
Real-Time Syst (2008) 39: 31–72
DOI 10.1007/s11241-007-9039-9

Sensitivity analysis of complex embedded real-time
systems

Razvan Racu · Arne Hamann · Rolf Ernst

Published online: 22 November 2007
© Springer Science+Business Media, LLC 2007

Abstract The robustness of an architecture to changes is a major concern in the
design of efficient and reliable state-of-the-art embedded real-time systems. Robust-
ness is important during design process to identify if and in how far a system can
accommodate later changes or updates, or whether it can be reused in a next gen-
eration product. In the product life-cycle, robustness helps the designer to perform
changes as a result of product updates, integration of new components and subsys-
tems, or modifications of the environment. In this paper we determine robustness as
a performance reserve, the slack in performance before a system fails to meet tim-
ing requirements. This is measured as design sensitivity. Due to complex component
interactions, resource sharing and functional dependencies, one-dimensional sensi-
tivity analysis might not cover all effects that modifications of one system property
may have on system performance. One reason is that the variation of one property
can also affect the values of other system properties requiring new approaches to
keep track of simultaneous parameter changes. In this paper we present a framework
for one-dimensional and multi-dimensional sensitivity analysis of real-time systems.
The framework is based on compositional analysis that is scalable to large systems.
The one-dimensional sensitivity analysis combines a binary search technique with
a set of formal equations derived from the real-time scheduling theory. The multi-
dimensional sensitivity analysis engine consists of an exact algorithm that extends the
one-dimensional approach, and a stochastic algorithm based on evolutionary search
techniques.

R. Racu (�) · A. Hamann · R. Ernst
Institute of Computer and Communication Network Engineering, Technical University of
Braunschweig, 38106 Braunschweig, Germany
e-mail: racu@ida.ing.tu-bs.de

A. Hamann
e-mail: hamann@ida.ing.tu-bs.de

R. Ernst
e-mail: ernst@ida.ing.tu-bs.de

32 Real-Time Syst (2008) 39: 31–72

Keywords Real-time · Embedded · Distributed systems · System-on-chip ·
Performance verification · Scheduling analysis · Compositional · Sensitivity
analysis · Robustness · Slack · System properties · Binary search

1 Introduction

Due to complex system dependencies and global timing constraints, design sensitivity
is hard to determine, especially in an environment with suppliers and integrators,
where design data are often not fully available. The system designer can easily miss
the system bottlenecks, and finding conforming system configurations might be a
hard-to-accomplish task.

Starting from an architecture description, the application is mapped to components
and communication links, thereby deriving first system timing properties. These in-
clude task execution times, communication times, models describing the execution
requests of the single tasks, etc. These parameters together with other asserted spec-
ifications as for resource sharing, memory management, communication strategies,
are used to build up the first performance model of the proposed system.

Figure 1 depicts a simplified automotive platform. In the figure, two main de-
sign layers can be identified: 1. the application layer shows the application elements
(tasks) and the corresponding inter-dependencies; 2. the architecture layer contains
the description of the hardware resources and the mapping of the application ele-
ments. The system in Fig. 1 consists of a set of electronic control units (ECU) that are
connected via a distributed network containing several buses linked by one bridge. On
the application level, a task graph describes data and timing dependencies between
tasks. The tasks are characterized by a set of timing properties, like worst-case/best-
case execution demands, activation rate, access times on shared resources, memory

Fig. 1 Automotive platform

Real-Time Syst (2008) 39: 31–72 33

request times, etc. Additionally, the set of real-time constraints is explicitly formu-
lated.

The heterogeneity of the scheduling environments, the complex hardware and soft-
ware interactions, the large set of constraints, made system-level performance verifi-
cation to become one of the major issues in the design of embedded systems. Since we
assumed that the initial system configuration is not entirely or finally specified, varia-
tions of system properties may occur at any step during the design process. Therefore,
the designer must be supplied with additional information concerning the robustness
of different system configurations.

In this context, some issues need to be investigated in order to guarantee high sys-
tem flexibility. At first, one must identify the system properties that may change dur-
ing later design steps. These are usually task execution times, the parameters charac-
terizing the activation models, communication volumes, the operational speed of the
processing elements, the bandwidth of the communication resources, etc. For these
properties it is necessary to determine the maximum variation of their values that is
permitted by the set of constraints. We call feasibility slack the maximum variation
of a system property value without violating the system feasibility. The sensitivity
of a system property is inversely proportional to its feasibility slack, the smaller the
available slack, the higher the sensitivity.

First sensitivity analysis approaches known from literature are restricted to sim-
ple example systems, like single-processor systems with purely periodic tasks and
deadlines smaller than period. This is not a limitation of these approaches, but, at
the time they came out, they perfectly fit in the real-time system requirements ex-
isting at that time. Meanwhile, the uni-processor system architectures were replaced
by heterogeneous multi-processor platforms with large numbers of parameters and
properties, and very complex dependencies and timing constraints. Therefore, most
formal methods developed to measure the sensitivity of the system properties could
not be adopted for such systems.

In this context, current sensitivity analysis methods must be able to cover systems
with heterogeneous components in terms of scheduling, complex timing properties at
system inputs and complex interactions between task, distributed timing constraints,
etc. One should also require scalability, that is best achieved with novel compositional
analysis approaches that will be discussed later.

Moreover, assuming only variations of one system property at a time might be
insufficient. In most cases, the system parameters share common properties such
that modifications of one parameter typically imply variations of other parameters,
as well. An example is the dependency between the execution and communication
tasks belonging to the same application, or the dependency between the execution
demands of all tasks mapped on a resource and the speed of the resource. For the
system depicted in Fig. 1, assume that the amount of data sent by task T2 on ECU4

increases. This leads to a larger communication time of the corresponding channel
on CAN2, but, due to data dependencies, results in a larger processing time of task T1
on ECU6. Therefore, considering only the variation of execution time of T2 without
accounting for variations of the communication time or variations of the execution
time of the data-dependent task may lead to constraint violations, and thus, to faulty
system configurations. Another example is the variation of the available clock rate of

34 Real-Time Syst (2008) 39: 31–72

ECU6. Obviously, the execution times of the applications mapped on that resource are
scaled consequently. We call the sensitivity analysis of such properties, pseudo multi-
dimensional sensitivity analysis. Luckily, such scenarios can be formally reduced to
the one-dimensional case and solved accordingly.

In a more general case, the dependency is not explicitly formulated or not known
in detail, but it is still very helpful to see the influence of one system parameter on
the sensitivity of another. Such an example is presented in Figure 1, by mapping
additional applications on ECU7 and ECU8 and the corresponding inter-tasks com-
munication on FlexRay network. Obviously, the variation of the available slacks of
the three resources must be considered simultaneously.

