
25

Scalable Precision Cache Analysis for
Real-Time Software

JAN STASCHULAT and ROLF ERNST

Technical University of Braunschweig

Caches are needed to increase the processor performance, but the temporal behavior is difficult
to predict, especially in embedded systems with preemptive scheduling. Current approaches use
simplified assumptions or propose complex analysis algorithms to bound the cache-related preemp-
tion delay. In this paper, a scalable preemption delay analysis for associative instruction caches to
control the analysis precision and the time-complexity is proposed. An accurate preemption delay
calculation is integrated into a cache-aware schedulability analysis. The framework is evaluated
in several experiments.

Categories and Subject Descriptors: B.3.3 [Memory Structures]: Worst-case analysis

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Worst-case execution time analysis, cache, embedded systems,
preemptive scheduling

ACM Reference Format:
Staschulat, J. and Ernst, R. 2007. Scalable precision cache analysis for real-time software.
ACM Trans. Embedd. Comput. Syst. 6, 4, Article 25 (September 2007), 39 pages. DOI =
10.1145/1274858.1274863 http://doi.acm.org/10.1145/1274858.1274863

1. INTRODUCTION

Caches are needed to increase processor performance, but they are hard to
use in real-time systems because of their complex behavior. While it is already
difficult to determine cache behavior for a single task, it becomes even more
complicated when preemptive task scheduling is included. Preemptive task
scheduling means that task execution can be interrupted by higher priority
tasks. In this case, cache improvements can be strongly degraded by frequent
replacements of cache blocks.

There are several approaches to make caches more predictable and efficient.
One approach is to partition the cache sets and to reserve these partitions for

Authors’ addresses: Technical University of Braunschweig, Hans Sommer Str. 66, D-38106 Braun-
schweig, Germany; e-mail: staschulat|ernst@ida.ing.tu-bs.de
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1539-9087/2007/09-ART25 $5.00 DOI 10.1145/1274858.1274863 http://doi.acm.org/
10.1145/1274858.1274863

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 2 • J. Staschulat and R. Ernst

individual tasks. This has been investigated in Kirk [1989], Mueller [1995],
Liedtke et al. [1997], and Busquets et al. [1997]. The advantage is that cache
blocks do not have to be reloaded after interrupts and between consecutive
executions of the same task. Also, cache behavior becomes (partly) orthogonal
for tasks and, therefore, more predictable. Task layout techniques, as suggested
in Datta et al. [2001] for instruction caches, aim at minimizing the intertask
interference. Another approach is to lock frequently used cache blocks. Such
techniques have been investigated by Kirk [1989], Campoy et al. [2001], Puaut
and Decotigny [2002], and Campoy et al. [2005]. Both approaches increase
area and power cost as they require larger caches or background memories to
become effective. Therefore, heterogeneous memory architectures with caches
and scratch-pad SRAM have been introduced in the TriCore architecture
[Infineon 2004], where a scratch-pad can hold frequently used cache blocks.
Compiler techniques for such architectures have been proposed by Panda et al.
[1999]. While cache partition and lock strategies are certainly a very useful
add-on to improve cache predictability and efficiency, they do not solve the
general timing-analysis problem, where all tasks share a single cache, which
is critical for larger systems of tasks.

On solution to this problem is to extend the general schedulability analysis by
an additional term for cache-related preemption delays. The problem is twofold:
first, the calculation of the time delay for reloading replaced cache blocks be-
cause of a single preemption; and second, a cache-aware schedulability analysis,
which estimates the number of occurences of preemptions. In Busquets-Mataix
and Wellings [1996], Lee et al. [1998], and Petters and Färber [2001] cache-
aware response time analyses are described, which use a pessimistic estima-
tion for a single preemption. Either the preempted task is considered in Lee
et al. [1998], and Petters and Färber [2001] or the preempting task Busquets-
Mataix and Wellings [1996] is considered. Recently, two approaches Lee et al.
[2001] and Mitra et al. [2003] have been proposed in which the preempting as
well as the preempted task is considered. Both approaches rely on data flow
techniques, but use different cache representations.

The approach by Mitra et al. [2003] requires a greater time complexity, but
is more precise than the Lee et al. [2001] approach. During system design,
engineers must focus on different abstraction levels of system representation
and have to cope with different precisions of timing behavior. In design space
exploration, rough estimates of the system performance are sufficient, while
accurate estimates are necessary in the very last steps, of real-time verification.

The system design process already involves many steps and real-time per-
formance verification is one aspect. The design process would be impeded if too
many different techniques were employed. Unprecise cache behavior estima-
tions lead to an overdimensioned and inefficient design, while long verification
times limit the design, space exploration.

1.1 Contributions

This paper addresses the problem of cache interference in a real-time embed-
ded system, where all tasks share the same instruction cache. Preempitve

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 3

scheduling leads to frequent task interferences, which requires reloading
of cache blocks. The key contributions of the proposed analysis framework
are:
� A scalable precision cache analysis for preemption delay calculation. It com-

bines the strengths of both approaches of Mitra et al. [2003] and Lee et al.
[2001] by controlling the problem complexity and, therefore, the analysis
precision. Thus the same analysis methodology can be used in early design
phase, as well as in late time-intensive verification phase during system
development.

� The analysis supports direct-mapped, as well as associative instruction
caches.

� The analysis of a single task preemption is highly accurate by considering
the preeempting as well as the preempted task.

� The scalable preemption delay calculation is integrated in a cache-aware
response time analysis, that has been published in Staschulat et al. [2005]
to improve the accuracy of total response times.

� Finally, the applicabiliy of the method is demonstrated in several experi-
ments by comparing the analyis precision to previously published work and
by evaluating the time and memory consumption.

1.2 Limitations

Data caches are not considered. A timing analysis for data caches has
been proposed, e.g., in Vera, et al. [2003], Ramaprasad and Mueller [2005],
and Staschulat and Ernst [2006] and a preemption delay analysis for data
caches in Ramaprasad and Mueller [2006].

The approach is based on the control-flow graph of a task, which is con-
structed from the source code. Often software is secured by IP rights and is not
available in source code. In this case, a control-flow graph of the application with
associated instruction addresses could be an interface to our cache-analysis
technique.

As the control-flow graph is used to represent the task execution, we
only consider in-order issuing single processors. Timing analysis of out-of-
order pipelines and parallel resource allocation can lead to timing anomalies
[Schneider 2000] and are more difficult to analyze.

As in all other previous work, we assume a constant cache miss penalty, which
is determined by the worst case access time to background memory. However,
the average memory access time might be much smaller, depending on bus load
and memory controller.

1.3 Overview

This paper is structured as follows. Related work is reviewed in Section 2. A
motivating example is given in Section 3. We then present the new cache model
in Section 4. We present the scalable precision cache analysis first for direct-
mapped instruction caches in Section 5 and then for associative-instruction
caches in Section 6. In Section 7, the overall framework for real-time analysis

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 4 • J. Staschulat and R. Ernst

is described. Experiments are presented in Section 8 before we conclude in
Section 9.

2. RELATED WORK

2.1 Preemptive Scheduling and Schedulability Analysis

When multiple tasks share one resource, then two or more tasks may request
the resource at the same time. Scheduling resolves these conflicting requests.
Three major classes for task-scheduling strategies can be distinguished: First,
nonpreemptive static execution is mainly used in highly regular digital sig-
nal processing. Second, priority-driven scheduling is often used in highly re-
active systems operating in dynamic environments. The scheduling strategy
can use fixed priorities or dynamic priorities. In the fixed-priority case, priority
assignments often follow a rate-monotonic scheduling (RMS) [Liu and Layland
1973] or deadline-monotonic scheduling [Audsley et al. 1991] strategy; in the
dynamic-priority case, priority assignments often follow an earliest-deadline-
first (EDF) strategy. Finally a third class are preemptive time-slicing tech-
niques, which are used for a fair distribution of a resource among tasks. In this
paper, we investigate cache behavior effects for fixed-priority rate-monotonic
scheduling.

Embedded applications often require a real-time behavior, which denotes the
minimum and maximum time delays that are permitted for correct function-
ality. The importance of finishing a task within the predefined time window
distinguishes soft and hard real-time system. While soft real-time systems ac-
cept frequent violations, hard real-time systems require that every software
task must finish before a predefined time deadline. Schedulability analysis is
a technique to verify that each task finishes before its deadline.

Several schedulability-analysis techniques have been proposed for fixed-
priority preemptive scheduling [Tindell et al. 1994; Lehoczky et al. 1989; Joseph
and Pandya 1986; Liu and Layland 1973]. Liu and Layland [1973] show that
the rate-monotonic priority assignment, where a task with a shorter period is
given a higher priority, is optimal when task deadlines are equal to their pe-
riods. They also give the following sufficient condition for schedulability for a
task set consisting of n periodic tasks τ1, · · · , τn:

U =
n∑

i=1

Ci

Ti
≤ n

(
21/n − 1

)
, (1)

where Ci is the worst-case execution time (WCET) of τi and Ti its period.This
condition states that if the total utilization of the task set U is lower than the
given utilization bound (n(21/n−1)), the task set is guaranteed to be schedulable
under the rate-monotonic priority assignment. Later Lehoczky et al. [1989] de-
velop a necessary and sufficient condition for schedulability based on utilization
bounds.

Because of the maximum utilization bound of 0.69 of the above approach,
Pandya et al. [Joseph and Pandya 1986] and Tindell et al. [1994], have devel-
oped an iterative response-time analysis. The worst-case response time occurs

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 5

when all tasks are released at the same time point (critical instant). An iterative
approach is used to calculate the response time of a given task. The approach
allocates in a time window Ri the task τi ’s worst-case execution time Ci, the
tasks blocking time Bi, and the interference produced by the execution of higher
priority tasks. The blocking time is the maximum time that a task can be de-
layed by lower priority tasks due to resource contention. The process is itera-
tive, because in every step the interference is added to the current window Rn

i ,
resulting in a longer time window Rn+1

i that might include greater interfer-
ence in the next step. The process is finished when the window stops growing
(Rn+1

i = Rn
i). If the resulted response time for any task is greater than its

deadline (Rn+1
i = Rn

i = Ri > Di), the task-set is not schedulable. The iterative
relation is shown in Eq. (2) in which hp(i) denotes the set of tasks with a higher
priority than task τi.

Rn+1
i = Ci + Bi +

∑
j∈hp(i)

⌈
Rn

i

Tj

⌉
· Cj (2)

2.2 Cache-Aware Schedulability Analysis

At a context switch, cache blocks can be replaced by higher priority tasks and
require a cache reload increasing the response time. Measurement-based ap-
proaches to estimate the response time, which consider cache-related preemp-
tion delays, have been proposed by Mogul and Borg [1991], Corti et al. [2000],
and [Sebek 2001], but safe and accurate bounds can not be guaranteed, in gen-
eral, because simulation results strongly depend on the code coverage level
reached by input data.

