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Abstract

Time-driven simulation models typically model timing in
an idealized way that is over-constrained and cannot be di-
rectly implemented. In this paper we present a transforma-
tion to relax the constraints imposed by a time-driven simu-
lation model, thus creating a larger design space. We trans-
form the system into SPI, a common intermediate represen-
tation for heterogeneously specified embedded systems. At
the SPI level critical timing constraints are (re)introduced,
resulting in a representation that is well suited for global
system analysis, optimization and synthesis.

1. Introduction

Most high-level simulation models either do not model
timing, or model timing in an idealized way that cannot be
implemented. In neither case, specification of timing con-
straints and analysis of their satisfiability is possible. How-
ever, timing analysis is necessary for the implementation of
embedded real-time systems.

Since system models supporting timing analysis are not
available, timing analysis is not done today until late in the
design process, close to implementation. Because of the
high level of detail involved (ISA and HDL simulators) and
the ever increasing system complexity, this approach is very
time-consuming. Even worse, there is usually no guarantee
that all the critical corner cases will be found.

System analysis is even more difficult for the common
case of embedded systems specified using several languages
or tools with different models of computation. Each of these
models has properties which can be exploited for analysis
and optimized implementation, but these properties are dif-
ferent for each model, thus inhibiting analysis and optimiza-
tion across language boundaries.

The SPI model is a novel internal system-level repre-
sentation that enables global analysis, in particular of tim-
ing, early in the design flow, as well as optimization and
synthesis of heterogeneously specified embedded systems
[14, 15]. Since systems are not modeled directly in SPI,

methods to translate different languages or models of com-
putation into SPI are needed.

In this paper, we present the translation of a time-driven
simulation model into SPI, using Simulink [11] as an exam-
ple. The translation relaxes the over-constrained exact tim-
ing assumed for all Simulink components, thereby yielding
a larger design space. Timing constraints are (re)inserted
afterwards and only where critical for correct real-time im-
plementation.

We introduce the main aspects of SPI in section 2. In sec-
tion 3 we describe the Simulink model of computation. In
section 4 we discuss which aspects of the Simulink model
of computation have to be preserved and which should be
abstracted. Based on those findings, we formulate a set
of translation rules. We show how timing-constraints are
(re)introduced, and present our design flow and implemen-
tation. In section 5 we present an example before conclud-
ing in section 6.

1.1. Related work

Real-Time Workshop [10] is the standard software code-
generator for Simulink. It can be used for prototyping or as
a basis for production code, but lacks the ability to guar-
antee timing. Timing is also a problem for other code-
generators, e.g. [7]. Ptolemy II [5] could serve as an al-
ternative target for the translation from Simulink. However,
SPI is the more suitable model for timing analysis, as it ab-
stracts process function into externally visible parameters.
RATAN [1] analyzes satisfiability of timing constraints for
an event-driven process model. This is not applicable here,
since Simulink uses a time-driven execution model. Once
we have transformed the Simulink execution model into ac-
tivation by relative execution rates, it becomes possible to
take a similar approach. In [12, 14] it has been shown how
to translate several models of computation into SPI, includ-
ing Kahn graphs, event driven models, and periodic process
systems.



2. The SPI model

SPI (System Property Intervals) [14, 15] is an internal
representation that facilitates the safe integration of parts
of a heterogeneously specified system and enables system
analysis across language boundaries. In this section, only
the basic concepts of SPI, which are necessary to under-
stand this paper, are introduced informally.

Computational elements in SPI are processes that com-
municate via two different channel types, FIFO-queues and
registers. The activation of SPI processes is implicit and
based on data availability, i. e. a process may start if there is
sufficient data on its input queues to support one execution.

The SPI model elements are not characterized by their
exact behavior but by a set of parameters such as activation
function, latency time and data rates. Data is produced on
and consumed from all connected FIFO-queues simultane-
ously at the end of the execution of a process (atomic buffer
update).