This paper describes a framework for multi-dimensional sensitivity analysis of
complex embedded systems with hard real-time requirements. Some parts of this pa-
per extend the work presented in Racu et al. (2005) and Racu et al. (2006). Section 2
presents the existing work in the area of sensitivity analysis of real-time systems.
Section 3 introduces the SymTA/S analysis model, used as a basis for system analy-
sis and validation by the sensitivity analysis algorithms. The main part of this work
describes the sensitivity analysis framework. Section 4 gives a structural view of the
framework and the integration with the SymTA/S analysis engine. Section 5 presents
the algorithms to compute the one-dimensional sensitivity of different system prop-
erties. Afterwards, in Sect. 6 we describe an exact and a stochastic algorithm for
multi-dimensional sensitivity analysis. In Sect. 7 we carry out a set of experiments to
show the applicability of the method and to compare the exact and stochastic methods
for multi-dimensional sensitivity analysis. Finally, we draw some conclusions.

2 Related work

There is a large amount of work done in the area of sensitivity analysis. Event though
the first publications give only a Yes/No answer regarding the schedulability of a
particular system configuration, they derive the first equations to determine the border
between feasible and infeasible system configurations. In fact, sensitivity analysis
extends the former schedulability tests to determine all feasible configurations of
particular system properties.

Liu and Layland (1973) defined the utilization bound on a resource that guaran-
tees the schedulability of a task set under Rate Monotonic Scheduling (RMS) policy.
The task model assumed contains periodically activated tasks with deadlines equal to
period. The worst-case execution times of the tasks are known. The tasks do not share
common resources, i.e. they do not block each other, and no synchronization between
tasks is allowed. The authors proved that if all tasks are released at the same time—
the critical instant—then each task experiences its worst-case response time. The
schedulability test for the rate-monotonic algorithm is based on the critical instant
concept. The schedulability condition is sufficient, but not necessary. The authors de-
fine the maximum utilization that guarantees the schedulability of a set of tasks under
EDF. Since the utilization bound is 100%, the condition is not only sufficient, but
necessary, as well.

Real-Time Syst (2008) 39: 31–72 35

Later on, Lehoczky et al. (1989) computed the critical scaling factor �∗ as the
largest possible scaling factor of the execution times of a given task set, that guaran-
tees the schedulability of the task set under rate monotonic scheduling. The processor
utilization associated with the critical scaling factor represents the breakdown utiliza-
tion of the given task set. The approach is still restricted to periodically activated tasks
with deadlines equal to period. In (Lehoczky 1990) he extends this approach for task
sets with deadlines defined as the same constant fraction or multiple of task peri-
ods. He showed that tasks with deadlines larger than periods have higher utilization
bounds than task sets with deadlines equal to periods.

The breakdown utilization is refined later by Katcher et al. (1993), considering the
overhead of the scheduling kernel. He analyzed the costs of the scheduler in fixed
priority scheduling algorithms for both, event- and timer-driven scheduling imple-
mentations. For the latter he defined the optimal timer rate as the rate that maximizes
the breakdown utilization of a task set. The model used is still limited to periodically
activated tasks with D = T .

Vestal formulated the first questions regarding the sensitivity of the schedulabil-
ity analysis with respect to changes in the characteristics of the task set. In Vestal
(1994), the author considered fixed priority periodic task sets with deadlines equal
to period. He introduced slack variables into the inequalities proposed by Lehoczky
et al. (1989) in order to transform them into equalities, and to obtain the maximum
bound of each task compute time. To determine the slack of a task compute time, an
equation is derived for each scheduling point within the response time of the task.
A similar algorithm is derived to compute the slack of the execution times of a mod-
ule, assuming that the tasks are defined as a linear combination of such application
modules. Similar equations calculate bounds of task blocking times. Based on the ob-
tained slack variables, a critical scaling factor is computed for the execution demands
of a task set.

Yerraballi et al. (1993) used sensitivity analysis to capture three important design
problems: (1) scalability—how much can a task execution time be increased main-
taining its schedulability; (2) estimation—what is the maximum tolerable variance in
task execution time; (3) portability—is schedulability analysis still valid if the target
processor changes. He proposed a method to determine the minimum common scal-
ing factor sf by which the task execution times can be scaled without invalidating the
schedulability of the task set. The model used assumes periodic tasks with deadlines
less or equal to the period. The algorithm determines for each task Ti a scaling factor
of its execution time and the execution times of the higher priority tasks, such that
task Ti completes its execution exactly at deadline. However, the computed scaling
factor does not guarantee that all higher priority tasks meet their deadlines, as well.
Therefore, the common scaling factor that guarantees the schedulability of the entire
task set is the minimum of the scaling factors computed for each task.

Cottet and Babau (1996) provided a graphical approach to determine the system
sensitivity to variations of task activation periods, task deadlines and release times.
The analyses still assume task sets with deadlines less than periods.

The analysis given by Punnekkat et al. (1997) uses a combination of a binary
search algorithm and a modified version of the response time equations proposed by
Joseph and Pandya (1986) and Audsley et al. (1993). The proposed sensitivity met-
rics are build upon variation of task execution times, execution time scaling factors,

36 Real-Time Syst (2008) 39: 31–72

task periods and deadlines. Similar algorithms are derived for fault-tolerant real-time
systems. The mathematical proof to demonstrate the applicability of the binary search
on the set of analyzed parameters, and the evaluation of the algorithm complexity are
not specified by the authors. In essence, the method is limited to components due to
the underlying analysis, but the idea of a binary search can be adapted, as we will
show later.

Regehr (2002) introduced a binary search algorithm in order to determine systems
that, on one hand, offer a high flexibility with respect to task execution times and, on
the other hand, guarantee a minimum number of threads required to run a given task
set.

Bini et al. (2006) simplified the analysis proposed by Vestal (1994) and extended
it to task periods. He used the feasibility equations introduced in (Lehoczky et al.
1989) and (Seto et al. 1998) to determine the system feasibility regions in the space of
execution times and activation periods, respectively. The robustness of a system con-
figuration with respect to a particular parameter is measured as the distance between
the point representing the value of that parameter in the corresponding feasibility
space and the feasibility bound. However, even if the proposed approach simplifies
the equations proposed by Vestal (1994), the model used is still restricted to periodic
task sets with deadlines equal to periods.

The MAST tool suite (Harbour et al. 2001) has implemented a sensitivity analysis
engine to compute the execution-time slacks at resource level, transaction level and
system level. MAST uses holistic analysis that may also cover different scheduling
strategies in a system. However, we could not find any technical details that allows a
direct comparison with the approach presented in this paper.

ETAS and Live Devices developed the RTA-OSEK (Live Devices,
http://en.etasgroup.com/products/rta) product that has a built-in sensitivity analysis
engine for embedded systems based on OSEK-OS.

