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Abstract

We present a system for hardware-software codesign of embedded
controllers. We show that the full set of a standard programming
language (C) with real-time 'programming ‘extensions can be used
as input, ‘including dynamic structures. This is feasible due to
a deviation from the standard data representation in high-level
synthesis. The design process starts with an ~all-software
solution and shall extract code segments for implementation in
hardware, but only where timing constraints are violated. Three
classes of hardware shall be extracted, interface primitives,
coprocessors and second cores. We explain why we think the
latter two classes are the most important ones for hardware-
software codesign. We discuss the extraction side effects and
conclude that a dual-loop iterative extraction process is a good
choice. Clustering known from high-level synthesis can be
applied but counterexamples show that current clustering
criteria are not sufficient. We propose additional extraction
functions. An example shows the viability of the approach.

- Introduction

Embedded control systems are a constantly growing field with a
large share of the semiconductor market. Applications range from
office automation, telecommunication and consumer products to
industrial and automative control. Embedded control requires
reactive systems, i.e. systems which react in real time to
external asynchronous events, rather than process an input and

produce an output after some time, such as classical data
processing.

The system architecture is a combination of programmable
microprocessor cores with memory and hardwired or field

programmable peripheral devices. Hardware and software together
form the control system. :

. Embedded control applications are of increasing complexity
including e.g. 3D-signal processing, computer vision and fuzzy
logic. Conseqguently, the architectures become more complex and

have caught up with workstation technology using 32bit RISC
processors. '

At the same time there is strong incentive to speed up embedded
control system design to meet tight time-to-market requirements.
Hardware design must often start when the specification is still

subject to changes. '~ All this makes controller design
increasingly difficult.

As a result, embedded controller design is changing. 1In
particular at the high end, assembler coding is gradually
replaced by higher-level-languages, often C. ,



To minimize customized hardware, libraries of standardized
peripheral components are currently developed, such as in the
European OMI-project. Though this approach allows fast design
turn-around and quick modifications, design space is severely
limited. Right at the controller interface, the library approach
might be acceptably efficient, because most interface functions
are either relatively simple (counters, timers, serial-parallel
conversion) or they are standardized (CAN-Bus, ISDN,
Ethernet,...) or they are analog (ADC,...). It is, however, much
more difficult to decide which processor core(s) to use, and
.whether one or more - possibly different - processor cores
should be wused, and .if so, how to distribute the workload.
.Application specific coprocessors could be very cost effective,
if they can be targeted to those often small parts of the.
software where most of the computation time is spent.

All these decisions need intricaté knowledge of the system which
a hardware designer usually does not have, and they must be re-

evaluated in case of modifications. All this is not covered by
the library approach.

So, in general, the designer will stay on the safe side and tend

to overdesign processor performance, even in cost sensitive
volume markets.

An overdesign can have a high impact on chip area, because the
e.g. the difference between a 32bit RISC and a 1l6bit processor
may be several 100k transistors including additional memory for
increased instruction and program size. As an example, we have
investigated an HDTV chromakey algorithm [Ri92], which 1is
discussed in this paper.

So, hardware-software codesign can be more effective than logic

synthesis. It would be sufficient if it could only be used for
estimation.

A software oriented approach to hardware-software codesign

Our hardware-software codesign approach is based on the standard

architecture consisting of a processor core, memory and
customized hardware.

As many operations as possible are implemented in software
running on the processor core. There are several reasons for
this choice: high memory density, availability of optimally
adapted compilers, careful verification and field test of
standard cores, simpler software debugging and problems of
hardware synthesis efficiency for larger applications, and last
not least high flexibility in case of modifications.

External hardware is only generated when timing constraints are
violated. Exceptions are basic and inexpensive I/0-functions,
such as the standard processor interface (address bus, data bus
and control signals) and serial and parallel I/0 and except for
user provided peripheral functions, such as an optimized field
bus interface, e.g. selected from a library.

While timing constraints for interface control signals, such as
Request and Acknowledge signals, concern a smaller part of the
whole control task and, such, leave.little architectural choice,
other timing contraints are more global, such as control process
cycle times, dead times, data sampling rates, and process
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intercommunication. These more global constraints concern
extended code sections and give much choice which part of a
function to implement in hardware. If multiple tasks are
executed concurrently, one might even decide to move part of

another task to a hardware function to save processor time for
the critical task. . : .

The problem is to analyze the software and to extract an

appropriate part of the software for implementation in hardware,
in order to meet timing contraints.

An advantage of this approach is the flexibility in function
selection. At this point, we would 1like to be able to use
libraries, synthesis tools and user experience. So, we would
like to extract the following circuit types:

- Primitive structures at the interfaces.
Examples: counters, timers,
Currently, we assume synchronous circuit structures which
can be implemented with a synthesis system. We further
assume that interface functions which are asynchronous to
the program flow are described ' as seperate processes.

