, andγU2 are acti-
vatable. One coverage of this set is given by the elementary
cluster-activations{γD2γU1} and{γD1γU2}.

Given an elementary cluster-activation, we can select
these clusters for implementation. Furthermore, we must
determine valid cluster activations in the architecture graph,
so that every elementary cluster-activation can be bound to
a non-ambiguous architecture, i.e., there is exactly one acti-
vated cluster for every activated interface in the architecture
graph.

Finally, we validate all timing constraints that are im-
posed on our implementation. Here, we use a statistical
analysis method to check for fulfillment. With these ba-
sic ideas of pruning the search space, we formulate our ex-
ploration algorithm based on a branch-and-bound strategy
[5, 8]. For the sake of clarity, we omit details for calcu-
lating a coverage of activatable problem graph clusters or
successive flexibility estimation, etc. The following code
should be self-explanatory with the previous comments.

EXPLORE
IN: specification graphGS

OUT: Pareto-optimal setO
BEGIN
fcur = 0
A = GS.possibleResourceAllocations()
fmax = GS.computeMaximumFlexibility()
FOR each candidatea ∈ A DO
f = a.computeMaximumFlexibility()
WHILE f < fcur THEN
α = GS.computeAllocation(a)
β = GS.computeBinding(α)
i = new Implementation(α, β)
IF i.isFeasibleImplementation() THEN

IF i.meetsAllConstraints() THEN
IF i.flexibility() > fcur THEN
O = O ∪ i
fcur = i.flexibility()

ENDIF
ENDIF

ENDIF
ENDWHILE

ENDFOR
END

In the worst case, this algorithm is not better than an ex-
haustive search algorithm. But, a typical search space with
105-1012 design points can be reduced by theEXPLORE-
algorithm to a few103-104 possible resource allocations.
Since we only try to implement design points with a greater
expected flexibility than the already implemented flexibil-
ity, again, only a small fraction of these point has to be taken
into account, typically less than 100.

5. Case Study

In our case study we investigate the specification of our
Set-Top box depicted in Figure 5. Again, we increased
the complexity of our example. The architecture graph is
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Figure 5. Specification of a Set-Top Box

now composed of two processors (µP1 and µP2), three
ASIC (A1 to A3), and an FPGA. The ASICs are used to
improve performance for the decryption, uncompression,
game’s core, and graphic acceleration processes. The FPGA
can also be used as coprocessor for the third decryption, the
second uncompression, or the first game core class. The al-
location costs of each component are annotated in Fig. 5.

Table 1. Possible Mappings in Figure 5
Process µP1 µP2 A1 A2 A3 D3 U2 G1
PI

C 10 12 - - - - - -
PP 15 19 - - - - - -
PF 50 75 - - - - - -
PG

C 25 27 - - - - - -
P1

G 75 95 15 15 15 - - 20
P2

G - - 25 22 22 - - -
P3

G - - 50 45 35 - - -
PD 70 90 30 30 25 - - -
PD

C 10 10 - - - - - -
PA 55 60 - - - - - -
P1

D 85 95 25 22 22 - - -
P2

D - - 35 33 32 - - -
P3

D - - - - - 63 - -
P1

U 40 45 15 12 10 - - -
P2

U - - 29 27 22 - 59 -

In Figure 5, we have omitted the mapping edges. Possi-
ble mappings and respective core execution times are given
in ns as shown in Table 1. Furthermore, we assume that
all communications can be performed on every resource.
No latencies for external communications are taken into ac-
count. Timing constraints for the game console and digital
TV are given by the minimal periods of the output processes

(PD, P1
U, andP2

U). PD has to be executed every 240 ns. The
output for the digital TV box is less restrictive:P1

U andP2
U

should be executed at least all 300 ns if activated.
As described above, our algorithm starts with the de-

termination of the set of all possible resource activations.
Here, elements that are obviously not Pareto-optimal or no
feasible implementations are left out, e. g., all combinations
of a single functional component and an arbitrary number
of communication resources. The beginning of the ordered
subsetA of possible resource allocations is given by:
A = {µP2, µP1, µP2D3C1, µP2U2C1, µP2G1C1,

