
An Approach to Mixed Systems Co-Synthesis

Thomas Benner and Rolf Ernst
Institute of Computer Engineering, Technical University of Braunschweig

P.O. Box 3329, D-38023 Braunschweig, Germany
{benner I ernst}@ida.ing.tu-bs.de

Abstract

The paper presents an extension of co-synthesis for data
dominated applications to include reactive processes. The
extension allows for rate constraints as used in data domi-
nated applications as well as minimum and maximum time
constraints for communication and I/O which is required to
define reactive behavior of control tasks. A co-synthesis ap-
proach is proposed which differentiates global process and
communication scheduling, which is non preemptive, and
local scheduling which includes a restricted interrupt con-
trolled process invocation to extend the design space. Sev-
eral user parameters allow design space exploration. The
approach includes buffering, process pipelining ana’ paral-
lelization for control as well as for data dominated tasks on
d@erent levels of granularity. It supports inter process time
constraints which span processes with different periods. The
target architectures are heterogeneous systems consisting of
multiple processors, hardware components, memories and
different types of communication media.

1. Introduction

Despite many improvements in co-synthesis during the
past years, the range of application and the target architec-
tures of the individual approaches are still very limited and
prevent design space exploration for more complex archi-
tectures. There is work in reactive, control dominated sys-
tems, such as [1,2,3,4] which covers single microcontroller-
coprocessor architectures typically shared memory or point-
to-point interconnect and work in data dominated or com-
putation oriented systems, such as [5, 61 which use single
processor-coprocessor architectures or relatively simple com-
munication structures, such as a single bus. There are also
less specific systems, such as SpecSyn [7], COSYMA [8] or
VULCAN [9], even though they are certainly biased towards
control [9] or data dominated applications [8].

Many applications, such as mobile communication, how-
ever, show a mixture of both control and data dominated
applications on different levels of a design often included in a
single task, such as a wireless communication channel. Data
dominated applications, in particular periodic applications in

signal processing and control engineering applications make
extensive use of buffering to increase the design space and
allow high performance pipelining of statements up to pro-
cesses. A well developed mathematical background of signal
flow graphs and synchronous data flow graphs (SDF) sup-
ports scheduling and buffer size optimization, at least for
cycle-static implementations. There is a host of work in tbis
area and we just want to refer to [lo] which can be seen as
a basis for much of the later work. On the other hand, the
current control dominated co-synthesis approaches which fo-
cus on relatively small systems with processor-coprocessor
architectures make little or no use of buffering and pipelin-
ing. [1 l] covers more complex heterogeneous multiprocessor
architectures. They have presented several heuristic alloca-
tion and static or dynamic scheduling algorithms for global
system optimization. Again, the approaches do not include
buffering. This paper presents a co-synthesis approach for
mixed systems and heterogeneous architectures.

2. Process and timing model

We use a simple yet instructive example to explain the pro-
cess and timing mode1 as well as to demonstrate the problem
of mixed application co-design and the impact on scheduling
in the context of co-synthesis. The system in fig. 1 is a sim-
plified mode1 of a remote motor control. It receives packeted
messages from a central controller over a specialized simple
field bus. The messages are encoded and any error condition
must be signaled on the bus after a maximum time of tlol ,maz
after the error has been detected. Process J’t is responsible for
interface control. When complete, 9 will process the mes-
sage and decide whether the motor control must be adjusted.
PI and P2 are control tasks reacting to messages which arrive
asynchronously at some unknown time. So, a bus message
causes a chain of events. But, as an additional constraint, both
must be fast enough not to miss any message on the bus. SO,
there is a minimum process instantiation rate which can be
represented as a maximum time tl,min from the occurrence
of a bus event Ir to the execution of the corresponding PI. If
tPle+ > tIOl,maz, where tpter is the execution time of PI,
then PI must be pipelined or mapped to different processing
elements (PEs), which execute concurrently. 4 must be fast
enough to process PI’S messages. Since PI will only send

9
0-8186-7895-X/97 $10.00 0 1997 IEEE

.------. .------.
, ,

I' I’ I, '\\ I, ‘\\
: : bus : bus :
‘\, signals #’

-*.
,--; -:

I'
,

, ,' f+

‘t, t,m I, : sensor
signal p,

motor

t <- u_ control
P3.maxin;rn ,

*-__ ‘._I 0,: motor
-----________---* control

signal

Figure 1. A remote motor control.

complete messages while receiving individual bus signals, its
instantiation interval is smaller. The motor controller P3 uses
a complex control algorithm which must be iterated periodi-
cally within bounds t,.ate3,min/maz. It samples sensor signals
and reads messages from P2 and outputs control signals. P3
is a data dominated application with a static data flow, except
for the adjustment of control parameters in reaction to P2
messages, which would lead to a conditional control flow in
apartof P3.