Moreover, the user should be able to provide the hardware
structure.

- Coprocessors.

Coprocessors should be small, such that they can be
synthesized by high-level synthesis.

-  Second core processor.
If a coprocessor is not appropriate because there is no
distinct critical software function or because it is too

large, another (possibly different) standard core could be
implemented.

In all three cases, the user must be able to support the
extraction.

This extraction is a partitioning problem. Because analysis and
extraction are done on the software functions, we call our
approach "software oriented" hardware-software codesign.

Previous work in the area of hardware-software codesign has
recently been published in [GM92]. It uses a similar .system
architecture. The input language is HardwareC, a very limited
subset of C designed for hardware description, with integer as
the only data type. The codesign starts with a configuration
where all functions, except for program constructs with
unbounded delay, are implemented as hardware modules. Only the
rest is implemented as software on a core processor. Then, the
design system tries to gradually move hardware functions to
software regarding timing constraints and synchronism. The
hardware is generated with the high-level synthesis system
OLYMPUS. This 1is a hardware oriented approach. In contrast to
our software oriented approach, only constructs which could
initially be implemented in customized hardware can move to .
software, that means there are strong limitations to dynamic
structures and system complexity.



Control system modeling

As mentioned in the introduction, C seems to emerge as an
important language for programming embedded control systems. So,
we chose C as input language to our design system. Because we
understand that software development, software efficiency and
verification are the dominant problems-of control system design,
we avoided to impose any limitations on the C language. By
choosing suitable internal data representation and translation,

we were able to support the full C language including dynamic
data structures.

Because C has no notion of timing and no task concept, we added
few language constructs for timing and task intercommunication.
' Timing can be defined as tpin, tmax and tduration (Ssee e.g.

[DaB85]), where each timing contraint refers to two C-labels.
Again, these extensions are not a result of hardware-software
codesign but a necessity for the description of control tasks.
Also,. there is an assertion statement, e.g. to specify loop
bounds for a precise run time analysis [PS91]. The syntax of

these constructs is not significant and could be adapted to
another real time-C dialect. '

As required, the designer can provide hardware structures. The
behavior must be described in a C function. This is well known
from synthesis (e.g. [MKM90]). The same is possible the other
way round, i.e. the designer may choose that a C-function must

not be implemented in hardware to allow modifications until
after hardware design.

The resulting superset of C is called c*.
Desigﬂ system structure

Fig. 1 shows the coarse design system structure without
partitioning details.

The C -system description is parsed into a syntax graph CGL
including all constraints. A data and control flow graph, as it
is typically used for design representation in synthesis systems
[FPC90], would not ©be sufficient to represent dynamic
structures. For verification and debugging, there is a simulator
for CGL format. Partitioning - which is described later - is
performed on this graph on a C-statement basis. Those statements
which shall be implemented in software are then translated to
regular C. Unlike a data and control flow graph as in synthesis
tools, the original program structure is kept throughout—the
partitioning process. So, a (hopefully) good and efficient
program structure is preserved for the following compilation
with a standard optimizing C-compiler. Currently, we are using
the GNU compiler, which can generate code for a multitude of
processor cores. Moreover, because the program structure is kept
in the CGL, the user can understand the steps of the CGL-
simulation and might even be able to evaluate the partitioning
effects with a line-by-line comparison.

When a second core shall be implemented, code for this. processor
can be generated the same way. :

For customized hardware implementation, we currently use the
Stanford OLYMPUS system [MKM90]. It uses HardwareC as input
language. So, the hardware which can be extracted is, at the
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moment, limited to the scope of operations which can be
synthesized by the OLYMPUS system.

Partitioning

Partitioning requires to identify if and where timing
constraints are violated. Run time analysis on the programming
language level [PS91] is not precise enough because it does not
reflect timing overhead as a result of hardware extraction. This
will be described in a moment. Even assembly language level
analysis (e.g.[PK90]) lacks sufficient precision. In pipeline
architectures, e.g., performance can be seriously degraded by
pipeline interlocks as shown with RT-level processor simulation
of a control system benchmark [HEZ92]. While in a related
project we are working on run time analysis regarding the
processor architecture, the only method which provides
sufficient precision today is extensive simulation (also used in
[GM92]). Extensive simulation is very time consuming. At the
moment, our only simulator is for SPARC-architectures. We have
coupled this simulator to the Verilog simulation system.

A difficult problem of partitioning is overhead as a side effect
of hardware extraction. The important effects are:

- Communication between  processor core and peripheral
hardware:

- - Communication time overhead:

N Additional I/O-operations of the processor core require
additional time. Load-store architectures which are
typical for RISC-controllers even require an extra
instruction for each read and write operation. In an

extreme case, the overall timing might be worse than
before extraction.