As an alternative, cache-related time delays resulting from a preemption
have been integrated into schedulability analysis. Basumallick and Nilsen
[1994] extend Liu and Layland [1973] schedulability condition by an additional
term for the cache interference. The actual time delay for cache interference
is not further analyzed. One drawback of such a technique is that it suffers
from the pessimistic utilization bound 0.69 for larger task sets. Many task
sets that have a total utilization higher than this bound can be successfully
scheduled [Lehoczky et al. 1989].

Therefore, the approach in Busquets-Mataix and Wellings [1996] extends the
response-time approach of Tindell et al. [1994] by an additional term γ j that
denotes the cache-related preemption delay:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
· (Cj + γ j) (3)

The term γ j considers only the used cache blocks of the preempting task. How-
ever, it is possible that a replaced cache block by the preempting task is one that
is no longer needed by the preempted task or one that will be replaced without
being referenced again during a usual execution of the preempted task. These
cache blocks are known as useful cache blocks [Lee et al. 1998]. In Petters et al.
[Petters and Färber 2001] a response-time analysis is presented that considers
only the useful cache blocks of a preempted task. The quantity of useful cache

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 6 • J. Staschulat and R. Ernst

Fig. 1. Methodology to compute the cache related preemption delay for two tasks.

blocks is approximated by a constant percentage of all used cache blocks. In Lee
et al. [1998] a data flow technique is presented that calculated the set of useful
cache blocks and a cache-aware schedulability analysis is presented.

2.3 Preemption Delay Calculation with Data Flow Analysis

As a major step forward, both tasks have been considered. The set of useful
cache blocks of the preempted task and the set of used cache blocks of the
preempting task have been analyzed by Lee et al. [1998, 2001] and Mitra et al.
[2003].

The problem of preemption delay calculation is split into three parts. First,
the number of useful cache blocks of the preempted task τ is computed by two
iterative data flow analysis (reaching cache blocks (RCS) and live cache blocks
(LCS)). Second, the maximum number of used cache blocks of the preempting
task τ ′ is computed by an iterative data flow analysis (reaching cache states at
last node of control-flow graph RCSend). Finally, the maximum intersection of
useful cache blocks of the preempted task τ and used cache blocks of preempting
task τ ′ bounds the cache-related preemption delay. This methodology is shown
in Figure 1.

The reaching cache state RCS[B] at a basic block B contains all possible
cache blocks when B is reached via any incoming program path. The live cache
state LCS[B] at a basic block B contains all the first memory references to
cache blocks via any outgoing program path from B. RCS[B] capture (poten-
tially) available cache blocks when the task is preempted and LCS[B] capture
(potentially) re-accessed cache cache blocks when the task resumes execution.
In both approaches iterative data flow techniques are used to calculate the
RCS and LCS properties. We briefly review the general concept of data flow
technique for the computation of RCS. The calculation of LCB is analogous.

To compute RCSB, the quantities RCSin[B] and RCSout[B] are computed
as a least fixed point. Once the fixed point is reached, RCS[B] = RCSout[B].
Initially we set RCSin[B] = ∅ and RCSout[B] = gen[B]. For each basic block B,
the gen-set contains the last memory blocks that are loaded to the cache during
the execution of basic block B. The definition of the gen set depends on the
underlying cache model and is, therefore, different in Lee and Mitra approach.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 7

Fig. 2. Control flow graph with memory blocks and cache mapping for direct-mapped instruction
cache with four cache blocks.

The iterative equations are as follows:

RCSin[B] =
⋃

p∈pred (B)

RCSout[p] (4)

RCSout[B] = {r � gen[B]|r ∈ RCSin[B]} (5)

c � c′ =
{

c′ if c′ �=⊥
c otherwise (6)

The � operation is defined in Eq. (6) over memory blocks m and m′. It is ex-
tended to cache states by applying the operation to each cache set individually.
A data flow algorithm, as described in Aho et al. [1988] and Lee et al. [1998],
are used to calculate this fixed point.

While in Lee’s approach the cache contents is represented by a set of memory
blocks; in Mitra’ approach the cache contents is represented by a cache state
of memory blocks. The different representation causes a low-time complexity
time complexity set-based in Lee’s approach versus a higher time complexity in
Mitra’s approach In Section 3, we compare both approaches and motivate the
scalable precision cache analysis.

3. MOTIVATIONAL EXAMPLE

We motivate our scalable precision analysis with a comparison of Lee’s and
Mitra’s approach for the RCS calculation.

A task is represented by its control-flow graph (CFG) where nodes represent
basic blocks and edges specify the control flow between basic blocks. An example
control flow graph is shown in Figure 2. It shows a a loop statement with two
if-then-else statements. A node Bi lists the memory blocks that correspond to
the assembly instructions of basic block Bi. For example, the memory blocks m1,
m2, and m3 are loaded to the cache during execution of basic block B2. For this

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 8 • J. Staschulat and R. Ernst

Fig. 3. RCS calculation by Lee.

Table I. Gen-Sets for the Flow Graph in Figure 2

Bi gen[Bi] Bi gen[Bi]
B1 [{0}, {}, {}, {}] B5 [{}, {}, {6}, {7}]
B2 [{}, {1}, {2}, {3}] B6 [{8}, {9}, {10}, {}]
B3 [{4}, {5}, {}, {}] B7 [{}, {}, {}, {11}]
B4 [{}, {}, {6}, {}]

example, we assume a direct-mapped cache with four cache sets. The mapping
of memory blocks to cache sets is also given in Figure 2.

3.1 Set-Based Approach by Lee

The approach by Lee uses a set of memory blocks to store multiple memory
blocks in a cache set. Figure 3 shows the RCB sets after the data flow analysis
has converged. Table I summarizes the gen sets for the example. To abbreviate
the notation we use only the index of memory blocks. The notation of the cache
state at B4 [{0, 4}, {1, 5}{6}, {3, 11}] represents a cache in which m0 and m4 are
available in cache set c0, memory blocks m1 and m5 are available in cache set
c1, m6 is available in cache set c2, and m3 and m11 are available in c3. In the
data flow analysis, the contents of each cache set is propagated via the edges
and is merged for each cache set.

The data flow algorithm is demonstrated on the example flow graph of Fig-
ure 2. Initially all RCSc

in[B] are empty and RCSc
out[B] are initialized with the

genc[B] sets. The results are summarized in Table II for the first and second
iteration. The RMB sets of the third iteration are the same as in the second
iteration; therefore, they are omitted.

We explain the calculation of RCS of Eq. (4–6) for the second iteration at
basic block B4. In this case, the RCSout of B2 and B3 are merged and cache set

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 9

Table II. Reaching Cache Blocks RCSout [Bi] for Set-Based Approach by
Lee

Bi RCSout (Bi) 1st Iteration RCSout (Bi) 2nd Iteration
B1 [{0}, ∅, ∅, ∅] [{0}, {1, 5, 9}, {6, 10}, {11}]
B2 [{0}, {1}, {2}, {3}] [{0}, {1}, {2}, {3}]
B3 [{4}, {5}, ∅, ∅] [{4}, {5}, {6, 10}, {11}]
B4 [{0, 4}, {1, 5}, {6}, {3}] [{0, 4}, {1, 5}, {6}, {3, 11}]
B5 [{0, 4}, {1, 5}, {6}, {7}] [{0, 4}, {1, 5}, {6}, {7}]
B6 [{8}, {9}, {10}, {3}] [{8}, {9}, {10}, {3, 11}]
B7 [{0, 4, 8}, {1, 5, 9}, {6, 10}, {11}] [{0, 4, 8}, {1, 5, 9}, {6, 10}, {11}]

Table III. Reaching Cache States RCSout [Bi] for State-Based Approach by Mitra

Bi RCSout [Bi] 1st Iteration RCSout [Bi] 2nd Iteration
B1 [0, ⊥, ⊥, ⊥] [0, 1, 6, 11], [0, 9, 10, 11], [0, 5, 6, 11]
B2 [0, 1, 2, 3] [0, 1, 2, 3]
B3 [4, 5, ⊥, ⊥] [4, 5, 6, 11], [4, 5, 10, 11]
B4 [0, 1, 6, 3], [4, 5, 6, ⊥] [0, 1, 6, 3], [4, 5, 6, 11]
B5 [0, 1, 6, 7], [4, 5, 6, 7] [0, 1, 6, 7], [4, 5, 6, 7]
B6 [8, 9, 10, 3] [8, 9, 10, 3], [8, 9, 10, 11]
B7 [0, 1, 6, 11], [4, 5, 6, 11], [8, 9, 10, 11] [0, 1, 6, 11], [4, 5, 6, 11], [8, 9, 10, 11]

c2 is replaced with genc2 [B4]:

RCSin[B4] = [{0}, {1}, {2}, {3}] ∪ [{4}, {5}, {6, 10}, {11}]
= [{0, 4}, {1, 5}, {2, 6, 10}, {3, 11}]

RCSout[B4] = [{0, 4}, {1, 5}, {6}, {3, 11}]

3.2 State-Based Approach by Mitra

As an alternative, the approach by Mitra [Mitra et al. 2003] uses several cache
states when more memory blocks are available in a cache set. The output for
the RCS calculation is shown in Table III and graphically represented for the
second iteration in Figure 4.

A cache state consists of cache sets, that are either empty (⊥) or contain a
single memory block mi. The data flow analysis is, again, described at basic
block B4: The contents for all cache sets is given in the following:

RCSin[B4] = {[0, 1, 2, 3], [4, 5, 6, 11], [4, 5, 10, 11]}
RCSout[B4] = {[0, 1, 6, 3], [4, 5, 6, 11]}

Memory block m6 is mapped to cache set c2. Note, that the number of cache
states reduces because the duplicated cache states are removed ([4, 5, 6, 11]).
Since gen[B4] = [{}, {}, {6}, {}], the third cache set, containing m2, m6, andm10,
is replaced by m6. In this approach, the cache states are duplicated if some
cache sets are not equal, resulting in an increased number of cache states.
For example, node B5 and B6 contain two cache states, but basic block B7 has
three cache states. This increase of cache states scales exponentially with the
number of branches in a task. This higher time-complexity comes with the gain
of a higher analysis precision.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 10 • J. Staschulat and R. Ernst

Fig. 4. RCS calculation by Mitra.

3.3 Comparison and Discussion

To directly compare the approaches, we calculate the useful cache blocks
USE[B4] for basic block B4. These results were taken from Tables II and III.
The computation of LCS has not been shown because of space requirements,
but the computation is analogous to the RCS calculation. The set of useful cache
blocks calculated by Lee’s approach USElee[B4] is given by:

RCBout[B4] = [{0, 4}, {1, 5}{6}, {3, 11}]
LCBout[B4] = [{0, 8}, {1, 5, 9}{6, 10}, {7, 11}]
USElee[B4] = RCBout[B4] ∩ LCBout[B4] = [{0}, {1, 5}{6}, {11}] (7)

Assuming that all useful cache blocks are used by the preempting task, the total
preemption delay would be four cache blocks. The set of useful cache blocks
calculated by Mitra’s approach USEmitra[B4] is given by:

RCSout[B4] = {[0, 1, 6, 3], [4, 5, 6, 11]}
LCSout[B4] = {[8, 9, 10, 11][0, 1, 6, 7][0, 5, 6, 7]}
USElee[B4] = max(RCBout[B4] ∩ LCBout[B4])

= [0, 1, 6, 3] ∩ [0, 1, 6, 7] = [0, 1, 6, ⊥] (8)

Assuming that all useful cache blocks are removed by the preempting task, the
total cache-related preemption delay would be three cache blocks. This is one
cache block less, or 25% in relative terms, than in Lee’s approach. The number
of useful cache blocks are shown in Table IV for all basic blocks. In most cases
the number of useful cache blocks computed by state-based approach is smaller
than the set-based approach. The reason for a higher precision is the greater
number of cache states that captures execution path information.