Finally, A maximum latency time tI102 defines a new
reactive chain PI, P2, 4. Now, 9 must react to events as
well as execute a data dominated task. Moreover, the chain is
conditional. PI only passes a message to It if the message is
correct and addressed to this system, PZ only communicates
to P3 if the control parameters shall change.

In a standard single processor architecture, we would prob-
ably use an operating system kernel with preemptive schedul-
ing and input and output buffers to assure the required input
and output sampling. As soon as the timing becomes too
tight, we might decide that PI must be moved to hardware or
try to use a specialized controller.

But, the general co-design space is much larger. In the
example, we could avoid using specialized hardware by a
pipelined TPU-type peripheral processor or a second parallel
processor, but then we must regard PI'S internal states, which
leads to feedback loops. In this case, process level alloca-

tion is inappropriate and the process itself must be analyzed
and split according to the feedback. Scheduling for (cyclo-
)static data flow systems [lo] includes mapping of consecu-
tive process iterations, or, on the lower level of granularity,
of consecutive loop iterations to different PEs. We do not
want to discuss the associated problems e.g. of loop paral-
lelization [121, but want to support scheduling in this context.
Whether we need to pipeline or parallelize a process or even
a process chain very much depends on the wide variation of
PEs and communication structures and timing requirements.
This makes scheduling in heterogeneous hardware/software
architectures harder than in real-time programming applica-
tions where hardware/software partitioning has already been
done upfront thus limiting the design space and the feasible
timing requirements.

Under these extended co-design parameters, global pre-
emptive scheduling becomes a difficult task due to buffering
and process pipelining. Also, preemptive scheduling is only
appropriate for certain architectures as it involves control and
timing overhead.

Therefore, we propose a non preemptive global scheduling
approach which is described in the next sections. We start
with a problem formulation for the new approach. Then, we
explain the solution which is a combined partitioning and
scheduling approach. Several parameters can be used for
design space exploration.

3. Local scheduling

First, we would like to classify the PEs and local schedul-
ing strategies with respect to global I/O constraints and pro-
cess characteristics. The first characteristic refers to single or
multiple processes mapped to a PE.

l single process per PE - hardware
for purely control dominated systems without complex
data operations, RT-level FSMs are often sufficient to
implement processes. In this case, the processes can
react instantaneously: tpi,min = tpv,min < tcyc, where
t =sc is the FSM cycle time, t,i is the process instan-
tiation time, and t,, is the process instantiation inter-
val. This model is the basis for most co-synthesis ap-
proaches in the control domain, where hardware pro-
cesses are mapped to individual FSMs [1,4,3]. If there
are more complex operations on data, which take sev-
eral clock cycles, operation scheduling is needed and
the FSM transition time increases while instantiation is
still spontaneous as long as the FSM is not busy in tran-
sition. This leads to an increasing process instantiation
interval: tpv,min = n * tcyc. We can use pipelining to
reduce the instantiation interval, even in case of purely
control dominated functions (e.g. [13, 141). In both
cases, the target model of computation is event driven.
In contrast, a data flow application would be executed
periodically. Here, it is required that tpe,maz < tpv,min,

10

where t,, is the period.

l single process per PE - software:
if only a single reactive process is running on a processor,
we can either poll or use an interrupt. Here, the target
model of computation is event driven like in hardware
above and the same arguments hold, except that t,, and
t,, will typically be larger. Whether interrupt or polling
leads to a shorter t,i depends on the application and is
architecture dependent.

l multiple processes per PE:
If we assume that a PE has a single control flow, local
scheduling is required for both hardware and software.
Different strategies may be used for the various PEs
depending on the processes mapped to the PE. While
periodic scheduling is well suited to data flow tasks with
(cycle-)static data tlow such as the motor control in fig.
1, it can be less efficient for reactive processes. In fig.
1 this is obvious, when tllol,maz < tIl,mar. To sup-
port such cases, we use a static scheduling approach,
but reserve part of the PE cycles for preemptions of a
single user defined process, if this PE is a processor.
Implementation details are given below. With this ex-
ception, local hardware and software scheduling can use
the same approach.