The fact that most previous algorithms to sensitivity analysis consider only very
restricted task models, with the task deadline less than the period, represents the
main limitation of their applicability. One reason is that most real-time systems have
defined global timing constraints, like end-to-end deadlines, rather than local con-
straints, like task deadlines, and the algorithms to derive local deadlines from global
deadlines are not always optimal, and need to consider slack distribution over dif-
ferent components. A second reason is the huge complexity or sometimes the im-
possibility to adapt the algorithms for tasks with arbitrary deadlines. A third reason,
at least as important as the previous two, is the limited scalability of the underlying
analyses that only supports a fixed combination of scheduling strategies.

3 The SymTA/S approach

The sensitivity analysis method explained in this paper uses the performance analysis
engine of SymTA/S (Project 2003). SymTA/S is a formal system-level timing analy-
sis tool for heterogeneous system architectures. The application model of SymTA/S is
described in Sect. 3.1. The core of SymTA/S is a technique to couple local scheduling
analysis algorithms using event streams (Henia et al. 2005). Event streams describe

Real-Time Syst (2008) 39: 31–72 37

the possible I/O timing of tasks. Input and output event streams are described by
standard event models which are introduced in detail in Sect. 3.2. The analysis com-
position using event streams is described in Sect. 3.3.

3.1 Application model

An application is modeled by a set of computation and communication tasks (appli-
cation entities). The tasks are mapped to and executed on a set of processing and
communication elements, representing the system architecture. Each task is charac-
terized by its execution time interval, defined as the minimum and maximum time the
task requires for a complete execution on the corresponding resource, assuming that
no blocking occurs during execution.

A task is activated due to an activating event. Activating events can be generated
in a multitude of ways, including expiration of a timer, external or internal interrupt,
and task chaining. Each task is assumed to have one input FIFO. A task reads its
activating data from its input FIFO and writes data into the input FIFO of a dependent
task. A task may read its input data at any time during one execution. The data is
therefore assumed to be available at the input during the whole execution of the task.
SymTA/S also assumes that input data is removed from the input FIFO at the end of
one execution.

All activating events of a task are captured by an event stream. The behavior of the
event streams is described using event models. The event models used in SymTA/S,
called standard event models, are characterized by a common set of timing para-
meters. A detailed presentation of the standard event models is given in Sect. 3.2.
Any timing dependency between the activations of two tasks is represented by an
event stream emerging from one task and entering the dependent task. The real-time
behavior is described by a set of timing constraints, like task deadlines, end-to-end
deadlines, maximum jitter at system output, etc.

When multiple tasks share the same resource, two or more tasks may request the
resource at the same time. To arbitrate request conflicts, each resource is associated
with a scheduler which selects a task to execute out of the set of active tasks accord-
ing to some scheduling policy. The scheduling analysis calculates worst-case and
best-case task response times, i.e. the maximum and minimum times between task
activation and task completion taking into account the effects of scheduling. Schedul-
ing analysis guarantees that all observable response times will fall into the calculated
[best-case, worst-case] interval. One may check the feasibility of the system by com-
paring the results of the scheduling analysis against the set of timing constraints. We
say that a system is feasible if all constraints are fulfilled. Vice-versa, a system is
infeasible if at least one constraint is violated.

Figure 2 shows an example of a system modeled with SymTA/S. The system con-
sists of 2 resources each with 2 tasks mapped on it. R1 and R2 are both assumed to
be scheduled according to a static priority preemptive policy. Src1 and Src2 are the
sources of the external activating events at system inputs.

3.2 Standard event models

Standard event models represent the possible timing of activating events of tasks in
SymTA/S. They are described using several parameters. For example, a strictly peri-

38 Real-Time Syst (2008) 39: 31–72

Fig. 2 System modeled with SymTA/S

Fig. 3 Example of an event
stream that satisfies the event
model (P = 4, J = 1)

odic event model has one parameter P , and states that each event arrives periodically
every P time units. This simple model can be extended with the notion of jitter, lead-
ing to a periodic with jitter event model. Such an event model is described by two
parameters (P,J). It generally occurs periodically, but it can jitter around its exact
position within a jitter interval J . Consider an example where (P, J) = (4,1). This
event model is visualized in Fig. 3. Each gray box indicates a jitter interval of length
J = 1. The jitter intervals repeat with the event model period P = 4. The figure ad-
ditionally shows a sequence of events which satisfies the event model, since exactly
one event falls within each jitter interval box, and no events occur outside the boxes.

Periodic with jitter event models are well suited to describe generally periodic
event streams, which often occur in control, communication and multimedia systems.
If the jitter is zero, then the event model is strictly periodic. If the jitter is larger than
the period, then two or more events can occur at the same time, leading to bursts. To
describe a bursty event model, the periodic with jitter event model can be extended
with a d− parameter that captures the minimum distance between two consecutive
events within a burst.

Additionally, sporadic events are also common. Sporadic event streams are mod-
eled with the same set of parameters as periodic event streams. Note that jitter and
d− parameters are also meaningful in sporadic event models, since they allow to ac-
curately capture sporadic transient load peaks. A more detailed discussion about the
event models used in SymTA/S can be found in Richter et al. (2003).

Real-Time Syst (2008) 39: 31–72 39

3.3 Analysis composition

SymTA/S analysis engine is based on the compositional performance analysis
methodology proposed by Richter (2004) and Chakraborty et al. (2003). The com-
positional performance analysis extends the basic concept of the purely sequential
holistic analysis proposed by Tindell and Clark (1994), by iteratively performing task
response time analysis and propagating the analysis jitter of a task to the input of the
connected tasks. In contrast to the holistic analysis, the compositional analysis uses a
common interface between components to systematically compose local scheduling
analysis into system level analysis.

The system analysis alternates local scheduling analysis on each component with
propagation of the timing information between components using the common in-
terface. The common interface allows, contrary to holistic analysis, to easily apply
the compositional analysis on arbitrarily large systems with complex dependencies
between tasks and heterogeneous scheduling algorithms.

The composition is realized in SymTA/S by connecting the components using the
standard event models presented in the previous section. The common interface is
easily extensible and captures, besides the standard timing parameters, like period,
jitter or minimum inter-arrival distance, additional timing information, like activation
offsets between tasks, execution modes, etc. Recent work (Perathoner 2006) shows
that the compositional analysis technique performs at least as well as the holistic
analysis technique, but is at the same time scalable.

Similar to SymTA/S, the RTC toolbox (Wandeler and Thiele 2006) uses Real-
Time Calculus (Thiele et al. 2000) as method for the common interface between
components.

The holistic analysis has been later extended and improved by Palencia and Har-
bour (1998) and Redell and Trngren (2002) to consider more complex task sets with
static and dynamic offsets and application cycles. Later work in the MAST frame-
work also used iteration, but without formally defining interface models that provide
the formal power of the compositional approach, and enables modularity, composi-
tion and scalability.