- Communication overhead:
Besides obvious wiring overhead, communication can

require buffers. Buffer size estimation is not always a
simple problem.

- Interlocks:

If variables are moved to a peripheral register, they might
not (yet) be available by the time the software would be

able to process them. This will lead to waiting times in the
software.

- Compiler effects:

When a program is fragmented by the extraction of
statements, the efficiency of compiler optimization will
change. Also, pipeline efficiency will be different. These
effects are hard to predict. On the other hand, extraction
on the assembler level is not usefull because the assembler
code is based on processor details.

We concluded that the partioning which we want to use for
hardware extraction needs iteration. Iteration through the whole
design loop, however, would be too time consuming considering
the time for compilation and simulation. So, a second, inner
loop is added which is based on cost estimation.



The design system including partitioning loops is shown in fig.
2.

For cost estimation and determination of the next partitioning
‘'step in the inner 1loop, we might use closeness critieria, as
defined in [LTh89]. Originally, these closeness criteria have
been employed for clustering in syntheSis. Out of these
closeness criteria, three seem applicable:

- The control closeness of two operations or clusters a and b

is the probablllty that the control flows from a to b or b
to a.

- The data closeness of two operations or clusters measures
- the number of common variables relative to all variables of
the operations or clusters.

i

- The operator closeness quantifies the similarity of
operations of two clusters. ‘

Control closeness can be derived from the syntax graph CGL; data
closeness can be calculated using the C.-compiler symbol table

and a similar table can be generated for operator closeness
determination.

The closeness criteria alone are not sufficient in our case. We
give two examples. Suppose two program segments count some
events. Because both increment and compare integer variables
several times, "the will have very high operator closeness. A
designer, however, would hardly share hardware but would use two
counters to avoid control and interconnection overhead. So, we
might decide to put higher weight on data closeness and control
closeness. High emphasis on control closeness and data
closeness, however, would prevent the use of coprocessors, such
as a floating point unit. Data closeness also overestimates
communication costs, whenever a dual port memory can be used.

We might use closeness criteria for a first selection of
candidates for partitioning and then look for patterns which
give hints to clustering for coprocessors, second cores .or
interfaces. [GM92] gives a first citerion (external non-
determinism) for interfaces. The definition of such patterns is
one goal of our current work.

However, we are in a somewhat better position than synthesis,
because synthesis has to implement every operation in hardware
while in our case the design algorithm may pick a suitable part,
which may be small compared to the possibly several ten thousand
lines of control system code. So, rather than relying on
closeness criteria, we are also looking for cost functions,
which are taylored to a specific class of hardware, which we
would like to extract. We will give a first example in the next
section.

For the cost function, two more components- are necessary, area
overhead and timing improvement caused by additional hardware
Both must be estimated because synthesis is currently not in the
partitioning loop. In particular, we have to regard scheduling
in the synthesis system to estimate interlocks. Control and
interconnect overhead estimation is difficult, but we hope for
improved estimations from high-level synthesis research.
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For the partitioning process (inner loop), we concentrate on
stochastic algorithms. Stochastic algorithms allow arbitrary
cost functions and iteration steps and allow a trade-off between
run time and result quality. So, they are well suited to
partitioning experiments, even if the relation of run time to
quality might not be optimal. At the moment, we are implementing
Simulated Annealing. ' A ' o

An experiment

The system is not completely running yet and we have not vet
implemented an automatic partitioning, but we decided to try an

example with some manual support to show the viability of our
approach.

For this first experiment, we have' chosen COprocessor
extraction. For simplicity, processor and COprocessor are memory -
coupled with a CSP (coroutine) protocol. The simple hardware
solution 'is shown in fig. 3. When the processor accesses a
predefined address, a start signal is issued to the coprocessor
and a HOLD signal to the processor core (SPARC: BHOLD: Hold
signal, AOE: address bus enable, DOE: data bus enable). When
finished,. the coprocessor sends a DONE signal which ends the
hold state. Core and coprocessor are clocked at the same speed.

We use a very simple cost function:

- for each operation, except for floating point, a constant
speedup is assumed. This speedup is estimated to be equal to
the number of function units in the coprocessor times the
number of . C-statement executions transferred to the
coprocessor. This is a very rough estimation which must
later on be corrected by a better scheduling estimation. It
assumes that the execution of a statement takes the same

- time on coprocessor or processor if the coprocessor has a
single functional unit, and that all coprocessor units will
permanently be used. This cost function, however, will
prefer loops, which are good candidates for coprocessors.,

Because it is so simple, it is well suited to a stochastic
algorithm,

- communication costs are fixed due to the simple
communication mechanism. For each variable to be transferred
from memory to a coprocessor register, one memory cycle is
required, and each switch between processor and coprocessor
takes another cycle. ~

The simple cost function is then:

where tproe is the execution time when the system is executed
exclusively on the processor, tavg is the average execution time
of a C statement, np is the number of functional units, s is the
number of all C statements executed on the coprocessor regarding
iterations, and v is the number of additional variable transfers
necessary between coprocessor and memory and processor and
memory. :

In this experiment, area is not part of the cost function, but
the user controls the number of functional units to be used by
OLYMPUS.