Parameters may be specified as value intervals. For ex-
ample, a data rate interval limits the number of produced
or consumed data, capturing data-dependent communica-
tion. Using the concept of process modes, such conditional
process behavior depending on internal states or input data
can also be modeled explicitly, i. e. a process is refined to
have different behaviors (parameter sets) that are modeled
as modes.

Virtual processes and channels are used to model the sys-
tem environment and to represent additional information for
synthesis. Since virtual elements are not part of the system
functionality, they do not need to be implemented.

Timing constraints in SPI are specified using latency path
constraints that limit the time for causal process executions
along a certain path. Other types of timing constraints can
be modeled by latency path constraints over virtual ele-
ments.

3. Simulink

Simulink [11] is a block diagram oriented industry stan-
dard tool for simulating mixed reactive/transformative, non-
linear dynamic systems that builds on the MATLAB en-
vironment for technical computing. It uses a time-driven
simulator that supports continuous-time, discrete-time (also
multi-rate) or a hybrid of the two. The basic, time-driven
execution model is extended by additional semantics, such
as triggered and enabled subsystems.

3.1. Application and limits

A typical application of Simulink is the modeling and
simulation of a physical system (e.g. from the automo-
tive domain) together with associated controlling and signal
processing functionality. While the model of the physical

system is eventually replaced by the actual system, the sig-
nal processing and controller design is often implemented
as an embedded system.

Real-Time Workshop (RTW, [10]) generates C code
from Simulink block diagrams for a variety of host and real-
time platforms. The generated code can be used for proto-
typing and as a basis for production code.

The main weakness of RTW and other code generators
(e.g. [7]) is their inability to guarantee timing, since they
lack a method to specify timing constraints and do not easily
support analysis of value intervals for execution latencies
[13]. In case of RTW, parts of the system that have the
same execution rate are clustered into individual processes,
which are triggered by periodic interrupts [10]. There is no
guarantee that a process is not interrupted prematurely, if its
execution time is longer than the available time slot. This
is particularly hard to detect during testing for the common
case of data-dependent execution times.

RTW also does not allow to control process granularity.
Additionally, to our knowledge there do not exist partition-
ing tools or hardware generators for Simulink, and hence
neither co-design nor multi-processor implementation are
supported.

3.2. Model of computation

A Simulink block-diagram represents a set of differential
equations. Directed edges between the blocks are used to
communicate values. These edges have register semantics
(non-destructive read, destructive write). Consequently, in
multi-rate designs a value on an edge can be read multiple
times (if the reading block is executed at a faster rate than
the writing block), or it can be overwritten before having
been read (if the reading block is executed at a slower rate
than the writing block).

A number of fixed-step and variable-step solvers are
available to solve the set of differential equations at certain
points in time. Variable-step solvers are important in cer-
tain situations to model a physical system accurately (e.g.
to find zero crossings), but are of little significance for the
design of control and signal-processing embedded systems.
These applications are generally modeled using fixed-step
solvers to enable code generation into periodic processes.

Simulink uses an idealized timing model for block ex-
ecution and communication. Both happen infinitely fast at
exact points in simulated time. Thereafter, simulated time
is advanced by exact time steps. All values on edges are
constant in between time steps.

While this timing model is appropriate for numerical so-
lutions of differential equations, it obviously cannot be im-
plemented in an embedded system. This fact and the lack
of means to specify implementable timing constraints in
Simulink explain the problems current code generators have
with timing (section 3.1).



4. Translation

In this section we show how to translate the semantics of
Simulink into a system of execution dependencies in SPI,
thereby replacing the restrictive absolute periodic timing by
a relative timing. This approach increases the design space
for optimization, supports combination with other models
of computation and allows to introduce global timing con-
straints.

The following aspects of the Simulink model of compu-
tation (section 3.2) have to be preserved: 1) causality and
the resulting partial ordering of Simulink blocks, 2) relative
execution rates between Simulink blocks, and 3) read and
write access sequence on each edge to model the register
semantics used by Simulink for communication.