3.3.1 Output event model calculation

The SymTA/S standard event models allow to specify simple rules to obtain output
event models that can be described with the same set of parameters as the activating
event models. The output event model period obviously equals the activation period.
The difference between worst-case and best-case task response times, represents the
component internal jitter, also called response time jitter. The internal jitter is added to
the jitter of activating event model, yielding the jitter of the output event model (Henia
et al. 2006):

J out
i = max∀k

(J in
i,k + Rw

i,k) − Rb
i (1)

where J in
i,k and Rw

i,k represent the input jitter delay and the worst-case response time

of the k-th job of task τi . Rb
i represents the best-case response time of task τi (Redell

and Sanfridson 2002).

40 Real-Time Syst (2008) 39: 31–72

Fig. 4 Example of a system with cyclic scheduling dependency

Note that, if the calculated output event model has a jitter larger than period, this
information alone would indicate that an early output event could occur before a late
previous output event, which obviously cannot be correct. The order in which the
events arrive at input is certainly preserved at output due to the FIFO mechanism
presented in Sect. 3.1. In reality, two consecutive output events cannot follow closer
than the best-case response time of the producer task. This is captured by the value
of the minimum distance parameter d−.

3.3.2 Analysis composition using standard event models

In the following, the compositional analysis approach is explained using the sys-
tem example in Fig. 2. Initially, only event models at the external system inputs are
known. Since an activating event model is available for each task on R1, a local
scheduling analysis of this resource can be performed and output event models are
calculated for T1 and T3 (Sect. 3.3.1). In the second phase, all output event models
are propagated. The output event models become the activating event models for T2
and T4. Now, the scheduling analysis of R2 can be performed since all activating
event models are known.

However, sometimes might be impossible to directly perform the system level
analysis as explained above. Such a complex analysis scenario occurs for the system
presented in Fig. 4. The system consists of 2 resources, R1 and R2, each containing
2 tasks. Initially, only the activating event models of T1 and T3 are known. At this
point the system cannot be analyzed, because the activating event models of one
task on each resource are missing. This means, the response times on R1 need to be
calculated to be able to analyze R2. On the other hand, R1 cannot be analyzed before
analyzing R2. We call this problem a cyclic scheduling dependency.

One solution to this problem is to initially propagate all external event models
along all system paths until an initial activating event model is available for each
task (Richter 2004). This approach is safe since on one hand scheduling cannot
change an event model period. On the other hand, scheduling can only increase an
event model jitter (Tindell and Clark 1994). Since a smaller jitter interval is contained
in a larger jitter interval, the minimum initial jitter assumption is safe.

After propagating external event models, global system analysis can be performed.
The global analysis loop is depicted in Fig. 5. A global analysis step consists of two
main phases (Richter et al. 2003). In the first phase local scheduling analysis is per-
formed for each resource and the output event models are calculated (Sect. 3.3.1).

Real-Time Syst (2008) 39: 31–72 41

Fig. 5 System analysis loop in
SymTA/S

During the second phase all output event models are propagated. Then, it is checked
if the first phase has to be repeated because of obsolete parameters of the activating
event models. This happens when newly propagated output event models are different
from the output event models propagated in the previous analysis step. Analysis com-
pletes either when no event model changes change during propagation , or when at
least one abort condition, e. g. the violation of a timing constraint, has been reached.

4 Sensitivity analysis in SymTA/S

In this section we introduce the sensitivity analysis framework implemented in
SymTA/S. Section 4.1 presents the sensitivity analysis flow and the analysis mod-
ules. Thereafter, in Sect. 4.2, are described the sensitivity analysis parameters. Fi-
nally, Sect. 4.3 explains the binary search algorithm and formulates the assumptions
required for its proper applicability on different system properties.

4.1 Sensitivity analysis loop

The diagram presented in Fig. 6 shows the components of the sensitivity analysis
framework and the corresponding analysis flow. The user selects (Step 1) from the
pool of system properties, a set of sensitivity tuples on which the sensitivity analysis
is performed.

Definition 1 A property tuple is represented by a vector � = (p1, . . . , pn), where
n ≥ 1 and pi,1 ≤ i ≤ n is a system property. A property tuple may contain system
properties of different types.

42 Real-Time Syst (2008) 39: 31–72

Fig. 6 Sensitivity analysis framework

The type of a system property is also referred as sensitivity analysis parameter (see
Sect. 4.2). The length of a property tuple, i.e the value of n in Definition 1, determines
the number of dimensions of the search space investigated by the sensitivity analysis
(see Sects. 5 and 6).

Definition 2 A sensitivity tuple is represented by a data object T = (�,M), where
� is a property tuple and M represents a set of sensitivity objectives defined for �.

The sensitivity tuples are sent one by one to the sensitivity analysis controller
(Step 2). The sensitivity analysis controller is responsible for directing the flow of
information between modules. The sensitivity analysis loop contains the sensitivity
analysis controller, the scheduling analysis engine and the sensitivity algorithms. At
first iteration, the sensitivity analysis controller transmits (Step 3) the property values
of the selected sensitivity tuple to the scheduling analysis engine. It receives back
(Step 4) the status of the analyzed system: feasible or infeasible. Based on the re-
ceived status, the search space is defined and sent (Step 5) to the analysis algorithm.
The algorithm selects a value in the search space and sends it back to analysis con-
troller (Step 6). The steps 3 to 6 are repeated until the algorithm finds the desired
value. Note that, the search space is defined in the first iteration by the sensitivity
controller and adapted during each iteration by the analysis algorithm. When the
analysis completes, the results are stored (Step 7) in the result database. The results

Real-Time Syst (2008) 39: 31–72 43

are displayed (Step 9) by demand using visualization algorithms specific to each
sensitivity tuple.

The sensitivity algorithms and the visualization algorithms are automatically se-
lected, depending on the sensitivity tuple which is currently analyzed. Before first
analysis iteration or sometimes during iterations, the sensitivity analysis controller
might access existing information in the result database (Step 8).

The scheduling analysis is performed using the compositional system level analy-
sis introduced in Sect. 3. The communication between the scheduling analysis engine
and the sensitivity analysis controller is implemented using a client/server interface.
The communication between the sensitivity analysis controller and the other modules
is realized via function calls.

4.2 Parameters and objectives

In the context of this paper we call system property any system characteristic dynami-
cally defined by the specification of the applications or the organization of the system
architecture. In other words, a system property is usually not directly defined or con-
trolled by system designer. Modification of the application specification and/or sys-
tem architecture structure during design may lead to unexpected changes of the sys-
tem properties. Following system properties are likely to be changed during design:

1. Task execution time: best-case, worst-case
2. Resource speed factor
3. Activation period (P)
4. Activation jitter (J)
5. Minimum inter-arrival distance (d−)
6. Volume of communication
7. Traffic shaping parameters

These parameters have associated following sensitivity analysis objectives:

1. Minimize best-case execution time, maximize worst-case execution time
2. Minimize the resource speed factor
3. Minimize the activation period
4. Maximize activation jitter
5. Reduce the minimum inter-arrival distance
6. Maximize the communication volume
7. Minimize the buffer size required by a traffic shaper

The difference between the initial value of a property and the value obtained by
the sensitivity analysis represents the feasibility slack of that property. If the initial
system configuration is feasible, the feasibility slack of a parameter is a non-negative
number. Otherwise, the feasibility slack is a negative number.