To conclude, we have demonstrated why the state-based approach by Mitra.
is more precise, but has a higher time complexity than the set-based approach

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 11

Table IV. Useful Cache Blocks of
State-Based Approach by Mitra

USEmitra and of Set-Based Approach
by Lee USElee.

Basic block USEmitra USElee

B1 3 4
B2 2 2
B3 2 3
B4 3 4
B5 2 3
B6 1 1
B7 3 4

by Lee. The question arises, whether the analysis precision of the state-based
approach could be accomplished with a fewer number of states? If not, the same
analysis precision can be reached. How then does the precision scale with the
time complexity? How many cache states would be necessary for sufficiently
accurate results?

To answer these questions, we propose an scalable precision cache analysis
that limits the number of cache states at each node. Whenever the number
of cache states is larger then a given bound, cache states are merged. This
technique bounds, therefore, the time complexity, because the number of cache
states is bounded but possibly reduced the analysis precision. A new cache
model, which is necessary to provide a sufficiently general data structure, is
described in the next section.

4. SCALABLE PRECISION CACHE MODEL

In the following, we define a cache state c and a cache set ci that are used in the
scalable precision cache analysis for direct-mapped and associative-instruction
caches.

Definition. A cache state c is defined as a vector of cache sets ci: c = [c1, · · · , cS]
where S denotes the total number of cache sets.

Definition. A cache set ci is defined as a vector of sets of memory blocks
M : ci = [M , · · · , M]. The length of the vector is given by the associativity n
of the cache. The cache set ci[1] for a direct-mapped cache at execution point
p contains the memory blocks m1, · · · , mk if these memory blocks may have
been mapped to ci at execution point p: ci[1] = {m1, · · · mk}, otherwise ci = ∅.
Analogously, the nth element of cache set ci[n] for associative caches is defined
as containing the nth most recently used cache blocks.

For a direct-mapped cache, the vector ci has exactly one element, because
there is only one cache set to which a memory block can be mapped to: ci = [M].
For example, a cache state of a direct-mapped cache with four sets is defined as:

c = [[M], [M], [M], [M]] (9)

As a second example, a cache state for a two-way associative cache with four
sets is defined as

c = [[M , M], [M , M], [M , M], [M , M]] (10)

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 12 • J. Staschulat and R. Ernst

The usage of all memory blocks M for each cache set can be refined for complex-
ity considerations, because not every memory block can be mapped to every
cache set. Cache set ci contains only those memory blocks that map to this cache
set, e.g., ci = [Mi, Mi, Mi, Mi] in which Mi denotes the set of memory blocks
that map to cache set ci. This definition allows us to tighten time and space
complexity considerations, because the number of elements of Mi is given by
|Mi| = |M |

S .

5. PREEMPTION DELAY ANALYSIS FOR DIRECT-MAPPED CACHES

Data flow techniques to bound the total preemption delay have been proposed
by the state-based approach by Mitra et al. [2003] and the set-based ap-
proach by Lee et al. [1998]. While the approach by Lee simplifies the no-
tion of a cache contents by using sets, which has the advantage of a low
time complexity, the approach by Mitra distinguishes between different exe-
cution paths by using cache states, which potentially leads to a large number
of cache states at each basic block. Our approach combines the strengths of
both approaches by limiting the number of cache states at each basic block,
thereby scaling the time complexity as well as the analysis precision. When-
ever the threshold of the maximum number of cache states is exceeded, cache
states are merged, reducing the time complexity, but also reducing the accu-
racy of cache content prediction. We start by describing the scalable data flow
analysis.

5.1 Scalable Data Flow Analysis

Based on the general data flow analysis, as described in Section 2.3, we present
the new scalable precision cache analysis.

5.1.1 Computing Reaching Cache States. We adopt the presentation of the
iterative data flow algorithms from Mitra. For the RCS property, we define
RCSin[B] and RCSout[B] as the cache state of reaching cache blocks just before
and just after the execution of basic block B. After the fixed point is reached,
we set RCS[B] = RCSout[B]. Initially

RCSin[B] = ∅ RCSout[B] = gen[B] (11)

For each basic block B, the gen[B] is defined as a vector gen[B] =
[[M0], · · · , [Mn−1]], where Mi = {m} if m is the last memory block in B that
maps to cache block i and ∅ if no memory block in B maps to cache block i.
Thus, gen[B] represents all the memory blocks that are available in the cache
at the end of the execution of basic block B. The iterative Eqs. 4–6 are modified
as follows:

RCSin[B] = boundZ

(⋃
p∈pred (B)

RCSout[p]

)
(12)

RCSout[B] = {r � gen[B]|r ∈ RCSin[B]} (13)

c � c′ =
{

c′ if c′ �= ∅
c otherwise (14)

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 13

Fig. 5. boundZ (C) algorithm.

For the proposed cache model, c � c′ denotes a binary operation on memory
blocks M and is applied for each cache set. The cache set csi is represented by
a vector with a single element: csi = [M] thus c = csi[1] and c′ = cs′

i[1]. If the
gen[B] set is not empty, then the result is gen[B], otherwise the set of memory
blocks is replaced by RCSin[B]. The function boundZ (C) reduces the number
of total cache states of C to Z elements, where C is a set of cache states. Its
implementation is described in Section 5.2

5.1.2 Computing Live Cache States. Similarly the LCS property is com-
puted by an iterative fixed-point algorithm. The only difference is that the
LCSout[B] is defined in terms of LCSin[B] of all successors of basic block B:
Initially,

LCSout[B] = ∅ LCSin[B] = gen[B] (15)

For each basic block B, gen[B] is defined as gen[B] = [[M0], · · · , [Mn−1]], where
Mi = {m} if m is the first memory block in B that maps to cache block i and ∅
if no memory block in B maps to cache block i. The iterative equations are:

LCSout[B] = boundZ

(⋃
s∈succ(B)

LCSin[s]

)
(16)

LCSin[B] = {l � gen[B]|l ∈ LCSout[B]} (17)

The operation � is defined as in the computation of RCSB.

5.2 Bounding Number of Cache States

The number of cache states is bounded with a function boundZ . The function
boundZ (C) reduces the number of states of set C to Z elements, if |C| > Z ,
otherwise boundZ (C) = C. The idea is to merge those cache states, which are
almost equal. We formalize this idea by using a distance metric over cache
states that characterizes the number of different elements of two cache states.
We then repeatedly choose two elements with minimum distance and merge
them, until the total number of elements in C is equal to Z . The objective
is to reduce the number of cache states while keeping them as different as
possible.

The boundZ algorithm is shown in Figure 5. In line 2, two elements ci, c j ∈ C
with the minimum distance min{d (ck , cl)|ck , cl ∈ C}, are chosen. In line 3, these
elements are removed from C. In line 4, the merged cache state ci ∪c j is inserted

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 14 • J. Staschulat and R. Ernst

to C. Therefore, the number of elements of C decreases by one in each iteration
and, thus, the algorithm always terminates.

5.2.1 Distance Metric. The function d (a, b) of two cache states a, b is de-
fined as a metric that delivers the difference of two cache states. Several metrics
are possible. We present a simple metric d1 and a more complex metric d2. The
simple metric d1 only counts the number of different cache sets, ignoring how
many elements in each set are different. This is shown in Eq. (18) where S
denotes the total number of cache sets.

d1(a, b) =
S∑

k=1

{
1 if ak[1] �= bk[1]
0 otherwise (18)

The variable ak[1] denotes the set of memory addresses of cache set ck . The
scalable precision cache model for a direct-mapped cache represents each cache
set as a vector with one set (refer to Section 4). thus, we have to use the first
element of the vector. The complexity of d1 is

O(d1) = O(S · X) (19)

where X denotes the maximum number of elements of the set ak[1]. The equal-
ity test of two sets can be computed in linear time. We use the O notation to
express the time complexity [Cormen et al. 1997]. A bound for the maximum
number of memory blocks X is discussed in Section 5.3.3.

As an alternative, a more sophisticated metric d2 is proposed to count the
number of different memory blocks of each cache set with the symmetric differ-
ence. The definition of d2 is given in Eq. (20).

d2(a, b) =
S∑

k=1

∣∣(ak[1] ∪ bk[1]) \ (ak[1] ∩ bk[1])
∣∣ (20)

The complexity of d2 is given by taking S times the union of two cache sets
with X elements; by taking the intersection S times of two sets with, at most,
X elements each and by taking the set difference of a set with 2X elements
and X elements

O(d2) = O(S · (t∪(X , X) + t∩(X , X) + tsetdiff(2X , X)) = O(S · X 2) (21)

5.2.2 Cache State Selection. There are several selection strategies to
choose candidates of cache states of C. One strategy, Sel1, is to maintain only
one merged set, such that the metric is computed between pure cache states
(singleton sets) and one cache state that might contain sets with more than
one element. This favors the idea to maintain as many pure cache states as
possible. The complexity of the selection function Sel1 is proportional to the
number of cache states O(Sel1) = O(|C|).

A second selection strategy, Sel2, is to choose from all cache states of C. This
metric Sel2 requires to compare all pairs of cache states leading to quadratic
complexity O(Sel2) = O(|C|2). The metric Sel2 is expected to yield more accu-
rate results than Sel1, because more elements are considered. An example for
applying these metrics is given in Section 5.4.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 15

5.2.3 Merging Cache States. The merge operation � for two cache states
is used in the algorithm boundZ in Figure 5, as well as in the iterative data
flow algorithm for RCS and LCS calculation in Eq. (14).

We define the operation � over M (M denotes the set of all memory blocks).
It can also be used for cache states by applying it pointwise to its elements. Two
cache states a and b with S cache sets can be merged by applying the union
operator for sets to each element:

a � b = ((a1[1] ∪ b1[1]), · · · , (aS[1] ∪ aS[1])) (22)

The time complexity of the merge operation � scales with the number of ele-
ments in each cache set X and the number of cache sets S of the cache:

O(a � b) = O(S · (t∪(X , X)) = O(S · X 2) (23)

5.2.4 Preemption Delay Calculation. The cache-related preemption delay
is computed by the intersection of useful cache blocks of the preempted task
τ and the used cache blocks of the preempting task τ ′. The same methodology
of the approach by Mitra et al. can be applied. For a complete treatment, we
specify the set of useful cache blocks:

USEτ
scale[Bi] = RCSτ

out[Bi] ∩ LCBτ
out[Bi] (24)

Finally, the preemption delay CRPDττ ′
scale is given in Eq. (25) in which Bend de-

notes the last basic block of a task.