The second characteristic distinguishes processes with
static and with dynamic control and data flow. As an ex-
ample, Ps in fig. 1 must react to sporadic control information
from Pz. This would be implemented with conditional con-
trol and data flow in 5.

If the branches of a conditional construct in a process
are split for fine grain partioning optimization, then schedul-
ing should make use of the mutual exclusion of branches
to avoid redundant assignment of execution time. If during
optimization, the branches are mapped to different PEs, (ad-
ditional) conditional data flow between PEs will result. In
the current approach, we avoid this situation by not split-
ting the branches of a conditional construct, except for loops
with fixed bounds. This, however, is a limitation of the cur-
rent scheduling approach, which does not yet handle mutual
exclusion, rather than a fundamental limitation of static non-
preemptive scheduling.

4. Timing constraint transformation

The scheduling mode1 requires timing constraint transfor-
mation. First, we must derive process periods for the reactive
processes. These periods induce other periods along reactive
process chains. The trouble in co-design is that the execution
times and, as a consequence, the required period depends on
the PE characteristics as we will see in the sequel.

For global static scheduling, we first replace the exter-
nal event periods tz,maz by rate constraints for the reac-
tive processes. The 9 period must at most be tll,min.

If we can buffer a single event, it is sufficient to require
tpe1 < tPrl,mat < tzl,min to react to all input events. Since,
now, PI reads the input events only in intervals of t,, in-
stead of instantaneously, latency increases with the resulting
requirement tpri,maz < trlOl,mar - tezePl,maz.

In general, this holds for all input events 13 and interface
processes Pi of a system:

vi,j,k : trPi,naz < Min(tIj,min, tIjOk,mzn - tezePik),

where terepik is the execution time from reading input Ii to
sending output Ok, where ok is an I/O event.

Internal process periods can be derived from I/O con-
straints and the rate of other processes. In case of a single
rate of all processes, it is an optimization problem to dis-
tribute the different I/O constraints over several inter process
constraints [19] of a reactive process chain (e.g. Pt, P2,
P3) since only the sum of all constraints must match the I/O
constraint (e.g. tl102,maz).

The more general case is a multi-rate system. Communica-
tion between processes of different rates has not been included
in previous work on scheduling in co-synthesis [111. Again,
fig. 1 shows the problem. Because It and the messages on
the bus appear asynchronously, we have no information on
the time when a message is complete and will be sent to 4.
In other words, PI to P2 communication is asynchronous,
again. Like in case of tl, latency between PI and Pz can
increase up to a period tp2, if t,t mod tp2 # 0. If tp2 = tp3,

then P2 and P3 can be synchronized such that there is no
additional increase in latency.

In general, each change in the process period between
two processes will increase the latency of a reactive chain
by the period of the receiving system. If a process can react
spontaneously (see above) then there will be no increase in
the latency time for this process (except for its execution
time). On the other hand, the process period determines the
system load. So, process rate selection would be another
optimization problem. We still have to include buffering.
To simplify latency analysis, we require unconditional read
operations.

Now, we can sum up the overall latency time and conclude:

vi,ktIiOk,mar > C (execution times) + C (buffer times)
+ C (communication times)
+ C (period adjustment times).

This also includes the single rate systems, where period ad-
justments are not necessary. This formula represents the
period assignment problem as an optimization task. For the
moment, the user is asked to assign the periods and the will
then optimize schedule and hardware/software partitioning.

5. The co-synthesis environment

The co-synthesis environment imposes few constraints on
partitioning and scheduling. The input language used to de-
scribe the system functionality is C”, an extension of C with

11

a process construct. Communication between processes in
the input description is based on logical channels which are
objects accessed by C functions [161. The basic concept is
comparable to the approach in COSMOS [171 or in CoWare
[IS], except for the buffering description and the distinction
between blocking and non-blocking communication. Time
constraints may be rate constraints for processes or mini-
mum and maximum time constraints between operations in
the same process (intra process constraints) or in different
processes (inter process constraints, see [19, 161). Compared
to [16], the set of time constraints is slightly extended to
include UO operations in order to cover the timing model ex-
plained above. The different types of timing constraints may
be arbitrarily combined for any process and I/O operation.

The target architecture template which is provided by the
user describes the physical communication channel type be-
tween the components and their maximum channel buffer
capacity (if any), the component types, i.e. the memories, the
processor components and their types, and the technology of
application specific hardware components and their respec-
tive maximum number of function units. The latter is used to
control hardware synthesis as in earlier versions of COSYMA
181. The set of components and communication channels
which is actually available for the co-synthesis process de-
pends on the module library. Currently, this includes non
buffered busses, point-to-point interconnect, FIFO buffers,
and shared memory accessible over busses or double buffers.