4.3 Binary search technique

As mentioned in Sect. 2, different approaches were proposed for the sensitivity analy-
sis of different system parameters. However, most of them are applicable only on
single resources, as they are limited by local timing constraints, like tasks deadlines.

44 Real-Time Syst (2008) 39: 31–72

Due to complex inter-resource dependencies and global timing requirements, the sen-
sitivity analysis techniques used at resource level can not be straight-forward adapted
at system level, as this implies huge effort and less flexibility.

An alternative is a search algorithm that can be easily applied on various search
spaces. Binary search is a fast and simple search technique used to determine a spe-
cific value within an ordered set of data. Since the timing metrics used by the feasibil-
ity analysis monotonically change with the variation of the system properties subject
to sensitivity analysis, the binary search algorithm can be safely applied in order to
determine the feasibility slack of these properties. A proof of correctness is provided
in Sect. 5.

Since most system properties subject to changes can be varied within a continu-
ous range of values, appropriate conditions must be defined to limit the number of
iterations of the binary search algorithm. The search is aborted when the size of the
search interval becomes smaller than the search resolution, denoted ε. The value of ε

is defined depending on the definition range of the sensitivity parameter.
In order to apply the binary search technique, the search space must be bounded.

One bound is determined by the initial value of the investigated system property.
Depending on the feasibility of the initial configuration of the system, the second
bound is calculated differently. For the feasible case, the second bound can be defined
using additional information about the constraints imposed for a particular system.
For example, when investigating the execution time of a task, the maximum bound of
the search space is defined by the value of the execution time corresponding to 100%
resource utilization. Any value larger than this value definitely leads to an infeasible
configuration. For the infeasible case, the second bound is defined by the value of
the system property which generally minimizes the system load. Hence, in case of
execution time sensitivity analysis, this bound is set to 0. Notice that, depending on
the architecture configuration, the scheduling techniques used and the set of timing
constraints, there is no guarantee that a feasible configuration exist, even when the
parameter is set to its minimum value.

The complexity of the algorithm can be calculated using the value of the search
resolution and the size of the search space. If we denote by L the size of the search
space, then the total number of discrete points within this space is �L

ε
�. Since binary

search is a logarithmic algorithm with the execution complexity O(logn), the total
number of iterations N required to find the desired value is

N = 1 + log2

⌈
L

ε

⌉
. (2)

Algorithm 1 shows the implementation of the binary search technique to deter-
mine the feasibility slack of a system property. The initial property value is V init. The
search interval is defined depending on the feasibility status of the initial system con-
figuration. Hence, if the initial system configuration is feasible, the search interval is
determined by the initial property value and high_feasible (lines 1–3). Otherwise, the
search interval is determined by the initial property value and low_infeasible (lines
4–6).

At each iteration, the value of the analyzed property is set to the middle value
of the search interval (lines 9–10), and the search interval is adjusted accordingly

Real-Time Syst (2008) 39: 31–72 45

Algorithm 1 Binary search

INPUT: initial value: V init

search resolution: ε

OUTPUT: feasibility slack: �Smax

1: if (isFeasible()) then

2: low = V init

3: high = high_feasible

4: else

5: low = low_infeasible

6: high = V init

7: end if

8: while |high − low| > ε do

9: middle = (high + low)/2

10: set V = middle

11: if (isFeasible()) then

12: low = middle

13: else

14: high = middle

15: end if

16: end while

17: set V = Vinit

18: �Smax = low − Vinit

(lines 11–15). Procedure isFeasible() performs a global system analysis and return
the system status.

The algorithm terminates when the size of the search interval becomes smaller
than the predefined search resolution, ε. The feasibility slack, �Smax is defined as the
maximum positive variation of the property value, in case of feasible initial configu-
ration, and as minimum negative variation of the property value, in case of infeasible
initial configuration.

5 One-dimensional sensitivity analysis

5.1 Task execution time

In this section we present details of the binary search algorithm to determine the
feasibility slack of the worst-case execution time of a task.

46 Real-Time Syst (2008) 39: 31–72

Proof of correctness To be able to perform a binary search we need to prove that the
system performance metrics (response times, end-to-end latencies, jitters) monoton-
ically change with the variation of the execution time of the analyzed task.

Assuming static priority preemptive scheduling, the worst-case response time Rw
i

of a task τi can be determined using the response time analysis presented in Audsley
et al. (1993)

R
(n+1)
i = Ci +

∑
∀j∈HP(i)

⌈
R

(n)
i

Pj

⌉
· Cj ; R

(0)
i = Ci (3)

where HP(i) contains the indices of all tasks with priorities higher than τi . The
worst-case response time Rw

i , is iteratively calculated using (3), until R
(n+1)
i = R

(n)
i .

From (3) we observe that Rw
i depends on the worst-case execution time and the

period of τi and of all higher priority tasks. Since the activation periods are assumed
fixed, we can express Rw

i as follows

Rw
i = f (Ck), ∀k ≥ i. (4)

Obviously, f is monotonic. Similar observations can be made for the task response
times functions corresponding to other arbitration policies.

Equation (3) can be replaced by more complex equations (Tindell and Clark 1994;
Palencia and Harbour 1998) to capture blocking times between tasks, activation jitters
or activation offsets. However, the monotonic behavior of the response time with
respect to execution time is still preserved when using these equations.

Furthermore, since the activation jitter J in
i and the best-case response time Rb

i are
not functions of Ci , it follows from (1) that the output jitter J out

i is also a monotonic
function of Ci . An increasing jitter may lead to an increasing response time of the
connected task.

Since the maximum latency of a path strongly depends on the worst-case response
times of all tasks along that path, the path latency is a monotonic function of the
execution times of all tasks within the path.

Algorithm implementation If the initial system configuration is feasible, then the
search interval is determined by the current worst-case execution time and the value
of the execution time corresponding to the maximum utilization of the resource.

The current utilization of the resource is (Liu and Layland 1973):

Uinitial = C1

P1
+ C2

P2
+ · · · + Ci

Pi

+ · · · + Cn

Pn

. (5)

If we increase the execution time of task τi by �Ci , then the new utilization

Unew = C1

P1
+ · · · + Ci + �Ci

Pi

+ · · · + Cn

Pn

(6)

which must be smaller than the maximum allowed utilization, Umax

Unew ≤ Umax. (7)

Real-Time Syst (2008) 39: 31–72 47

If not defined by user, Umax is set by default to 1. Any utilization above 100%
means that the resource is overloaded and the selected configuration is infeasible.

The maximum variation of Ci is then

�Cmax
i = Pi · (Umax − Uinitial). (8)

Therefore, the value of high_feasible is equal to

high_feasible = Ci + �Cmax
i (9)

and the range investigated by the binary search algorithm is [Ci;Ci + �Cmax
i].