CRPDττ ′
scale = max{USEτ

scale[Bi] ∩ RCSτ ′
out[Bend] | ∀Bi ∈ task τ } (25)

5.3 Time Complexity

The time complexity of the boundZ algorithm in Figure 5 is determined by the
following steps.

1. complexity for counting number of cache states (line 1);
2. complexity for choosing ci, c j with d (ci, c j) minimal (line 2);
3. complexity for removing and inserting a new cache state to C (line 3, 4);
4. complexity for merging two cache states ci and c j (line 4);
5. number of iterations of while-loop (line 1–5);

5.3.1 Complexity for Each Step. First, we describe the time complexity for
each step within the while-loop, then we calculate the maximum number of
while-loop iterations. All values of the time complexities are summarized in
Table V.

Step 1 can be implemented in linear time relative to the number of elements
of C. In the RCS (LCS) algorithm, as shown in Eqs. (12– 16), |C| is bounded
by the number of predecessor (successor) nodes. The maximum number of pre-
decessor nodes can be bounded by 2, because if-then-else statements and
loop-constructs like for, while create, at most, two branches. A switch-case
statement, even though potentially many branches are created, can be repre-
sented by multiple if-then-else statements. Therefore, we can bound |C| < 2Z

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 16 • J. Staschulat and R. Ernst

Table V. Complexity of Analysis
Steps for BoundZ Algorithm for

Direct-Mapped Instruction Cachea

Step Operation Complexity
1 count O(2Z)
2 Sel1 O(2Z)
2 Sel2 O((2Z)2)
2 d1 O(S · X)
2 d2 O(S · X 2)
3 insert O(2Z)
3 remove O(2Z)
4 union O(S · X 2))
5 loop bound Z

a Z denotes the maximum number of cache
states at a node; X denotes the maximum
number of memory blocks of a cache set; S
denotes the number of cache sets in a cache.

because the RCS (LCS) each predecessor (successor) node has, at most, Z cache
states.

Step 2 is determined by the time complexity of the selection algorithm Seli

multiplied by the time complexity of the distance metric di plus finding the
minimum element. The time complexity for each algorithm is summarized in
Table V. Then, the smallest element can be found in O(2Z) or O((2Z)2), de-
pending on the selection method (Sel1 or Sel2).

Step 3 is determined by inserting and removing an element from a set. This
can be done in linear time. Assuming that there are, at most, 2Z elements in
set C, we get: O(2Z). Step 4 is determined by the complexity for taking the
union of each cache set with X elements: O(S · X 2)).

Finally, we bound the maximum number of while-loop iterations. Since |C| <

2Z , there are, at most, Z loop iterations, because in each iteration the number of
elements in C decreases by one element and the loop terminates when |C| ≤ Z .

5.3.2 Overall Time Complexity. In summary, the complexity of the entire
boundZ algorithm is given by multiplying the sum of counting number of ele-
ments, choosing the element with the minimum distance, removing and insert-
ing an element, and taking the union of two sets with the maximum number of
loop iterations:

O(boundZ) = O(Z ·O(2Z)+O(Seli)·O(di)+O(Seli)+2O(Z)+O(S ·X 2))) (26)

For distance metric d1 and selection metric Sel1 ,the complexity of the boundZ

algorithm evaluates to:

O(boundZ (d1, Sel1)) = O(Z 2 · X + Z · X 2)) (27)

For the configuration of the distance and selection metric d2 and Sel2, the
complexity evaluates to:

O(boundZ (d2, Sel2)) = O(Z 3 · X 2) (28)

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 17

To conclude, the complexity scales quadratically with the number of cache states
Z with the configuration d1, Sel1 and cubicly with Z for the configuration
d2, Sel2 when we assume that X is a small constant. We will argue below
that X is a small constant for most embedded applications.

5.3.3 Bounding Number of Memory Blocks. To tightly bound the maxi-
mum number of memory blocks X in a cache set si is difficult. A naive upper
bound would be the number of memory blocks that map to cache set si, which
is bounded by the total number of memory blocks M divided by the number of
cache sets S: M

S . However, this is obviously an overestimation because a single
access in a basic block to cache set si replaces all memory blocks of si by a single
memory block, namely gen[B]. In regular frequency, the number of cache blocks
X will be reduced to one.

When does the number of memory blocks increase? Only if the cache sets
si(p1) and si(p2) in both predecessor nodes p1 and p2 of a basic block B are not
empty and if no cache blocks are mapped to si during the execution of basic
block B. The worst-case number of memory blocks in si occurs after the deepest
nested if-then-else structure, with a full tree (each then and else branch
exists), and a memory block is accessed in each branch at the lowest nested
level. Assuming that d denotes the highest level of nested branch statements,
then there can be 2d memory blocks in si at all successor nodes bk (after the
deepest nest level) that do not access si, e.g., all bk with genbk

= ∅. Then, X is
bounded by in Eq. (29):

X ≤ min
(

2d ,
M
S

)
(29)

For time complexity considerations, we have to assume that the maximum
number of elements occurs at each node. However, even if the maximum number
of 2d memory blocks is reached in a program, it will only be valid for a small
number of nodes: e.g., the longest path where no accesses occur to cache set si.
However, it is very difficult to determine formally how many basic blocks lie on
that path.

As an alternative, we give some heuristic argument: The instruction cache
size is significantly smaller than the number of all memory blocks (factor 10 to
100). There will be frequent accesses to the same cache set si, which reduces
the total number of elements in a cache set to 1. It is, therefore, likely that the
average number of elements in a cache set is small. In Section 8.3, we evaluate
the average and maximum number of memory blocks for several benchmarks.

5.4 Example

We apply the scalable precision cache analysis to the example control-flow graph
in Figure 2 and bound the number of cache states to Z = 2. First, we calculate
the sets of RCS and LCS and, then, we compare the number of useful cache
blocks to the results in the approaches by Lee and Mitra.

5.4.1 Calculation of Reaching Cache States. Table VI shows the result of
the RCSout[Bi] for each node of the forward iterative data flow analysis of
Eqs. (12–14). The result after the fixed point has reached is shown in Figure 6.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 18 • J. Staschulat and R. Ernst

Table VI. Reaching Cache States RCSout [Bi}] for
Scalable Precision Cache Analysis with Z = 2

Bi RCSout (Bi) 1st iter. RCSout (Bi) 2nd iter.
B1 [{0, ∅, ∅, ∅] [{0}, {1, 5}, {6}, {11}]

[{0}, {9}, {10}, {11}]
B2 [{0}, {1}, {2}, {3}] [{0}, {1}, {2}, {3}]
B3 [{4}, {5}, ∅, ∅] [{4}, {5}, {6}, {11}]

[{4}, {5}, {10}, {11}]
B4 [{0}, {1}, {6}, {3}] [{0}, {1}, {6}, {3}]

[{4}, {5}, {6}, ∅] [{4}, {5}, {6}, {11}]
B5 [{0}, {1}, {6}, {7}] [{0}, {1}, {6}, {7}]

[{4}, {5}, {6}, {7}] [{4}, {5}, {6}, {7}]
B6 [{8}, {9}, {10}, {3}] [{8}, {9}, {10}, {3}]

[{8}, {9}, {10}, {11}]
B7 [{8}, {9}, {10}, {11}] [{0, 4}, {1, 5}, {6}, {11}]

[{0, 4}, {1, 5}, {6}, {11}] [{8}, {9}, {10}, {11}]

Fig. 6. RCS calculation for scalable precision cache analysis.

Two iterations are sufficient until the algorithm converges in this example.
Initially, all RCSin[Bi] = ∅. The gen[Bi] for the control-flow graph in Figure 2
have been shown in Figure 1.

The RCS of the second iteration are shown graphically in Figure 6. We apply
the scalable data flow analysis to this example, starting at B1 in the first itera-
tion. Because the in set is empty, RCSout[B1] = gen[B1]. For basic block B2, the
incoming edge from B0 is evaluated and Eq. (13) is applied. The result is shown
in the second column in line 2 in Table VI. Analogously, all other RCSout[Bi]
are computed for B3, B4, B5, and B6. The calculation at B7 is different, because
via the two incoming edges from B5 and B6, there are three cache states, but
only Z = 2 states are allowed and, thus, the bound2 algorithm is applied:

RCSin[B7] = bound2([c1 = {0}, {1}, {6}, {7}], c2 = [{4}, {5}, {6}, {7}],
ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 19

Table VII. Live Cache States LCSin[Bi] and
LCSout [Bi] for Scalable Data Flow Analysis with

Z = 2

Bi LCSin[Bi] LCSout [Bi]
B1 [{0}, {1}, {2}, {3}] [{0, 8}, {1}, {2}, {3}]

[{0}, {5}, {6}, {7, 11}] [{4}, {5}, {6}, {7, 11}]
B2 [{0}, {1}, {2}, {3}] [{0}, {1, 5}, {6}, {7}]

[{8}, {1}, {2}, {3}] [{8}, {9}, {6}, {11}]
B3 [{4}, {5}, {6}, {7}] [{0}, {1, 5}, {6}, {7}]

[{4}, {5}, {6}, {11}] [{8}, {9}, {6}, {11}]
B4 [{0}, {1, 5}, {6}, {7}] [{0}, {1, 5}, {6}, {7}]

[{8}, {9}, {6}, {11}] [{8}, {9}, {10}, {11}]
B5 [{0}, {1}, {6}, {7}] [{0}, {1}, {2}, {11}]

[{0}, {5}, {6}, {7}] [{0}, {5}, {6}, {11}]
B6 [{8}, {9}, {10}, {11}] [{0}, {1}, {2}, {11}]

[{0}, {5}, {6}, {11}]
B7 [{0}, {1}, {2}, {11}] [{0}, {1}, {2}, {3}]

[{0}, {5}, {6}, {11}] [{0}, {5}, {6}, {7, 11}]

c3 = [{8}, {9}, {10}, {3}])
RCSin[B7] = {[{0, 4}, {1, 5}, {6}, {7}][{8}, {9}, {10}, {3}]}

We use Sel2 and d1 as selection method and distance metric throughout this
example:

d1(c1, c2) = 2 d1(c1, c3) = 4, d1(c2, c3) = 4

Therefore, c1 and c2 are merged because their distance is the smallest (2). Note
that the cache set RCSin[B7][0] and RCSin[B7][1] contain two memory blocks.
Since the gen[B7] contains m11 in the last cache set, only the memory blocks in
the last cache set are replaced. The RCSout[B7] is shown in Table VI in the last
line of the second column (in bold face).