As an example, we used a chromakey algorithm for HDTV studio
equipment developed at another institute of our university
[RiS2]. The desired response time is 1ls. Using parameters, the
precision can be reduced to meet the required response time. For
the given precision, the algorlthm needs 3.0s on a SPARC 1+ The
program has 1400 lines of C code.

As we mentioned, the partitioning is not yet automatic. There is
a loop of 34 llnes, however, which is iterated 10070 times (fig.
4). This loop takes 90% of the total run time. Two other loops
(C,D) are nested within this loop with 120 iterations each.
There is a steep decrease in cost when extracting these two
inner loops. So, we selected them and after translation to
HardwareC, there where synthesized with OLYMPUS, choosing 2
ALUs. The RAM is accessed through an external port. Fig. 5 shows
the resulting schedule. The 4 read operations load variables
which are used more than once into registers in order to
‘minimize memory access. ‘

Without further interaction, OLYMPUS generated a circuit _with
17.300 gate equivalents and 120ns cycle time using the LSI Opmn
library, corresponding to a coprocessor run time of 260.9%us and
a total loop run time of 2.63s. We used a gate level timing
estimator in OLYMPUS because our current simulation environment
would not have able for timing simulation of the overall
configuration. By inserting a few drivers into high fanout
lines, the minimum cycle time dropped to 20ns with 18.000 gate
equivalents. This time,was extended to the processor cycle time
of 30ns, now reaching E%TSus per coprocessor run and 0.68s for
the whole loop. The total algorithm run time would now be
approximately 1s (i.e. '33% of the original run time on a SPARC
1+) and thus meet the requirement at the much less cost than a
second SPARC processor. A SPARC 10 class system might reach the
same level of performance at much higher cost.

We tried other numbers of functional units and the extraction of

a larger part of the system, but we had some problems with
synthesis, which could not be fixed yet.

Conclusion and further steps

We have presented a system for hardware-software codesign of
embedded control «circuits consisting of a standard core
processor and application specific on-chip hardware. Using a
syntax graph for internal representation and hardware extraction
on the statement level, no compromises in input language,
semantics and programming style are necessary. The system starts
with a pure software approach and tries to . extract hardware
until the timing requirements are met. The largest design space
is. available to coprocessor and second core extraction in
conjunction with global time contraints. Side effects of
hardware extraction require an iterative extraction process. A
dual-loop approach seems to be necessary to remove the expensive
run time evaluation from the primary extraction loop. Clustering
criteria known from synthesis alone are not sufficient and cost
functions which are taylored to a specific type of extracted

hardware may be a promising approach. This will be one focus of
our future research. _



Except for the innerx partitioning loop and the interface to the
synthesis system OLYMPUS, the system is for the most part
implemented and currently under test.
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/* C description of parts 30c and 30d of blue-screen program
*/

while (cr <= cr2 + kavl) {
cb = cbl + keyl;

nkeyn

while (cb <= cb2 + keyl) {
/*ax*/ MARK (130b); /[*yy*/
if (cb > vrablcr)) ¢
if (cb >= htablcr)
kt[cr){ch] = 253
else {
iabsv = 512; /* = 256+256 */

)

Bereich 30c s e L YT [ puppup */
for (i = crl; i <= cr2; i++) { :
inilf = labs(ecxr - i) + labs(ecb - vtab[i]);
if (ihilf < iabsv) {
(: isbsv = ihilf;
}
} /*of for i/
iabsh = 512; /* = 256+256 */
/f S NSECTISZ=sssEx=SS==nmz==s==== Bereich 304 It e e e TR g */
for (L = crl; i <= cr2; i++
‘ ihilf = labs(cr - i) + labs(cb - htab[i]);
if (ihilf < iabsh) {
iabsh = ihilf;
} /*0f for i/
/’ ======================================================================== */

kt[cr)[cb]) = iabsv =

255 / (iabsv + iabsh);
} [/*of else+/

FORLIM = min(cr + keyr, cz2);

for (v = max(crl, cr - keyl); v <= FORLIM; v++) {
FORLIX1 = min(cb + keyr, cb2);

for (u = mex(cbl, cb - keyl); u <= FORLIM1; u++) {
Cfv)[u] = kt{cx){ch];

}

¢cb += keyf;
} /*of while cb <=

0
v
N
*
~~

Fig. 4: Loop in chromakey algorithm
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