µP1D3C5, µP1U2C5, µP1G1C5, µP2D3U2C1,
µP2D3G1C1, µP2U2G1C1, µP1D3U2C5,
µP1D3G1C5, µP1U2G1C5, µP1µP2, . . .}

Next, we determine all elementary cluster activations that
can be activated under the given resource allocation. For the
first resource allocation (µP2), we find the elementary clus-
ter activationsγI, γG1, andγD1γU1. The estimated flexibil-
ity as defined by Def. 4 calculates tofimpl = 3. Since our
already implemented flexibility is 0 (there is no feasible im-
plementation yet), we try to find feasible implementations
for the given elementary cluster activations. With Figure 5
and Table 1, we are able to find a feasible allocation and
binding for all elementary cluster activations.

Next, we have to check all timing constraints. Therefore,
we define a maximal processor utilization of 69%. If the es-
timated utilization exceeds this upper bound, we reject the
implementation as infeasible. Since the Internet browser
need not to meet any timing constraints, the respective im-
plementation is indeed feasible.

For the validation of the digital TV application, we need
some more information. As we know the timing constraint
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imposed on the uncompression and the decryption process,
we only need information about how often the authentifica-
tion and controller processes are executed. The execution
of the authentification is scheduled once at system start up.
Statistically, the controller process makes up about 0.01%
of all process calls in the digital TV application. So, we
neglect the authentification and controller process in our
estimation. For fulfillment of the performance constraint,
the sum of the core execution times of processP1

D andP1
U

(95ns + 45ns) must be less than0.69 · 300ns. Evidently,
this constraint is met.

Unfortunately, we have to reject the implementation of
the game’s console application violating the upper utiliza-
tion bound (95ns + 90ns � 0.69 · 240ns). So our im-
plemented flexibility calculates tofimpl = 2 which is still
greater than the already implemented flexibility.

Now, we continue with the next possible resource allo-
cation, i.e.,µP1. Due to space limitations, we only present
the results. The set of Pareto-optimal solutions for this ex-
ample is given by:

Resources Clusters c f

µP2 γI, γD1, γU1 $100 2
µP1 γI, γG1, γD1, γU1 $120 3
µP2, G1, U2, C1 γI, γG1, γD1, γU1, γU2 $230 4
µP2, D3, G1, U2, γI, γG1, γD1, γD3,
C1 γU1, γU2 $290 5
µP2, A1, C2 γI, γG1, γG2, γG3,

γD1, γD2, γU1, γU2 $360 7
µP2, A1, D3, C1, γI, γG1, γG2, γG3,
C2 γD1, γD2, γD3, γU1, γU2 $430 8

At the beginning, our search space consisted of225 design
points. By calculating the set of possible resource alloca-
tions, this design space was reduced to214 design points.
This is, by traversing our specification graph and setting up
one boolean equation we are able to reject about 99.9% of
our design points as non-Pareto-optimal. After investigat-
ing approx.7000 design points, we have found all 6 Pareto-
optimal solutions. For these design points, we estimated the
implementable flexibility by solving a single boolean equa-
tion. In only approx.1050 cases (0.0032% of the original
search space) the estimated flexibility was greater than the
already implemented flexibility. Only for these points, we
needed to try to construct an implementation. Hence, our
exploration algorithm typically prunes the search space so
much that industrial size applications can be efficiently ex-
plored within minutes.

Conclusions and Future Work

Based on the concept of hierarchical graphs, we have in-
troduced a formal definition of system flexibility. Further-
more, an algorithm for exploring the flexibility/cost design

space was presented. Due to the underlying branch-and-
bound strategy, it is possible to prune large regions of a
typical search space, while still finding all Pareto-optimal
implementations.

In our future work, scheduling will be the main issue of
concern. First approaches can be found in [10] and [1]. Pop
et al. construct a non-preemptive static scheduling for non-
hierarchical process graphs based on deadlines and periods
under resource constraints. In [1], first results for exactly
scheduling hierarchical dataflow graphs on single processor
architectures are presented.
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