The calculation in the second iteration of RCSout[Bi] is straightforward for
B1, B2, and B3. At B4 cache states have to be merged, because there are three
states available via incoming edges from B2 and B3:

RCSin[B4] = bound2[c1 = [{0}, {1}, {2}, {3}]c2 = [{4}, {5}, {6}, {11}],
c3 = [{4}, {5}, {10}, {11}]

RCSin[B4] = {[{0}, {1}, {2}, {3}], [{4}, {5}, {6, 10}, {11}]} (30)

Again, we use Sel2 and d1: d1(c1, c2) = 4, d1(c1, c3) = 4 and d1(c2, c3) = 1. The
cache states c2 and c3 are merged, because they result in minimum distance of
1. The result is shown in Eq. (30). The RCSout[B4] is shown in Table VI in the
third column. We point out the replacement by gen[B4] = {6} (set in bold face).
The analysis continues with B5 and B6 and, finally, the last merge-operation
occurs at B7. The four incoming states from B5 and B6 are evaluated using
Sel2 and d1 metric. The result is shown in the last line in the second column in
Table VI.

5.4.2 Calculation of Live Cache States. The results for the LCSin and
LCSout of the scalable data flow algorithm are shown in Table VII. The LCS

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 20 • J. Staschulat and R. Ernst

Table VIII. Useful Cache Blocks
USEscalefor Scalable Analysis with Z = 2a

Bi USEscale USEmitra USElee

B1 3 3 4
B2 2 2 2
B3 2 2 3
B4 3 3 4
B5 2 2 3
B6 1 1 1
B7 4 3 4

aComparison with state-based approach
USEmitra and set-based approach USElee from
Table IV.

calculation uses a backward data flow analysis and has been given in the
Eqs. (16) and (17).

Merge operations were necessary at B1 in the first iteration and at B4 and B1
in the second iteration. Note the difference between LCSout[Bi] and LCSin[Bi].
The former represents the live cache states before the memory blocks of Bi are
loaded to the cache and the latter represents the live cache states after the
memory blocks of Bi are loaded to the cache.

5.4.3 Calculation of Useful Cache Blocks. The useful cache blocks
USEscale[Bi] are computed by the intersection of reaching cache states
RCSout[Bi] and live cache states LCSout[Bi]. The total number of useful cache
blocks according to Eq. (24) are summarized and compared to the results of Lee
and Mitra’s approach in Table VIII.

The result is, in most cases, equal to the tighter result of USEmitra and in one
case equal to the result of USElee (at basic block B7).

6. PREEMPTION DELAY ANALYSIS FOR ASSOCIATIVE CACHES

The general description in Section 5 considered only direct-mapped caches. This
section extends the proposed analysis to set-associative caches. In an n-way
associative cache, a memory block can be placed into n cache blocks within its
designated cache set. This set-associative cache organization requires a policy
called the replacement policy that decides which block to replace when a new
memory block is mapped to the cache set when all cache blocks are occupied.
The least recently used (LRU) policy, which replaces the block that has not been
referenced for the longest time, is a commonly used strategy.

Associative caches are commonplace in embedded architectures, but have
mainly been ignored in preemption delay analysis. The work described in
Mitra et al. [2003], Petters and Färber [2001], and Busquets-Mataix et al. [2000]
target direct-mapped instruction caches. Only in Lee et al. [1998] have associa-
tive caches been considered. However, their description contains a flaw, which
we point out in Section 6.6. In the following, we present the analysis for as-
sociative instruction caches with LRU replacement strategy based on the new
scalable precision cache model.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 21

6.1 Scalable Data Flow Analysis

According to our definition in Section 5, the RCSB contains all possible cache
blocks at basic block B. In the case of direct-mapped caches, a cache set can
hold only one memory block. This model has to be extended. In the following,
we formulate the computation of reaching cache states RCS. The extension of
LCS is analogous.

We define RCSc
in[B] and RCSc

out[B] as the sets of all possible cache states of
cache set c at the beginning and the end of basic block B, respectively. The set
genc[B] represents a vector of n sets of memory blocks:

genc[B] = (genc
1[B], genc

2[B], · · · , genc
n[B]) (31)

The genc[B] set contains the last memory blocks that are accessed during
the execution of basic block B. More formally, each genc

i [B] is either empty or
genc

i [B] = {m} if m is the ith most recently accessed memory block in B. The set
gens

n[B] contains the most recently accessed cache block and gens
1[B] the least

recently one. With this definition of genc[B], the sets RCSc
in[B] and RCSc

out[B],
are related as follows:

RCSin[B] = boundZ

(⋃
p∈pred (B)

RCSout[p]

)
(32)

RCSc
out[B] =

⋃
r∈RCSc

in[B]

LRUgenc
1

(· · · ((LRUgenn(r)
)) ∀c.1 ≤ c ≤ S (33)

The function boundZ (C) is the same as in Figure 5. The replacement algorithm
for the scalable precision cache model LRUm(c) for an n-way associative cache is
presented in Section 6.3. Note that the RCSin[B] is defined for each cache state
and RCSc

out[B] is defined for each cache set c. However, this is only a matter of
presentation.

6.2 Bound Algorithm for Associative Caches

In the following, we extend the distance metric, selection algorithm, and merge
operation for associative caches, based on the presentation in Section 5.2 for
the boundZ algorithm.

6.2.1 Distance Metric. The function d (a, b) of two cache states a, b is de-
fined as a metric that delivers the difference of two cache states. The metrics
d1 and d2 are applied to n-way associative caches as follows:

d1(a, b) =
S∑

s=1

{
1 if ∃ i. as[i] �= bs[i] ∀ ≤ i ≤ m
0 otherwise (34)

The complexity of metric d1 is

O(d1) = O(S · m · X) (35)

where X denotes the maximum number of elements of the set as[i]. Equality
test of two sets can be computed in linear time [Cormen et al. 1997]. A bound
for the maximum number of memory blocks X is discussed in Section 5.3.3.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 22 • J. Staschulat and R. Ernst

Fig. 7. LRU algorithm for scalable cache model.

The metric d2 counts the number of different memory blocks of each cache set
with the symmetric difference:

d2(a, b) =
S∑

s=1

n∑
nn=1

∣∣(as[nn] ∪ bs[nn]) \ (as[nn] ∩ bs[nn])
∣∣ (36)

The complexity of d2 is given by taking S · n times the following operations: (1)
the union of two sets with totally 2X elements; (2) the intersection of two sets
with at most 2X elements; and (3) the set difference of a set with 2X elements
and X elements.

O(d2) = O(S · m · (t∪(X , X) + t∩(X , X) + tsetdiff(2X , X)) = O(S · m · X 2)) (37)

6.2.2 Cache State Selection. The selection methods Sel1 and Sel2 are in-
dependent of the associativity. Therefore, the complexity is the same as in Sec-
tion 5.2: O(Sel1) = O(|C|) and O(Sel1) = O(|C|2).

6.2.3 Merging of Cache States. The merge operation � has already been
defined for direct-mapped caches in Section 5.2. For an n-way associative cache,
the � operation is applied pointwise to every vector element ai[1], · · · , ai[n] of
a cache set ai. The time complexity is given by:

O(a � b) = O(S · n · (t∪(X , X)) = O(S · n · X 2)) (38)

6.3 LRU Algorithm for Scalable Precision Cache Model

The replacement algorithm LRUgenc
i
(r) for cache set c of cache state r is defined

in the following Eq. (39):

LRUgenc
i
(r) =

{
r if genc

i = ∅
LRUm(r) if genc

i = {m} (39)

The function LRUm(r) models the LRU replacement strategy for the scalable
precision cache model. The pseudocode is shown in Figure 7.

LEMMA. The algorithm in Figure 7 computes the LRUm(c) replacement strat-
egy, when memory block m is mapped to cache set c. Provided that c is a vector of
sets: c = [c1, c2, · · · , cn], ci ⊂ M, where M is the set of all memory blocks and c1

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 23

denotes the least recently used and cn the last recently used cache block of cache
set c.

PROOF. The proof is presented over the structure of the cache set elements.
We start with the restriction that all ci contain only one element (|ci| ≤ 1) and
extend this model stepwise to ci ⊂ M .

Part I. We assume ∀ci. |ci| ≤ 1.
This case represents an ordinary cache state, with n sets for an n way set-
associative cache. We distinguish if there exists ci with m ∈ ci or not.
(a) ∀ci. m �∈ ci. The cache block in c1 will be replaced and the elements will be
reordered, such that c′ = [c2, · · · , cn, {m}]. This is implemented in lines 2–4 in
Figure 7.
(b) ∃ci. m ∈ ci. From the assumption |ci| ≤ 1 it follows that ci is unique and
the loop in line 7 will be executed exactly once. The memory block m ∈ ci

is placed at the most recently used position cn and all ci+1 · · · cn elements
shifted one position to the left (lines 6–8): (c1, · · · , ci−1, ci, ci+1, · · · , cn)m =
(c1, · · · , ci−1, ci+1, · · · , cn, {m}).

Note that the contents of the cache does not change. All elements left from
ci do not change their position (line 9). The condition in line 10 will always
evaluate to false, because |ci| ≤ 1. Finally the memory block m is removed from
the positions 1 to n − 1 of the cache set vector (line 12). Thus, we have shown
that if all |ci| ≤ 1 the LRUm(c) is correct.

Part II. Assumption ∀ci. m �∈ ci : |ci| ≤ 1.
All ci that do not contain m are singleton sets; only those ci with m ∈ ci may
contain more elements.
(a) m �∈ ci∀ci this has been shown in (Part I.)
(b) There exists a unique ci. m ∈ ci. If |ci| ≤ 1 , refer to Part I, otherwise
the case |ci| = d ≥ 1 is detected in lines 10–11 in the algorithm. We have to
distinguish two cases:

(b1)(c1, · · · , ci−1, {m}, ci+1, · · · , cn)
(b2)(c1, · · · , ci−1, {mk}, ci+1, · · · , cn), ∀mk ∈ ci.mk �= m

For (b1) we have shown already in Part I. that LRUm(c) is correct. In the case
of (b2) there are d − 1 possible cache states, where m �∈ c. This means that the
least recently used memory block c1 is replaced, the contents of ci, i = 2, · · · , n
move one position to the left, and cn = {m}.
(c) There exist several ci.m ∈ ci. Note that in the set representation there may
be several sets that contain m, but there cannot be an original cache state
with m ∈ ci, m ∈ c j , i �= j . Thus, we can apply lines 8–11 to each cache set
ci that contains m separately and take the union of the resulting cache set c′.
Let us apply the algorithm to some ci and there exist c j1 , · · · , c jk other sets that
contain m. We can formally construct the set of all possible cache states that are
described by this cache set and apply the LRU strategy to each cache state, as
in part I, and take the union of the resulting cache states. This is implemented
in lines 8–9.

Part III. Induction step: All ci may have more then one element.
In Part II we have shown that the LRUm(c) algorithm is correct when all ci that

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 24 • J. Staschulat and R. Ernst

Fig. 8. Reaching cache states for four-way associative instruction cache with two sets.

do not contain m are singleton sets. If a ci contains more than one element, we
construct every possible cache state and apply Part II for each state; the union
is then taken (line 10–11).