6. Co-synthesis with combined partitioning and
scheduling

The optimization goal in scheduling and partitioning is
to implement the system with minimal application specific
hardware cost, regarding all time constraints. The target ar-
chitecture template is used as a constraint during co-synthesis
and can be adapted by the user for design space exploration.
The application specific hardware costs are estimated on a
scheduling block basis with an approach that is based on
earlier work in [20].

As mentioned, partitioning supports different levels of
granularity. There are two reasons not to fix granularity. First,
and already explained, finer granularity offers a higher opti-
mization potential. Second, static non-preemptive schedul-
ing can support shorter process periods and process instan-
tiation times in case of process pipelining. It can also bet-
ter utilize the PEs with finer granularity of the scheduling
blocks provided the improved scheduling density compen-
sates the increased context switch overhead. Here, we define
a scheduling block to be the atomic unit for scheduling. On
the other hand, finer granularity leads to an increased design
space which makes optimization more complicated and pos-
sibly less efficient. So, until we have better knowledge on
the appropriate selection of granularity, the user is asked to
control granularity by either constraining the maximum input
code size of a scheduling block or the maximum scheduling

block execution time on a reference processor (determined
with COSYMA timing analysis functions [1.51).

Furthermore, scheduling blocks are delimited by block-
ing communication. This is a necessity for non-preemptive
scheduling. When partitioning below the level of processes
or functions, additional communication must be introduced
which is not part of the input description. So, unlike ap-
proaches for interface generation as in [17, IS], the algorithm
must be able to derive logic communication channels and
communication operations with a data flow analysis when
the system is partitioned. This problem is known from small
system co-synthesis using basic block level partitioning e.g.
[9,8], except that, here, we have to cope with different physi-
cal communication media at the same time. We used the parti-
tioning function which was already available in theCOSYMA
system and extended it to cover FIFOs and buses connecting
multiple components.

Loops with fixed bounds are split into loops with smaller
bounds to match the required maximum schedule block time
or length [22]. This approach reduces the resulting code size
compared to loop unrolling. Each process is divided into
a set of scheduling blocks. For each of these scheduling
blocks, a lower and an upper bound execution time bound is
determined either via symbolic RT-level simulation [151 or by
a path based estimator (211. This is done for each component
of the target architecture template.

The scheduling blocks of a process access common data,
or, more precisely, intra process communication is implicit
via shared memory. If, during scheduling, part of the schedul-
ing blocks are moved to a different PE, explicit communi-
cation may become necessary. The same happens in case
of process pipelining which requires multiple sets of process
variables and explicit communication between pipeline stages
with buffers. In such cases, communication processes (CP)
are inserted which are generated from templates depending
on the physical communication channel. CPs allocate two or
three devices at a time, the sending PE, the communication
device (CD) and the receiving PE. In case of a non blocking
communication, the CP is allocated only to the CD and to
the sending or the receiving PE. We must define a period in
which the static schedule is repeated. For synchronization
with the process periods, it is sufficient to choose the LCM
of all process periods.

Partitioning and scheduling is based on simulated anneal-
ing (SA) and is now executed in the following steps:

1. All processes are allocated to a single processor pre-
serving all precedences, i.e. without pipelining, but
disregarding timing constraints.

2. Iterate with SA over the following steps

l randomly select a process P to be moved

l randomly select a processor PR to be moved to

12

l calculate the mobility interval [M,(P), M,(P)]:
in which the P can be placed without precedence
violations.

randomly select a available time slot on PR within
the mobility interval

update communication

for each redundant communication: delete com-
munication processes.

. for each new communication: random selection of
available communication slots on the required CD
and instantiation of communication processes CP.

accept or reject move based on cost function C.

It should be noted that communication slot assignment is
required when busses are shared for different logic commu-
nication channels between processes. This is the case in all
experiments presented later. Simulated annealing has been
used before for a combined scheduling and partitioning in co-
synthesis [6]. There, the optimization goal was acceleration
rather than meeting a complex set of interrelated time con-
straints between processes with reactive and periodic models
of computation. Also, the target architecture was constrained
to a single processor and several coprocessors communicating
over a single bus and pipelining or buffering was not included.
Nevertheless, it gave an incentive to try the combination on
this more complex problem [23].