Timing has to be relaxed, since 1) it is fundamentally
impossible to implement blocks or channels with zero exe-
cution time and 2) activation of all blocks at exact points in
time is unnecessarily restrictive.

Instead, there are usually few processes where timing is
critical, typically I/O processes which have to satisfy ex-
ternal requirements. Additionally, latency path constraints,
typically between inputs and outputs or along a cycle,
may have to be specified to guarantee timely completion
[6, 14, 15].

4.1. Basic translation rules

Our translator uses the following basic rules when map-
ping a Simulink block-diagram into SPI elements.

1. Each Simulink block is mapped into one SPI process.
(Clustering is considered in section 4.3.)

2. Each Simulink port is mapped into one virtual SPI pro-
cess that models the environment.

3. Each Simulink edge is mapped into one SPI register
channel to maintain Simulink destructive write, non-
destructive read semantics. One token is written (read)
on each register channel per activation of the writing
(reading) process.

4. A pair of virtual FIFO-queues is generated between
every two processes that communicate over a regis-
ter channel. Activation of the generated SPI pro-
cesses is enabled by availability of tokens on those vir-
tual FIFO-queues. The time-driven Simulink model
of computation is thus transformed into a data-driven
model which is supported by SPI.

5. Relative execution rates and partial ordering between
Simulink blocks are maintained by writing (reading)
the appropriate number of tokens to (from) each vir-
tual queue, and by the number of initial tokens on each

virtual queue, as specified in the following equations.

rvirt(Pi) = ts(Bi)

nCj(Pwr!Prd) = rvirt(Prd)� 1

nCj(Prd!Pwr) = rvirt(Pwr)

rvirt(Pi) is the number of tokens written and read by
process (Pi) per execution on each of its virtual chan-
nels. ts(Bi) is the sample time1 of block i. nCj

is
the number of initial tokens on virtual queue C j . The
direction of queue Cj is indicated by indices Pwr and
Prd, which refer to the writing and reading processes
of the corresponding register channel.

We show the application of those rules for the simple
system in figure 1. It consists of four Simulink blocks, one
input and two output ports. The respective sample times (in
ms) are annotated to each block.
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Figure 1. A simple Simulink block diagram

The SPI representation of the system is shown in figure
2. Large circles indicate processes with the number of to-
kens written or read per execution annotated to each process
port. Small circles indicate FIFO-queues with the number
of initial tokens annotated. Squares indicate register chan-
nels. Dotted elements are virtual.
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Figure 2. Generated SPI graph

For example, each execution of process P3 consumes 3
tokens on virtual channels C4 and C5, produces 3 tokens
on virtual channels C3 and C6, and reads and writes the
connected registers.

Figure 3 shows one possible execution sequence of the
generated SPI representation. For each channel, the number
of initial tokens, and the number of tokens after a process

1If sample times are not integer values, they have to be multiplied by
an appropriate factor to obtain integer values for rvirt for every process.



has been executed is shown. Clearly, the exact timing of
processes is not constrained. For comparison, the vertical
dotted bars indicate advancement of the original Simulink
sample time by 1ms.

P1 P4 P3 P2 P1 P1 P2 P1 P3 P1 P2 P4 ...

c1 3 4 0 1 2 3 4 0

c2 1 0 4 3 2 1 0 4

c3 1 0 3 2 1 0 3 2 ...

c4 2 3 0 1 2 3 0 1

c5 3 0 2 4 1 3

c6 1 4 2 0 3 1

Figure 3. Valid execution sequence

4.2. (Re)introducing timing constraints

Once the design has been translated to SPI, timing con-
straints can be specified exactly as needed, also across in-
put language boundaries. For example, the absolute execu-
tion rate for a single SPI process generated from Simulink
can be constrained, e.g. by requiring exact periodic activa-
tion or relaxed periodic activation. This automatically pro-
duces the maximum possible execution time intervals for
all processes coupled to this process through pairs of vir-
tual queues (see below). If any of these processes is not
executed during its execution time interval, the constraint
specified by the designer is violated. The remaining design
space is available for exploration.