This completes the proof.

6.4 Example

We apply the algorithm to the control flow graph of Figure 2 with a four-way
associative instruction cache with two cache sets. For demonstration, we com-
pute the reaching cache states (RCS) for each node. Figure 8 shows the same
control-flow graph with the possible cache states. A cache state consists of two
cache sets c0 and c1 with each four positions. For example, in basic block B3
memory block m0 and m4 are mapped to cache set c0 and memory block m5 to
cache set c1. To save space, mi is abbreviated as i and an empty set is denoted
with −. In order to demonstrate the cache state reduction, we restrict the num-
ber of cache states to Z = 2. In B4, two cache states are reached and only the
memory block m6 is mapped to c0 (genco [B4] = [{}, {}, {}, {m6}). Since m6 �∈ c0
in both cache states, the condition in line 2 is true and the lines 3–4 of LRU
algorithm in Figure 7 are executed. All memory blocks move one position to the
left and m6 is placed at, the most, recently used position. Cache set c1 is not
modified. These two cache states are propagated to B5 and B6, where m6, m7
and m8, m9, m10 are accessed, respectively.

When the algorithm computes the RCSin[B7], according to Eq. (32), four
cache states cs1, cs2 cs3, and cs4 are available on incoming edges, but only two
are allowed. Therefore, two of the cache states with the minimum distance,
according to Eq. (20), will be merged. We assume, for this example, the selection

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 25

method Sel2, which compares all cache states, and distance metric d2, which
computes the symmetric difference.

d2(cs1, cs2) = 5 d2(cs1, cs3) = 5 d2(cs2, cs3) = 10
d2(cs1, cs4) = 10 d2(cs2, cs4) = 5 d2(cs3, cs4) = 5

Therefore, cache states cs1 ∪ cs3 and cs2 ∪ cs4 are merged:

cs′′
5 = cs1 ∪ cs3 =

{
c0 [{2}, {0, 6}, {2, 8}, {6, 10}]
c1 [∅, {1}, {3}, {7, 9}]

cs′′
6 = cs2 ∪ cs4 =

{
c0 [{4}, {0, 6}, {4, 8}, {6, 10}]
c1 [∅, ∅, {5}, {7, 9}]

In basic block B7 memory block m11 is mapped to c1. Note that m11 �∈ c1, such
that all elements are only shifted one position to the left by the LRU operator
cs′

5 = LRUm11 (cs′′
5) and cs′

6 = LRUm11 (cs′′
6). These cache states are shown in basic

block B7. To save, space, several elements within a set at a position are aligned
vertically, such as m6 and m10 in cache set c0.

In the second iteration of the data flow analysis, we start again with basic
block B1. Now m0 ∈ c0 in both cache states c′′

5 and c′′
6. Therefore, the loop in

line 7 is executed once, the contents of cache set c0[2] to c0[4] are moved one
position to the left and m0 is placed in the c0[4] slot. This results to the new
cache states cs5 and cs6:

cs5 = LRUm0 (cs′
5) =

{
c0 [{2, 6}, {2, 8}, {6, 10}, {0}]
c1 [{1}, {3}, {7, 9}, {11}]

cs6 = LRUm0 (cs′
6) =

{
c0 [{4, 6}, {4, 8}, {6, 10}{0}]
c1 [∅, ∅, 5, {7, 9}]

As the last example of the algorithm, we show the the RCS computation for the
cache state cs5 at basic block B2 with genc0 [B2] = [∅, ∅, ∅, {m2}] and genc1 [B2] =
[∅, ∅, {m1}, {m3}].

Now the LRU algorithm is applied three times:

RCSout[B2] = LRUm3 (LRUm2 (LRUm1 (cs5)))

We show the computation in three steps and denote each intermediate cache
state as cs′, cs′′, and cs′′′ respectively:

cs′ = LRUm1 (cs5) =
{

c0 [{2, 6}, {2, 8}, {6, 10}, {0}]
c1 [{3}, {7, 9}, {11}, {1}] (40)

cs′′ = LRUm2 (cs′) =
{

c0 [{6, 8}, {6, 10}, {0}, {2}]
c1 [{3}, {7, 9}, {11}, {1}] (41)

cs′′′ = LRUm3 (cs′′) =
{

c0 [{6, 8}, {6, 10}, {0}, {2}]
c1 [{7, 9}, {11}, {1}, {3}] (42)

The access of LRUm1 (cs5) shows a reordering in cache set c1, where m1 is
placed in the last recently used position c1[3]. The result is shown in Eq. (40).

The access of LRUm2 (cs′) is shown in Eq. (41), which is somewhat more diffi-
cult to explain, because m2 ∈ c1[1] and m2 ∈ c1[2]. We explain the algorithm by

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 26 • J. Staschulat and R. Ernst

Table IX. Complexity of Analysis
Steps for BoundZ Algorithm for n-Way

Associative Instruction Cachesa

Step Operation Complexity
1 count O(2Z)
2 Sel1 O(2Z)
2 Sel2 O((2Z)2)
2 d1 O(S · n · X)
2 d2 O(S · n · X 2)
3 insert O(Z)
3 remove O(Z)
4 union O(S · n · X 2))
5 loop bound Z

a Z denotes the maximum number of cache
states at a node, X denotes the maximum
number of memory blocks of a cache set, and
S denotes the number of cache sets in a cache.

expanding all possible cache states that are represented by cs′, then we apply
the LRU algorithm and, finally, we compare the result with the LRU algorithm
for the scalable precision model. We leave out all invalid states for cache set
c0: [2, 2, 6, 0], [2, 2, 10, 0], [6, 2, 6, 0], and [6, 8, 6, 0], because a memory block mi

occurs several times. If we apply the standard LRU algorithm to the remaining
cache states, we get:

LRUm2 [2, 8, 6, 0] = [8, 6, 0, 2] LRUm2 [2, 8, 10, 0] = [8, 10, 0, 2]

LRUm2 [6, 8, 10, 0] = [8, 10, 0, 2] LRUm2 [6, 2, 10, 0] = [6, 10, 0, 2]

The union of the above resulting cache states is then the conservative cache
state cs′′ that is computed by the algorithm in Figure 7 (lines 6–12).

Finally LRUm3 (cs′′) is applied in Eq. (42), which is a reordering for cache set
c1.

Note, that the set-based cache model may lead to an overestimation, because
the model includes cache states that are invalid. However the representation
is conservative, such that the actual cache-related preemption delay is always
smaller than the estimated one.

6.5 Time Complexity

The time complexity for n-way associative caches is similar to the complexity
discussion in Section 5.3.

The complexity of the boundZ algorithm as shown in Figure 5, depends on
the same steps. The complexity of each step is summarized in Table IX.

The time complexity for the LRU algorithm is calculated easily, examining
each line of the algorithm in Figure 7:

O(LRUm(r)) = max(1 + X · n, 1 + 2t∪(X , X) · n + X + ntrem)
O(LRUm(r)) = 2O(X 2) · n + O(X)(n + 1) + 1 = (C2 · n) (43)

To conclude, the LRU algorithm scales quadratically with the number of cache
states C times the degree of associativity.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 27

In summary, the complexity of the entire boundZ algorithm is given by

O(boundZ) = O(Z · (O(Seli) · O(di) + O(Seli) + 2O(2Z) + O(cs · m · X 2))) (44)

For the distance and selection metric d1 Sel1 the complexity of the boundZ

algorithm evaluates to:

O(boundZ) = O(Z 2 · X + Z · X 2)) (45)

and the complexity for the distance and selection metrics d2 and Sel2 evaluates
to:

O(boundZ) = O(Z 3 · X 2) (46)

To conclude, the complexity scales quadratically with the number of cache states
with the configuration d1, Sel1 and cubicly with d2, Sel2 when we assume that
X is a small constant. This is the same time complexity as for direct-mapped
caches.

6.6 Lee’s Approach Contains a Flaw

The approach by Lee et al. [1998] extends the data flow analysis to set-
associative caches. The proposed solution is principally correct, but contains
a flaw, which we would like to point out. If a basic block accesses a memory
block that already exists in the RMBin set, then this cache block can occur mul-
tiple times in the proposed algorithm by Lee et al. [1998] (Section 7.1). The
correct solution would be to reorder the memory blocks. In Mueller [2000], the
program line reordering for LRU has been considered for cache analysis for in-
struction caches. In the following, we briefly review the algorithm by Lee et al.
[1998] and give an example.

The reaching cache states are denoted by RMBc
in[B] and RMBc

out[B] for the
incoming and outgoing reaching cache blocks of cache set c at basic block B.
A state of a cache set for an n-way set-associative cache is defined as a vector
(mi1 , · · · , min), where mi1 is the least recently referenced block and min the most
recently referenced block. The genc[B] contains the state of cache set c generated
in basic block B. It is either empty when none of the memory blocks mapped to
cache set c are referenced in basic block B or a singleton set whose only element
is a vector: (genc

1[B], · · · , genc
n[B]). In the vector genc

n[B], is the memory block
whose reference in basic block B is the last reference to the cache set c in B.

We give the an example for a four-way associative cache with the follow-
ing assumptions about RMBc

in[B] and genc[B] at some basic block B in cache
set c:

RMBc
in[B] = (m1, m2, m3, m4) genc[B] = (null , null , m3, m5)

Note, that m3 is reached via some incoming path and is referenced in basic block
B. The RMBc

out[B] is defined in Lee’s algorithm depending on the contents of
the gen-set. We give the data flow equations for RMBin and RMBout only for the
case that applies to this example:

RMBc
in[B] =

⋃
p∈pred (B)

RMBout[p]

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 28 • J. Staschulat and R. Ernst

RMBout[B] =

⎧⎪⎪⎨
⎪⎪⎩

⋃
rmb∈RMBc

in[B]{(rmbn−1, rmbn, genc
n1

[B], genc
n[B])}

if genc
1[B], · · · genc

n−2[B] = null and genc
n−1[B], genc

n[B]
�= null

· · · otherwise
(47)

For the above example, the RMBc
out[B] is given by

RMBc
out[B] = (rmb3, rmb4, genc

3[B], genc
4[B]) = (m3, m4, m3, m5)

However, when the memory blocks m3 → m5 are loaded to cache set c, the LRU
replacement algorithm will result as:

(m2, m4, m3, m5)

The mistake occurs for memory block m3, which is reordered by the LRU algo-
rithm. In the algorithm by Lee, the gen-sets and RMBin sets are not examined
for equal elements. Therefore, m3 occurs in RMBc

out[B] multiple times and m2
is missing, which might result in an underestimation of the CRPD.

7. CACHE-ANALYSIS FRAMEWORK FOR REAL-TIME VERIFICATION

The verification of real-time behavior involves the computation of worst-case
response times. Typically, several embedded applications run on an embedded
micro controller with an real-time operating system, such as ERCOSEK1 for
automotive applications. The response-time analysis has to be extended to con-
sider the preemption delays because of cache reloads.