If the initial system configuration is infeasible, the search interval is determined
by the initial execution time and

low_infeasible = 0. (10)

There is no guarantee that a value leading to a feasible configuration is found.
Therefore, to speed up the search, the algorithm firstly investigates the value 0. If
the configuration corresponding to this value is infeasible, then the search is aborted.
Otherwise, the binary search is performed.

5.2 Resource speed factor

This section gives details on the binary search algorithm to determine the minimum
speed factor of a resource. The execution times of all tasks mapped on a resource
are inverse ratios of resource speed, i.e. reducing the resource speed by a factor sf
will increase the execution demands of all tasks mapped on that resource by the same
factor.

Proof of correctness Since the variation of the resource speed factor results in
the variation of the execution times of the tasks mapped on that resource, and the
monotonic behavior of the system timing metrics with respect to task execution times
has been already proved in Sect. 5.1, a similar proof can be derived for a common
scaling factor of a set of execution times.

Algorithm implementation If we scale the resource speed by sf, (6) becomes:

Unew = 1

sf

n∑
i=1

Ci

Pi

. (11)

The new resource utilization obviously must be smaller than the maximum utiliza-
tion allowed for that resource. Hence, substituting (5) and (11) in (7) we obtain:

sfmin ≥ Uinitial

Umax
. (12)

If the initial system configuration is feasible, the search space is determined by the
initial speed factor (usually 1) and the value of sfmin in the above equation. Hence,

high_feasible = sfmin. (13)

48 Real-Time Syst (2008) 39: 31–72

Similarly, one can define a minimum resource utilization and the appropriate value
for the speed factor of that resource. This factor corresponds to the maximum clock
frequency at which the resource can operate. The maximum speed factor is computed
as follows:

sfmax ≤ Uinitial

Umin
. (14)

If the initial system configuration is infeasible, the search space is determined by
the current speed factor value (usually 1) and the value of sfmax. Hence,

low_infeasible = sfmax. (15)

5.3 Activation period

This section presents details of the binary search algorithm to determine the slack
of a task activation period. Our application model assumes that the tasks have non-
conditional output, such that the data rate at task input is preserved at task output,
i.e. the period of the completion events is equal to the period of the activation events.
Therefore, all tasks traversed by the same application path have the same activation
period. The period of an application path is modeled by a source task that contains
the timing specifications either at system input or internally generated by the system.
The analysis determines the variation of the period specified by a source task.

Proof of correctness According to (3), if we assume that the task execution de-
mands are constant, the worst-case response time of the task monotonically increases
with the decrease of the activation period of any task interfering with the analyzed
task (including the task itself). Again, the increasing worst-case response time leads
to a higher output jitter and, consequently, to a higher worst-case response time of
the connected tasks. Thus, the latencies of the application paths within the system
increase, as well. Hence, the system timing metrics are monotonic functions of the
activation periods of all tasks in the system.

Algorithm implementation First, we need to determine the bounds of the search
space. If we consider the variation of a source task period we have to check the
variation of the load on all resources traversed by the application path connected to
that source task. Let A be the application path and R the set of hardware resources
traversed by A. The utilization of any resource R in R can be calculated using (5).
Assuming that the period of A changes, the load on R can be divided into two parts:
one is static and the other one changes dynamically with the period:

UR
initial = UR

static + UR
dyn =

∑
i

Ci

Pi

+
∑
j

Cj

PA
, τi 	∈A, τj ∈ A, R ∈R. (16)

PA represent the period at the input of path A. The tasks τj are mapped on R and
contained in path A. Obviously, a path may contain more than one task mapped on
the same resource.

Real-Time Syst (2008) 39: 31–72 49

If we decrease the activation period PA by �PR
A, the new utilization of R becomes

UR
new =

∑
i

Ci

Pi

+
∑

j Cj

PA − �PR
A

. (17)

If we substitute (16) and (17) in (7) we obtain:

PR,min
A =

∑
j Cj

Umax − Uinitial +
∑

j Cj

PA

. (18)

For each resource R in R (18) calculates the minimum of PA leading to a resource
utilization equal to Umax. In order to keep the load on all resources below or equal to
Umax, the absolute minimum is determined by:

Pmin
A = max

k
(PR,min

A), ∀Rk. ∈R. (19)

If the initial system configuration is feasible, the value of high_feasible is equal to
the value of Pmin

A in (19).
If the initial system configuration is infeasible, the search space is bounded by the

initial period and the value corresponding to a minimum user-defined load generated
by the tasks on the resources in R (see (20)).

Pmax
A = maxk(

∑
j Cj)

Umin
, ∀Rk ∈ R. (20)

Hence, low_infeasible is equal to the value of Pmax
A in (20).

6 Multi-dimensional sensitivity analysis

In this section we introduce two multi-dimensional analysis techniques to compute
the system robustness assuming simultaneous variations of a set of system proper-
ties. Sect. 6.2 describes an exact algorithm that combines a user-controlled search
algorithm with a binary search technique. The method is optimized for the analysis
of simultaneous variations of two system properties. For the analysis of simultane-
ous variations of more than two system properties, we present a stochastic approach
based on evolutionary algorithms.

6.1 Definitions and notations

Definition 3 A vector (Vp1 , . . . ,Vpn) represents a sensitivity point if any value of
pi other than Vpi

, defined according to the sensitivity objective of pi , leads to an
infeasible system configuration.

Definition 4 The sensitivity front F(p1,...,pn) is represented by all sensitivity points
(Vp1 , . . . ,Vpn), where Vpi

∈ [V init
pi

;Vext
pi

]. Thereby, V init
pi

represents the value of pi for
the initial system configuration, and Vext

pi
represents the extreme value of pi deter-

mined using one-dimensional sensitivity analysis.

50 Real-Time Syst (2008) 39: 31–72

Algorithm 2 analyzePropertyTuple
INPUT: (pb,pt), the property tuple to be analyzed.

OUTPUT: M(pb,pt), a finite subset of the sensitivity front.

1: get V init
pb

, the initial value of pb;

2: compute Vext
pb

, the largest variation of pb’s value;

3: S init
pt

= computeSlack(pt ,V init
pb

);

4: Sext
pt

= computeSlack(pt ,Vext
pt

);

5: insert (V init
pb

,S init
pt

) into M(pb,pt);

6: insert (Vext
pb

,Sext
pt

) into M(pb,pt);

7: depthSearch(1,V init
pb

,Vext
pb

,M(pb,pt));

8: return M(pb,pt);

6.2 Search-based analysis

This section presents a search-based algorithm for the two-dimensional sensitivity
analysis. The algorithm can be also extended for n-dimensions, however the com-
plexity exponentially increases with the number of dimensions.