Exact periodic activation An exact latency constraint on
a virtual “self”-channel of a process forces an exact periodic
activation of this process. This is shown in figure 4, where
process P1 has to be activated exactly every 1ms (presum-
ably because exact sampling of input i1 is critical) to satisfy
the latency constraint on channel Cs.
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Figure 4. Exact periodic activation of P1

“Exact” timing implies process instantiation accuracy at
timer or clock resolution. This usually requires hardware
implementation of the process, or activation by a highest
priority interrupt which is generated by a timer, and which
is guaranteed immediate handling.

Relaxed periodic activation If the activation time of a
periodic process does not have to be exact, a relaxed peri-
odic activation can be used instead. An additional virtual
process PClk with an exact periodic activation can be used
for this purpose. This is shown in figure 5 for process P1

(the rest of the system is the same as in figure 4).
Process P1 is connected to PClk via virtual channel C7

with a latency constraint interval that specifies the earliest
and latest valid completion times of process P1 relative to
process PClk.
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Figure 5. Relaxed periodic activation of P1

Latency path constraints A periodic timing constraint
for a single process result in maximum execution time in-
tervals for, and hence implicit latency path constraints be-
tween any pair of processes that are coupled to this process
through relative execution rates. This is shown in the timing
diagram in figure 6, which is a valid single-processor imple-
mentation of the constrained SPI graph in figure 4 without
process P4. Process P1 is executed exactly every 1ms be-
cause of its periodic activation constraint. Processes P2 and
P3 have been scheduled as late as possible without violat-
ing the timing constraint for process P1. The arrows indi-
cate the resulting longest possible latency for a change of
value at output o2 because of a change of value at input i1.
Stricter latency path constraints between inputs and outputs
can be specified explicitly if necessary.

P1

P3

P2
ms

4 ms - tlat(P3)

Figure 6. Implicit latency path constraint

4.3. Advanced translation issues

In this section, we present several advanced translation
issues. Detailed information can be found in [9].

Triggered Subsystems A triggered subsystem has a trig-
ger condition which is a function of the value at a special
trigger input. Every time the block driving the trigger port is
executed, the trigger condition is evaluated. The subsystem



is only executed if the trigger condition is satisfied. A trig-
gered subsystem can be modeled as a SPI process with two
modes [15], one modeling the system’s behavior if the trig-
ger condition is satisfied, and the other modeling the case
that the trigger condition is not satisfied. The SPI represen-
tation of a triggered subsystem is shown in figure 9, process
Cur.

Continuous sample time Even if blocks with continu-
ous sample time are present, Simulink has to solve a sys-
tem in discrete time-steps. Therefore, additionally to signal
and state values, also their derivatives are used to approxi-
mate continuous time. Since inner function is abstracted in
SPI, and since the basic Simulink concept of periodic ex-
ecution is maintained for time-continuous blocks, they can
be mapped to SPI in the same way as blocks with a discrete
sample time.

Granularity The task of finding a good process granu-
larity is important for an efficient implementation [2]. As
an extension to rule 1 in section 4.1, we thus allow the de-
signer to specify which Simulink blocks should be clustered
into a single SPI process, independent of subsystems used
in Simulink to build hierarchical block diagrams. This in-
dependence is useful, since subsystems in Simulink are a
structuring concept to facilitate comprehension and naviga-
tion of the design. However, this kind of structuring may
not be the best solution when it comes to implementation.

4.4. Design Flow and Implementation
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Figure 7. Design flow

Our design flow is shown in figure 7. To facilitate imple-
mentation, we have reused as much as possible from Real-

Time Workshop (RTW) [10].