7.1 Cache-Aware Response-Time Analysis

Preemption delay analysis alone does not solve the cache-behavior problem. A
cache-aware response-time analysis has to calculate how often a task is acti-
vated and how often a task is preempted for a given set of tasks.

As reviewed in Section 2, several cache-aware response-time approaches
have been proposed [Busquets-Mataix and Wellings 1996; Petters and Färber
2001; Lee et al. 2001]. The approach by Busquets-Mataix and Wellings [1996]
considers only the preempting task, while approach by Petters and Färber
[2001] consider only the preempted task. However the advantage is that the
time complexity is about the same as the time complexity for solving the fixed
point of the underlying iterative response-time equations. In the approach
by Lee et al. [2001] the preempted, as well as the preempting task, are con-
sidered, but the cache-aware response-time analysis scales exponentially with
the number of tasks in the system.

In previous work, we have developed a cache-aware response-time analysis
[Staschulat et al. 2005] for fixed priority preemptive scheduling. It computes
the total number of preemptions in a given schedule in a polynomial time com-
plexity. Therefore, it suits a framework with an overall low time complexity. The
preemption delay is computed by a state-based data flow analysis [Staschulat

1Automotive Real-Time Operating System by ETAS.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 29

Table X. Benchmark Description with Memory Usage[B],
c-Lines, and WCET[103clk]

Id Mem C-Ln WCET Description
τ1 376 83 1.401 square root calculation
τ2 144 34 39.23 exchangesort
τ3 888 180 15.34 fast fourier transform
τ4 296 275 1.617 packet receiver
τ5 1023 286 4051 whetstone

and Ernst 2004]. It turned out that the complexity of the state-based approach
was too large for greater sets of software tasks.

Therefore, we replace the time-consuming preemption delay analysis
of Staschulat and Ernst [2004] by the scalable precision cache analysis as pre-
sented in this paper. In this paper, we apply the cache-aware response time
analysis in several experiments to the results for the scalable precision cache
analysis.

7.2 Pseudo-LRU Replacement Strategy

Sometimes four-way associative caches and above processors implement
pseudo-LRU. As long as this replacement strategy is deterministic, the replace-
ment algorithm in Figure 7 can be adapted accordingly.

7.3 Guidance to Choose Scaling Parameter

We give more guidance about how to choose the scaling parameter in the fol-
lowing. The maximum number of memory blocks within a cache set occurs in
the deepest nested branch statement, as described in Section 5.3.3. This value
2d , where d is the nest level, can be used as a reference. However, in reality, a
much smaller number will suffice, because the nested branch is not a full tree
and cache references do not occur to the same cache set in every leaf node of
the branch tree.

8. EXPERIMENTS

8.1 Setup

This section presents the experimental results for the described analysis
method for five benchmarks taken from Lee et al. [1998], Mitra et al. [2003],
and Stappert [2003] and five preemption scenarios (PrS).

Table X summarizes the benchmark characteristics: main memory usage
in bytes [B], the number of C source code lines, and the WCET in 103 clock
cycles [clk] for a four-way set associative 1 KB instruction cache. The worst-
case execution time of each task was determined with SymTA/P2 using the
cycle accurate ARM945 processor simulator3 for the different instruction cache
architectures with a 20-cycle cache-miss penalty. Each instruction is four bytes
long and the cache block size is fixed to eight bytes, such that two instructions

2www.ida.ing.tu-bs.de/research/projects/symta.
3Realview development suite. www.arm.com.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 30 • J. Staschulat and R. Ernst

Table XI. Cache Footprint Index for a Direct-Mapped Cache for Different
Preemption Scenarios (PrS) and Cache Sizes

PrS Preempting, Preempted Task 256 B 512 B 1024 B 2048 B
A τ1 τ2 1.53 0.95 0.47 0.24
B τ1 τ3 2.0 1.68 1.31 0.83
C τ1 τ5 2.0 1.68 1.34 1.17
D τ4 τ3 2.0 2.0 1.97 1.23
E τ4 τ5 2.0 2.0 2.0 1.57

fit in a cache block. Since these benchmarks are rather small compared to a
real application, the cache size has to be adjusted accordingly. However, if both
the application size and cache size are considered using a cache footprint index,
our results can be scaled to larger applications.

The cache footprint index determines how many tasks use a single cache
block on average. Table XI shows this index for the evaluated preemption sce-
narios for a direct-mapped cache and varying cache sizes.

For example in the PrS B, both tasks τ1 and τ2 fully utilize the 256B cache.
Hence, the footprint index is 2. The footprint of 1.17 for PrS C and 2KB cache
shows that, on average, a cache block is used by one task only. For PrS A
and 2 KB cache the footprint index of 0.24 represents a small application and
a large instruction cache. The cache footprint index can be used to general-
ize the results of this paper for real-size applications, since the cache behav-
ior depends on its utilization, and not just on cache size or application size
alone.

8.2 Preemption Delay Analysis

We have implemented the analysis approach described in the preceding sections
for direct-mapped and associative-instruction caches. We assume the distance
d2 metric of Eq. (20) and the strategy Sel2, that compares all possible cache
states.

The following diagrams show the analysis precision and analysis time com-
pared to previously published approaches by other researchers. First, we com-
pare the bound of the preemption delay, considering only the preempted, only
the preempting and both (preempting as well as preempted) task. We then eval-
uate the influence of the scaling parameter (the number of cache states which
are at most allowed at each node during data flow analysis) on analysis pre-
cision. We describe the effects for changing the cache size, associativity, and
different benchmarks. Third, we show the impact of the scaling parameter on
analysis time and memory consumption. Finally, we report the measured num-
ber of memory blocks of each set, as defined in Eq. (29), which influences the
timing complexity of the intersection and merge operation (see Section 5.3.3).

The following results show the estimated preemption delay if a task pre-
empts another task once. Figure 9 shows the number of used cache blocks of
the preempting task, the number of useful cache blocks of the preempted task,
and the cache-related preemption delay (CRPD), as computed in Eq. (25) for
the preemption scenarios in Table XI. (See also Figure 1 and Section 5.2.4 for
a graphical overview and the formulas.)

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 31

Fig. 9. Used, useful and CRPD estimation for 2-way associative cache.

The curves for used and useful cache blocks are very similar and its shape
can be structured in several phases. In the first phase, the cache size is the
limiting factor. The number of cache blocks (used, useful) proportionally grows
with the number of cache blocks in the cache. In the second phase, all useful
cache blocks fit in the cache and the curves remain on a constant level.

The crpd curve can be structured in three phases. First, the curve increases
with the cache size, as for the used and useful curve, since the cache size is the
limiting factor until the curve reaches a maximum. In the second phase, the
crpd values are decreasing, because the useful and used cache blocks do not
fully overlap (smaller cache foot print index). In the third phase, the crpd value
is zero. This is because, the used and useful cache blocks of the preempting and
preempted task, respectively, are mapped to different cache sets and do not
overlap. Note also that to reach phase three for a given preemption scenario it
is not necessary that both tasks entirely fit in the cache.

These results clearly show that just considering the used or just useful alone
will lead to a pessimistic bound of the preemption delay.

As the next observation, we note that the crpd value is bounded by the min-
imum value of the used and useful curve. Its important to note, that the useful
curve is not below the used curve, because they are computed for different tasks
(for example, PrS B and C). Of course, usef ul (τi) ≤ used (τi) for the same task τi.
Figure 10 shows the influence of the cache associativity. The used curve might
increase with higher associativity, while the useful curve remains at the same
level.

Figure 11 shows the bound of the preemption delay for a single preemption
in number of cache blocks for increasing cache sizes. Observe the three phases
of the crpd curve. In phase one, the value increases with the cache size, e.g., for
256 B most preemption scenarios have the same value (total number of cache
blocks of the cache. In the second phase, the values decrease. In phase three,
the preemption delay crpd is zero.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 32 • J. Staschulat and R. Ernst

Fig. 10. Used, useful and CRPD estimation for 2kB cache.

Fig. 11. Three phases of crpd curve.

The next Figures 12, 13, and 14 show the impact of the scaling parameter.
Figure 12 shows the impact when z = 1, 10, 20, ∞ for different cache sizes for
a two-way associative cache.

For z = 1 the results represent one cache state at each basic block as in
approach by Lee et al. [2001]. The merge operation will operate exclusively on
a single set.

For z = ∞, the results represent all possible cache states. The merge oper-
ation will never be applied. Thus, this modeling is equivalent to the approach
by Mitra et al. [2003]. In all the other cases, the parameter z corresponds to the
bounded-number cache states. Figure 12 shows, in most cases, no improvement
of the crpd estimation.

For a higher associativity, Figure 13 shows an improvement at already a
small number of states. For PrS D and E, no value for z = ∞ could be calculated
because the memory consumption was too large (see later Figure 16). Note, the

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 33

Fig. 12. Impact of number of cache states.

Fig. 13. Impact of cache size.

crpd-value for z = 20 is the same as for z = ∞ for all cases. Figure 14 shows
that for increasing associativity, the analysis results are very similar.

8.3 Analysis Time and Memory Consumption

In this subsection, the performance of the analysis framework itself is evaluated
in terms of analysis time, memory consumption, and other statistical measures.
The analysis framework was executed on a 1.7 GHz machine with 4 GB RAM.

Figure 15 shows the analysis time (s) for a typical setup (e.g., one-way as-
sociative cache) for different cache sizes and preemption scenarios. Note the
logarithmic scale. This highlights the exponential growth in running time (PrS
C took several hours). Only for the smaller benchmark, could we execute the
analysis for z = ∞; no results could be obtained for PrS D and E. For caches
with a higher associativity, the analysis times are slightly higher (not shown
in diagram).

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 34 • J. Staschulat and R. Ernst

Fig. 14. Impact of associativity.

Fig. 15. Analysis time.

Figure 16 shows the memory consumption of the analysis framework for a
typical setup. While the memory consumption is about 3 to 100 MB for z = 1 to
z = 20, the memory consumption for the larger task τ5 in PrS C is in the range
of giga-bytes for z = ∞; for PrS D and PrS E no results have been obtained,
because too many cache states were necessary.

Figures 17 and 18 show the maximum and average number of memory blocks
in each set, as defined in Section 5.3.3. While there exists a higher number of
memory lines (about 20 for PrS E), the average number of memory blocks is
between one and two for all benchmarks and cache sizes. This has been checked
for all setups, but cannot be shown here. These results give strong evidence that
the number of X can be considered as a small constant for the timing complexity
analysis, as suggested in Section 5.3.3.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 35

Fig. 16. Memory consumption.

Fig. 17. Maximum number of memory blocks per set.

8.4 Response Time Analysis

Finally, we integrate the scalable CRPD estimation into a response-time
analysis as proposed in Staschulat et al. [2005]. It reveals the impact of the
cache-related preemption delay on the total response time of a task. Our
approach is compared to the approaches by Busquets-Mataix et al. [Busquets-
Mataix and Wellings 1996] and Petters [Petters and Färber 2001]. Busquets
assumes that all used cache blocks of the preempting task are removed.
However, in their experiments, they assume that the entire cache is flushed. In
the following experiments, we use the actual number of used cache blocks of the
preempting task, which is computed by the global data flow analysis. Petters’
presentation is based on the number of useful cache blocks. However, the

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 36 • J. Staschulat and R. Ernst

Fig. 18. Average number of memory blocks per set.