The main idea of Algorithm 2 is a systematic selection of the values for the base
parameter, pb . For each selected value of pb is calculated the feasibility slack of
the target parameter pt , using the one-dimensional sensitivity analysis algorithms
presented in Sect. 5. The values of the base parameter (Vpb

) are searched within
a closed interval defined by its initial value (V init

pb
) and the extreme value allowed

for that parameter (Vext
pb

). The latter is determined by applying the one-dimensional
sensitivity analysis (line 2) (Racu et al. 2005). Lines 3 and 4 return the available slacks
of the target parameter corresponding to the extreme values of the base parameter.
The sensitivity point (Vpb

,Spt) is then added to M(pb,pt). Obviously, M(pb,pt) is a
finite subset of the sensitivity front F(pb,pt).

The function computeSlack(pt ,Vpb
) calculates the feasibility slack of pt consider-

ing the system configuration with Vpb
defined as value for property pb . The function

depthSearch at line 7 is explained in detail in next section.

6.2.1 Depth-search

The function depthSearch described in Algorithm 3 divides the search interval in
half, and computes the feasibility slack of pt for the system configuration assum-
ing the value of pb equal to the middle value of the search interval. The sensi-
tivity point determined by this value and the corresponding slack of pt is inserted
into M(pb,pt). Function depthSearch is recursively applied to the left-half and the
right-half intervals. The recursion terminates if at least one abort condition defined in
function abortCheck() is satisfied. The abort conditions are thoroughly presented in
Sect. 6.2.2.

Real-Time Syst (2008) 39: 31–72 51

Algorithm 3 depthSearch
INPUT: depth, the current search depth;

V left
pb

and V right
pb

, the bounds of the search interval;

M(pb,pt) the set of analyzed points.

1: if abortCheck(depth,V left
pb

,V right
pb

,S left
pt

,Sright
pt

) then

2: stop search;

3: end if

4: Vmid
pb

= (V left
pb

+ V right
pb

)/2;

5: Smid
pt

= computeSlack(pt ,Vmid
pb

);

6: insert (Vmid
pb

,Smid
pt

) into M(pb,pt);

7: depthSearch(depth + 1,V left
pb

,Vmid
pb

,M(pb,pt));

8: depthSearch(depth + 1,Vmid
pb

,V right
pb

,M(pb,pt));

6.2.2 Smart step

The abort conditions consist of two user controlled tests and one abort test deter-
mined by the type of the analyzed parameters and their behavior. The user can define
the maximum depth of the search algorithm (depthmax) that represents the largest
number of halving-levels performed by the depthSearch function. If depthmax is met,
the search is aborted (lines 1 and 2 in Algorithm 4). For a depth equal to depthmax the
maximum number of analyzed points is 2depthmax .

A second parameter controlling the search algorithm is the minimum size of the
search interval. If the resolution of the search space becomes smaller than ρ, no fur-
ther points are investigated (lines 3 and 4 in Algorithm 4). This test dominates the
previous condition such that, for initially small search domains the number of inves-
tigated points can be significantly reduced.

The third abort condition is considered only if the relation between the analyzed
parameters is monotonic in the complete analyzed domain. In such a case, if the
slacks of the target parameter corresponding to the values of the investigated interval
bounds are equal, no further search is required in that interval.

This condition can be safely applied for the sensitivity analysis of task execution
times or channel communication times, as proved by Lemma 1. In Racu et al. (2005),
we proved the monotonic relation between the execution time interval of a task and
the available system slack.

Lemma 1 Consider two system properties pTb and pTt representing the worst-
case execution times of two tasks, as the base and the target parameters of the
two-dimensional sensitivity analysis. The initial execution time of the base task is
[BCETTb;WCETTb]. Assume that for two values of WCETTb , V left

pTb
and V right

pTb
, the

target parameter has the values S left
pTt

and Sright
pTt

, such that

S left
pTt

= Sright
pTt

. (21)

52 Real-Time Syst (2008) 39: 31–72

Algorithm 4 abortCheck
INPUT: depth, the current search depth;

depthmax, the maximum depth;

V left
pb

and V right
pb

, the bounds of the search interval;

S left
pt

and Sright
pt

, the available slack of pt corresponding to V left
pb

and V right
pb

;

ρ, the minimum size of the search interval.

OUTPUT: a boolean value

1: if (depth > depthmax) then

2: return true;

3: else if |V left
pb

− V right
pb

| < ρ then

4: return true;

5: else if (S left
pt

= Sright
pt

) then

6: return true;

7: else

8: return false;

9: end if

Then, for an arbitrary value V in
pTb

within the interval [V left
pTb

;V right
pTb

], the following
equation is valid:

S in
pTt

= S left
pTt

= Sright
pTt

(22)

where S in
pTt

represents the slack of the worst-case execution time of Tt corresponding

to the worst-case execution time of Tb equal to V in
pTb

.

Proof Assume that

S in
pTt

> S left
pTt

and S in
pTt

> Sright
pTt

. (23)

Since the algorithm presented in Sect. 6.2 investigates only the upper bound of the
execution time interval of Tb, i.e. the WCETTb values, by computing the slack S in

pTt

corresponding to V in
pTb

, it is guaranteed that S in
pTt

is valid for all values VpTb
within the

interval [BCETTb;V in
pTb

].
Because [BCETTb;V left

pTb
] ⊂ [BCETTb;V in

pTb
], (23) says that there is at least one

value in interval [BCETTb;V in
pTb

] that determines a slack SpTt
smaller than the mini-

mum slack computed for that interval, that obviously can not be valid.
A similar proof can be carried out for the case

S in
pTt

< S left
pTt

and S in
pT−t

< Sright
pTt

. (24)

Real-Time Syst (2008) 39: 31–72 53

Since [BCETTb;V in
pTb

] ⊂ [BCETTb
;V right

pTb
], results that there is at least one value

in [BCETTb;V right
pTb

] that leads to a slack SpTt
smaller than the lowest slack calculated

for that interval. Therefore, (24) can not be valid.
Hence, if (21) is valid, all values between V left

pTb
and V right

pTb
determine a slack for

pTt equal to S left
pTt

and Sright
pTt

. �

For any two values of the base parameter satisfying (21) no search is required
within the interval determined by these values. The slack of the target parameter
corresponding to any value of the base parameter located between these 2 values is
always constant.

6.3 Stochastic analysis

In this section we present a stochastic approach for multi-dimensional sensitiv-
ity analysis. It is based on a previously published design space exploration frame-
work (Hamann et al. 2006), which uses multi-dimensional evolutionary search tech-
niques (Bleuler et al. 2003; Zitzler et al. 2002).

Since the complexity of the exact approach presented in previous section grows
exponentially with the number of search dimensions, we propose a stochastic algo-
rithm which is suited for search spaces with more than two dimensions.