The cost function definition is a major problem in the
approach since there are many conflicting constraints. The
basic approach is an extension of [8], i.e. constraint violations
are mapped to cost components with an exponential weight,
such that we can start with a solution where all processes are
allocated to a single PE, which would otherwise be invalid,
and such that there is a high probability to accept moves
which reduce constraint violations and eventually lead to a
valid solution of the original problem.

7. Results

In order to evaluate the approach, we investigated variants
of two different examples. The first one is a model train
control. The train is controlled by a personal computer, from
which messages are transferred over the rails. The model
train has a motion speed regulation that moves the train close
to original large trains. A decoder scans the pulse duration
on the rails. A low pass filter and a 3 bit burst error correction
code are used. The message is passed to a motor controller
which samples the speed, motor voltage and current and con-
trols the motor via a peripheral PWM circuit. This motor
controller must be executed with a fixed period. Even though
this sounds like a simple application, it has all the character-
istics of a mixed system and is the basis for the example in
fig. 1, where part of the processes are shown. We tried two
variants with different transfer rates, each of them consists of

L I I

Train A y max 1 43629 34
Train A y 9us 1 38677 664
Train B y max 1 4623 40

I Train B n 9us 1 7128 88
Train B y 9us 1 40876 11
Train B n 9us 1 40101 519

1. I

Table 1. The train examples.

1 P 1 8051 1 Spare 1 Gates 1 t(s) 1

Table 2. The bridge examples.

5 processes with the cycle times shown in Table 1. The target
architecture consists of a 805 1 or a SPARC processor and an
application specific coprocessor. The processor core and the
coprocessor are running in parallel with a buffered point-to-
point communication, which is scheduled by the optimization
tool. In Table 1 we compare different implementation alter-
natives, which differ in its granularity (G), the use of process
pipelining (P) and the target architecture. Column 2 specifies
whether processes are pipelined. The parameter G gives the
maximal execution time of a scheduling block, whereas the
value max means, that a scheduling block is split only by
communication and labels, which refer to timing constraints.
The parameter G influences the number of nodes in the task
graph. The columns 4-6 specify the amount of hardware re-
sources. The type and number of processor cores and their
communication is provided by the user, while the algorithm
minimizes the application specific hardware (16 bit copro-
cessor). The execution time of the partitioning tool on an
UItraSparc Workstation is given in the last column.

Code generation and context switching using a micro ker-
nel is implemented with the approach described in [23] and
the GNU C-compiler for the SPARC and a commercial C-
compiler for the 805 1. Since the approach is not yet integrated
into the COSYh4A system, we cannot provide the final costs
as a result of high-level synthesis. Instead, the hardware costs
are estimated with a path based estimation tool [24].

13

The effect of tbe granularity on the design quality can
be investigated e.g. by alternatives in line 2 and 3. In both
alternatives processes are pipelined. But the comparison with
the design in line 1 shows an advantage of pipelining only for
one with finer granularity. Here smaller scheduling blocks
are mapped to hardware. The lower transfer rate of example
Train B compared to Train A reduces the hardware overhead
drastically for the SPARC core implementation, whereas it
has a small effect on the 8051 solution, where most parts of
the decoder and receiver task are mapped to the coprocessor,
anyway.

The bridge (table 2) description consists of seven pro-
cesses. In Bridge A the fastest process is executed with a
cycle time of 5Ous, in Bridge B its cycle time is lOOus. The A
version can be mapped on a single SPARC processor as well
as on four 8051 cores without additional hardware. For all
mixed HW/SW solutions with an 8051 holds that most of the
design is mapped to the coprocessor, whereas the coprocessor
replaces up to three 8051 cores. The last variant is mapped
to a SPARC, an 805 1 and coprocessor. Significant advantage
compared to alternative in line 4 can be reached if pipelining
is used.

8. Conclusion

We have presented an approach to combined scheduling
and hardware/software partitioning of mixed reactive and pe-
riodic systems. The results demonstrate viability and demon-
strate the effects of design space exploration.

References

111

PI

131

141

VI

161

M. Chiodo, I? Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
A. Sangiovanoi-Vincentelli. Hardware-Software Codesign of
Embedded Systems, IEEE Micro, August 1994, pp.26-36.

Pai Chou, Ross B. Ortega, Gaetano Borriello, 7% Chi-
nook Hardware/Software Co-Synthesis System, in Intema-
tional Symposium on System Synthesis, Cannes, France,
September 13-151995.

C. Cameras et. al., A Co-Design Methodology Based on for-
mal Specification and High-Level Estimation, IEEE Proc. of
Fourth International Workshop on Hardware/Software Code-
sign, Pittburg, Pensylvania, 1996.