1. The designer starts by specifying and simulating a sys-
tem in Simulink (System.MDL).

2. The designer writes a granularity file to specify the
clustering of Simulink blocks into SPI processes.

3. Using the standard RTW front-end and an additional
clustering stage, the Simulink block-diagram is trans-
lated into an intermediate format (System clust.RTW),
a slight extension of the RTW intermediate format.

4. The intermediate format is translated into an XML [8]
representation of SPI processes, channels, and process
and channel attributes (System.SPI.XML), which can
be validated by our SPI.DTD 2. The XML representa-
tion is used as an exchange format in the SPI work-
bench [4]. This step is performed by the standard
RTW code-generator, using a set of SPI XML code-
generation rules (SPI.TLC).

5. The standard RTW C-code generator is modified to
generate a single C function for every SPI process gen-
erated in step 4. This separates process function from
scheduling, thus opening the design space for explo-
ration.

6. The designer specifies timing constraints as necessary.

At this point, a SPI model of the Simulink design is avail-
able, with timing constraints and references to an executable
process model in C. Tools that hook into the SPI workbench
[4] can now be applied. Behavioral intervals for process and
communication timing can be analyzed [13] and the results
annotated to SPI processes and channels. The SPI model
generated from the Simulink design can also be integrated
with SPI models generated from system parts specified in
other languages, thus allowing global analysis and opti-
mization. Analysis results can be fed back to the Simulink
designer to change the system, granularity, or timing con-
straints. Once satisfied, the system can be implemented.

5. Example

We now apply our approach to an induction motor con-
troller [3] (figure 8) modeled in Simulink. It uses pulse
width modulation (PWM) with a frequency of 16kHz.

Additional knowledge about real-time requirements and
constraints is necessary, which cannot be represented in the
Simulink model. In the reference implementation [3], block
Measure is triggered by an external interrupt in the middle
of each PWM period to make sure that the PWM current is
not measured at a PWM edge. Block Speed / Flux is trig-
gered by a timer interrupt to get an absolute time reference.

A SPI representation of the controller including timing
constraints is shown in figure 9.

2A DTD is a grammar file used to define XML-tags and their properties.
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Figure 8. Induction motor controller

Mes
1

1
Cntl

Spd

Pi1
1 1

1, LC = a

1
1

1, LC = b

M1:0

M2:1

1

1
1 1

4
4

4

4

0

1 3

0

Pi2

Po1

Pi3

1

a = 1/16kHz

b = 1/4kHz

c6

c5

c9

c8

c4c3

c2

c7

c1

1

1

1

1

1
1

LC = [0, a]

1

11

1

4

0

11

Figure 9. SPI representation of the controller

1. Exact timing has been replaced by activation using rel-
ative execution rates. This leaves a larger design space.

2. The only process with an exact periodic activation con-
straint is PSpd as required by the design document [3].

3. PMes has a relaxed periodic activation constraint,
since based on the design document the trigger signal
for Simulink block Measure arrives periodically, with
a certain jitter (we have assumed a full period).

4. Processes PCur is modeled using two modes ( section
4.3). In both modes, the same numbers of tokens on
virtual channels are produced and consumed to main-
tain causality and relative execution rates, but only in
mode M2 data is consumed and produced on the reg-
ister channels.

At this point, the maximum design space for the
Simulink model that satisfies all timing constraints has been
obtained. Execution time intervals can be obtained using
static timing analysis methods [13]. With all information
in one place, efficient design space exploration can now be
performed.

6. Conclusion

We have demonstrated how relaxation of timing con-
strains increases the design space for real-time implemen-
tation of a time-driven simulation model using Simulink as

an example. We translate Simulink into the SPI model, and
in this process capture the essential aspects of the Simulink
model of computation, while allowing to abstract those as-
pects that cannot be implemented or that severely limit the
design space. Timing constraints that cannot be captured in
Simulink can then be annotated on the SPI level. This ap-
proach enables global system-level analysis, in particular of
timing, as well as optimization and synthesis of heteroge-
neously specified embedded systems.
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