Fig. 19. CRPD in clock cycles (clk) during the entire response time of τ4.

author only assumes a fixed percentage of cache content to be useful without
performing any analysis. Again, because we have the total number of useful
cache blocks available from global data flow analysis, we use this number in
Petters’ computation. The approach by Lee et al. [2001] needs an exponential
number of equations for the ILP formulation and a reimplementation would
have been too time consuming for comparison purposes.

We compute the worst-case response time for the task set τ1, τ2, τ3, τ4, with
τ1 as highest priority task and τ4 as lowest priority task. The execution time of
the whetstone benchmark was much greater than the other four, which is why
we left it out. Figure 19 shows the total preemption delay in clock cycles during
the entire schedule for several cache sizes for a four-way set associative cache.
Compared to Busquets, the data flow analysis with scaling factor 15 shows an
improvement of 57, 35, 22, and 31% for 256 and 512 B, 1 KB and 2 KB cache

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 37

Fig. 20. CRPD and core execution time (response time) for τ4.

respectively. Compared to Petters, our analysis shows an improvement of 39,
43, 59, and 70% for the given cache sizes.

The response time of task τ4 is shown in Figure 20. This value includes the
preemption delay (CRPD) of Figure 19, as well as the core execution times
of each task and the time of higher priority tasks according to Eq. (3). The
total preemption delay is calculated by the previous developed cache-aware
response-time analysis [Staschulat et al. 2005].

The vertical scale shows the response time in percentage of the response
time that was calculated by Busquets approach. The reason is that the re-
sponse times for different cache sizes are significantly different, such that a
linear scale would be inappropriate. The value for Busquets is zero, in all cases,
because all other values were normalized to it. Nevertheless, we kept it in the
figure to compare it to our results.

Besides Busquets, the results in Petters’ approach, the set-based approach
with scaling factor 1 and 15 are depicted. The analysis precision for scaling
factor 15 improves between 5% for 1 KB cache and 21% for 256 B cache.

8.5 Discussion

From the experiments, we have gained the following insights:

� While the analysis precision is comparable to the state-based approach, the
time and memory consumption is directly controlled by the scaling parameter:
the number of cache states.

� With a low number of cache states already, a high analysis precision can be
achieved.

� For some examples, the preemption delay is an order of magnitude smaller
than be quantity of used cache blocks of the preempting and useful cache
blocks of the preempted task (example, PrS B and C for 1 kB in Figure 13).

� There exists a cache size where the preemption delay is at maximum. For
smaller, as well as larger caches, the preemption delay is smaller. Thus, the
preemption delay could be the same for cache of different sizes.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Article 25 / 38 • J. Staschulat and R. Ernst

� Associativity only marginally affects the precision of the preemption-delay
bounds and the timing complexity of the analysis framework.

9. CONCLUSION

Cache memories can introduce unpredictable interference to task execution
in real-time computing systems with preemptive scheduling. In this paper,
we have proposed a scalable precision cache analysis for direct-mapped and
associative-instruction caches. The experiments have shown that a high anal-
ysis precision is already attained for a low number of cache states, and a low
time complexity. Thus, the approach is well suited for early design space ex-
ploration, as well as for highly accurate real-time performance verification, in
which the number of cache states could be increased. Future work includes a
preemption delay analysis for data caches and multilevel cache hierarchies.

REFERENCES

AHO, A. V., SETHI, R., AND ULLMAN, J. 1988. Compilers: Principles, Techniques and Tools. Addison-
Wesley, Reading, MA.

AUDSLEY, N. C., BURNS, A., RICHARDSON, M. F., AND WELLINGS, A. J. 1991. Hard real-time scheduling:
The deadline monotonic approach. In Proceedings 8th IEEE Workshop on Real-Time Operating
Systems and Software. IEEE, Los Alamitos, CA.

BASUMALLICK, S. AND NILSEN, K. 1994. Cache issues in real-time systems. In Workshop on Lan-
guage, Compiler and Tool Support for Real-Time Systems. ACM SIGPLAN, Orlando, FL.

BUSQUETS, J. V., SERRANO, J. J., AND WELLINGS, A. 1997. Hybrid instruction cache partitioning
for preemptive real-time systems. In Euromicro Workshop on Real-Time Systems. IEEE Los
Alamitos, CA.

BUSQUETS-MATAIX, J. V. AND WELLINGS, A. 1996. Adding instruction cache effect to schedulability
analysis of preemptive real-time systems. In Proceedings of the IEEE Real-Time Technology and
Applications Symposium. IEEE, Los Alamitos, CA. 204–212.

BUSQUETS-MATAIX, J. V., GIL, D., GIL, P., AND WELLINGS, A. 2000. Techniques to increase the schedu-
lable utilization of cache-based preemptive real-time systems. Journal of System Architecture 46,
357–378.

CAMPOY, A., PUAUT, I., IVARS, A., AND MATAIX-BUSQUETS, J. 2005. Cache contents selection for
statically-locked instruction caches: An algorithm comparison. In Euromicro Conference on Real-
Time Systems. Palma de Mallorca, Spain.

CAMPOY, M., IVARS, A. P., AND BUSQUETS-MATAIX, J. V. 2001. Static use of locking caches in multitask
preemptive real-time systems. In IEEE Real-Time Embedded System Workshop.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1997. Introduction to Algorithms. MIT Press,
Cambridge, MA.

CORTI, M., BREGA, R., AND GROSS, T. 2000. Approximation of worst-case execution time for pre-
emptive multitasking systems. In ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems. Vancouver, Canada.

DATTA, A., CHOUDHURY, S., BASU, A., TOMIYAMA, H., AND DUTT, N. 2001. Satisfying timing constraints
of preemptive real-time tasks through task layout technique. In IEEE VLSI Design. 97–102.

INFINEON. 2004. Tricore manual http://www.infineon.com.
JOSEPH, M. AND PANDYA, P. 1986. Finding response times in a real-time system. The Computer

Journal (British Computer Society) 29, 390–395.
KIRK, D. B. 1989. SMART(strategic memory allocation for real-tim) cache design. In Real-Time

Systems Symposium. IEEE Computer Society Press, Los Alamitos, CA. 229–239.
LEE, C.-G., HAHN, J., AND ET AL., Y.-M. S. 1998. Analysis of cache-related preemption delay in

fixed-priority preemptive scheduling. IEEE Transactions on Computers 47, 6 (June), 700–713.
LEE, C.-G., LEE, K., AND ET AL., J. H. 2001. Bounding cache-related preemption delay for real-time

systems. IEEE Transactions on Software Engineering 27, 9 (Nov.), 805–826.

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

Scalable Precision Cache Analysis for Real-Time Software • Article 25 / 39

LEHOCZKY, J., SHA, L., AND DING, Y. 1989. The rate monotonic scheduling algorithm: Exact char-
acterization and average case behavior. In Proc. 10th Real-Time Systems Symposium. IEEE, Los
Alamitos, CA. 166–171.

LIEDTKE, J., HÄRTIG, H., AND HOHMUTH, M. 1997. Os-controlled cache predictability for real-time
systems. In IEEE Real-Time and Embedded Technology and Applications Symposium. Montreal,
Canada.

LIU, C. L. AND LAYLAND, J. W. 1973. Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal ACM 20, 1 (Jan.), 46–61.

MITRA, T., NEGI, H. S., AND ROYCHOUDHURY, A. 2003. Accurate estimation of cache-related pre-
emption delay. In ACM/IEEE International Symposium on Hardware/Software Codesign and
System Synthethis (CODES+ISSS). Newport Beach, CA.

MOGUL, J. C. AND BORG, A. 1991. The effect of context switches on cache performance. In Confer-
ence on Architectural Support for Programming Languages and Operating Systems. Santa Clara,
CA. ACM, New York. 75–84.

MUELLER, F. 1995. Compiler support for softwarebased cache partitioning. In ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for Real-Time Systems. La Jolla, CA.

MUELLER, F. 2000. Timing analysis for instruction caches. Real-Time Systems Journal 18, 2/3
(May), 209–239.

PANDA, P. R., DUTT, N. D., AND NICOLAU, A. 1999. Memory Issues in Embedded Systems-On-Chip:
Optimizations and Exploration. Kluwer Academic Publ. Norwell, MA.

PETTERS, S. M. AND FÄRBER, G. 2001. Scheduling analysis with respect to hardware related pre-
emption delay. In Workshop on Real-Time Embedded Systems (Satellite Workshop of IEEE Real-
Time Systems Symposium). London, UK.

PUAUT, I. AND DECOTIGNY, D. 2002. Low-complexity algorihtms for static cache locking in multi-
tasking hard real-time systems. In IEEE Real-Time Systems Symposium.

RAMAPRASAD, H. AND MUELLER, F. 2005. Bounding worst-case data cache behavior by analytically
deriving cache reference patterns. In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium. 148–157.

RAMAPRASAD, H. AND MUELLER, F. 2006. Bounding preemption delay within data cache refer-
ence patterns for real-time tasks. In Real-Time and Embedded Technology and Applications
Symposium.

SCHNEIDER, J. 2000. Cache and pipeline sensitive fixed priority scheduling for preemptive real-
time systems. In 21st IEEE Real-Time Systems Symposium. 195–204.

SEBEK, F. 2001. Measuring cache related pre-emption delay on a multiprocessor real-time system.
In Real-Time Embedded Systems Workshop. London.

STAPPERT, F. 2003. Wcet benchmarks. http://www.c-lab.de/home/de/people/people.php?id = Stap-
pert Friedhelm 00.

STASCHULAT, J. AND ERNST, R. 2004. Multiple process execution in cache related preemption delay
analysis. In International Workshop on Embedded Software (EMSOFT). Pisa, Italy. ACM, New
York.

STASCHULAT, J. AND ERNST, R. 2006. Worst case timing analysis of input dependent data cache
behavior. In Euromicro Conference on Real-Time Systems. Dresden, Germany.

STASCHULAT, J., SCHLIECKER, S., AND ERNST, R. 2005. Scheduling analysis of real-time systems with
precise modeling of cache related preemption delay. In EUROMICRO Conference on Real-Time
Systems. Palma de Mallorca, Spain.

TINDELL, K., BURNS, A., AND WELLINGS, A. 1994. An extendible approach for analysing fixed priority
hard real-time systems. Journal of Real-Time Systems 6, 2 (Mar.), 133–152.

VERA, X., LISPER, B., AND XUE, J. 2003. Data caches in multitasking hard real-time systems. In
IEEE Real-Time Systems Symposium.

Received September 2005; revised April 2006; accepted June 2006

ACM Transactions on Embedded Computing Systems, Vol. 6, No. 4, Article 25, Publication date: September 2007.