A. Balboni, W. Fomaciari, D. Sciuto, Cosynthesis and Co-
Simulation of Control-Dominated Embedded Systems, Design
Automation for Embedded Systems, Vol. 1, No. 3, Kluwer,
1996.

A.Kavalade, E. Lee, A Global Criticality/Local Phase Driven
Algorithm for the Constrained Hardware/Software Parti-
tioning Problem, Proc. of 3rd Int’l Workshop on Hard-
y9y4/Software Codesign, Grenoble, France, Sept. 22-24,

J.K. Adams, D.E. Thomas, Multiple-Process Behavioral Syn-
thesis for Mixed Hardware/Sofnuare Systems,, Proc. of 8th In-
ternational Symposium on System Synthesis, Cannes, France,
Sept. 13-15, 1995.

171

181

[91

1101

Ull

WI
I131

I141

[151

[161

1171

U81

[I91

PO1

WI

WI

WI

1241

D.D. Gajski and F. Vahid and S. NarayanP System-Design
Methodology: Executable-Specijcation Refinement, IEEE
Proc. of EDAC. 1994

R. Ernst, J.‘Henkel et al, The COSYMA environment for hard-
ware/software cosynthesis of small embedded systems,, Mi-
croprocessors and Microsystems 20 (1996). Elsevier Science

R.K. Gupta, C.N. Coelho, G.D. Micheli, Synthesis and Sim-
ulation of Digital Systems Containing Interacting Hardware
and Software Components, Proc. of the DAC 92, 1992.

E.A. Lee, G.G. Messerschmitt, Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Processing,
IEEE, Trans. on Computers, Jan 1987.

T-Y. Yen, W. Wolf, Sensity-driven co-synthesis of distributed
embedded systems, IEEE Proc. of the ISSS, 1995.

U. Banerjee, Loop Parallelization, Kluwer, 1994.

Motorola: “TPU - Time Processing Unit Reference Manual”,
1990.

A. Takach, W. Wolf, Scheduling constraint generation for
communicating processes, IEEE Transaction on VLSI Sys-
tems, Vol. 3, No. 2, June 1995, pp. 215-230.

W. Ye, R. Ernst, Embedded program timing analysis based on
program andarchitecture classification, Technical Report CY-
96-3, Institut fur DV-Anlagen, Technische Universitat Braun-
schweig, Oct. June 1996.

R. Ernst, Th. Benner, Communication, Constraints and User
Directives .in COSYMA. Technical Reoort CY-94-2. Institut
filr DV-Anlagen, Techmsche Universi& Braunschwkig, June
1994.

T.B. Ismail, M. Abid, A. Jerraya, COSMOS: A CoDesign
Approach for Communication Systems, Third Int’l Workshop
on Hardware/Software Codesign, Grenoble, Sep. 22-24,1994.

St. Vercauteren, B. Lin, H. De Man, Constructing Application
Specific Heterogeneous Embedded Architectures from Custom
HW/SWApplications, IEEEProc. of the DAC 96, pp. 521-526.

P. Chou, G. Borriello, Software Scheduling in the Co-Synthesis
ofReactive Real-Time Svstems. 31st Desipn Automation Con-
ference, San Diego, CA; June 1994. 1

F. Vahid, D.D. Gajski, Incremental Hardware Estimation dur-
ing Hardware/Software Functional Partitioning, IEEE Trans.
on VLSI Systems, Vol. 3, No. 3, S 459-464, Sept. 1995.

J. Heokel, R. Ernst, The Interplay of Run-Time Estimation and
Granular+& in HW/SW Partitioning, 4th. Int’l Workshop on
Hardware/Software Codesign, Pittsburgh, 1996.

Th. Benner, A. bsterling, R. Ernst, Comparison of Context
Switching Methods for Fine Grain Process Scheduling. Tech-
nical Report CY-96-1, Institut fur DV-Anlagen, Tec%rische
Universitat Braunschweig, 1996.

Tb. Benner, R. Ernst, A combined Partitioning and Scheduling
Algorithm for heterogeneous Multiprocessor Systems Tech-
nical Report CY-96-2, Institut fur DV-Anlagen, Technische
Universitat Braunschweig, 1996.

J. Heokel, R. Ernst, A Path-Based Estimation Technique for
Estimating Hardware Runtime in HW/SW-Cosynthesis, IEEE
Proe. of 8th. Int’l Symp. on System Level Synthesis, pp. 116-
121, Cannes, Sep. 1995.

14