The presented stochastic multi-dimensional sensitivity analysis technique approx-
imates the sought-after sensitivity front from two sides, i.e. coming from the space of
working and from the space of non-working system property combinations. There-
fore, the stochastic sensitivity analysis approach is perfectly suited to approximate
system sensitivity by lower and upper bounds, and thus allows to quickly identify
system configurations with high robustness potential. For this reason, the presented
approach can be efficiently used for system sensitivity minimization.

The section is structured as follows: we first give a short description of how
we use the exploration framework to perform multi-dimensional sensitivity analy-
sis (Sect. 6.3.1). We then give details on the search space encoding (Sect. 6.3.2)
and the creation of the initial population used as starting point for exploration
(Sect. 6.3.3). Afterwards, we discuss the exploration strategy used during variation to
bound the search space, and thus improving analysis speed and approximation qual-
ity (Sect. 6.4). Finally, we explain in detail the exploration strategy implemented by
the variation operators (Sects. 6.4.1 and 6.4.2).

6.3.1 Analysis idea

Classical applications of exploration frameworks for complex distributed systems as-
sume variation of system parameters like scheduling, mapping, etc. to optimize crite-
ria including timing, power consumption and buffer sizes.

In this paper we utilize design space exploration in a different way in order to cover
multi-dimensional sensitivity analysis. Instead of modifying the system parameter
configuration during exploration, we modify system properties subject to sensitivity
analysis, i.e. worst-case core execution times, CPU clock rates, input data rates, etc.

54 Real-Time Syst (2008) 39: 31–72

Thereby, the optimization objectives are, depending on the considered system prop-
erties, either the maximization or the minimization of the property values under the
restriction that the system must stay functional, i.e. all system constraints, like end-
to-end deadlines, maximum power consumption, maximum buffer sizes, etc., must
be satisfied.

For instance, in the case of a three-dimensional WCET sensitivity analysis of three
tasks, the search space consists of the WCET assignment for those tasks and the
optimization objectives are the simultaneous maximization of the latter.

Note that our exploration framework (Hamann et al. 2006) performs Pareto-
optimization, and that the obtained Pareto-front corresponds to the sought-after sensi-
tivity front representing the boundary between feasible and non-feasible system con-
figurations. Furthermore, the algorithms presented in the next sections are applicable
to arbitrary system properties, including those which are subject to maximization
(e.g. worst-case core execution times) and those which are subject to minimization
(e.g. input data rates).

It is important to mention, that the sensitivity front coverage is controlled by
problem independent selector algorithms (Bleuler et al. 2003). We currently use
SPEA2 (Zitzler et al. 2002) as selector, which assures a diversified approximation
of the Pareto-front through Pareto-dominance-based selection and density approxi-
mation.

6.3.2 Search space encoding

A system property value combination considered during the stochastic multi-
dimensional sensitivity analysis is encoded as vector containing one real number
entry for each considered property. In the following we refer to such a vector as
individual.

For instance, in the case of a three-dimensional sensitivity analysis for the system
properties p1, p2 and p3, an individual A is represented as three dimensional vector,
i.e. A = (a1, a2, a3).

6.3.3 Initial population

Algorithm 5 describes the creation of the initial population. In the first part (lines 1
to 3) it uses one-dimensional sensitivity analysis as described in Sect. 5 to calculate
the available slack for each considered system property.

The one-dimensional slack values represent the extreme points of the sought-after
sensitivity front, and thus describe the bounding hypercube containing all valid sys-
tem property assignments. It is used throughout the whole exploration to considerably
limit the generation of invalid individuals.

In the second part of the algorithm (lines 4 to 7) the rest of the initial population
is randomly generated. Thereby, the individuals are uniformly distributed within the
search space bounded by the hypercube calculated in the first part of the algorithm.

6.4 Bounding the search space

In this section we give a description of the technique used by our approach to effi-
ciently bound the region containing the sought-after sensitivity front during explo-

Real-Time Syst (2008) 39: 31–72 55

Algorithm 5 Initial Population

INPUT:
(p1, . . . , pn), the property tuple to be analyzed
V init

P1
, . . . ,V init

Pn
, the initial property values

α > n, the initial population size
OUTPUT: Initial population I

1: for (i = 1; i <= n; i = i + 1) do

2: Vext
pi

= computeSlack(pi)

3: add vector (V init
p1

, . . . ,Vext
pi

, . . . ,V init
pn

) to I
4: end for

5: while (|I| < α) do

6: for (i = 1; i <= n; i = i + 1) do

7: Choose random

V rand
pi

∈ [min(V init
pi

,Vext
pi

),max(V init
pi

,Vext
pi

)]
8: end for

9: add vector (V rand
p1

, . . . ,V rand
pn

) to I
10: end while

ration. This information is used by the variation operators presented in the following
sections to prevent exploration from generating and evaluating individuals not im-
proving approximation quality.

The algorithm used to bound the search space as described above is based on the
notion of Pareto-optimality.

Definition 5 (Pareto-optimal) Given a set V of n-dimensional vectors in R
n, the

vector v = (v1, . . . , vn) ∈ V dominates the vector w = (w1, . . . ,wn) ∈ V iff for all
elements 1 ≤ i ≤ n we have

1. minimization problem: vi ≤ wi and for at least one element l we have vl < wl .
2. maximization problem: vi ≥ wi and for at least one element l we have vl > wl .

A vector is called Pareto-optimal iff it is not dominated by any other vector in V .

Given Definition 5 a simple algorithm can be derived checking whether or
not a given k-dimensional vector v is Pareto-optimal with respect to a collec-
tion of reference vectors V . In the following we refer to such an algorithm as
dominatedBy(v,V ,max), where max ∈ {true, false} indicates if Pareto-optimality is
meant in the sense of a maximization or minimization problem.

In order to achieve an efficient bounding of the search space containing the sensi-
tivity front, our analysis maintains two sets of individuals:

• the set of evaluated Pareto-optimal working individuals Fw called bounding work-
ing Pareto-front. Note that for system properties subject to maximization (mini-
mization) Pareto-optimality is meant in the sense of a maximization (minimiza-
tion) problem.

56 Real-Time Syst (2008) 39: 31–72

Fig. 7 Relevant region for two system properties subject to maximization

• the set of evaluated Pareto-optimal non-working individuals Fnw called bounding
non-working Pareto-front. Note that for system properties subject to maximization
(minimization) Pareto-optimality is meant in the sense of a minimization (maxi-
mization) problem.

In the following we refer to the region lying between the Pareto-sets Fw and Fnw

as relevant region.
It is easy to understand, that the sought-after sensitivity front lies inside the rel-

evant region. Consider for instance the relevant region determined for two system
properties subject to maximization visualized in Fig. 7.

An individual lying below the bounding working Pareto-front cannot be part of
the sensitivity front, since at least one individual of the bounding working Pareto-
front has higher, and thus better, values for all considered system properties. Also, an
individual lying above the bounding non-working Pareto-front cannot be part of the
sensitivity front, since there exist at least one non-working individual on the bound-
ing non-working Pareto-front, which has smaller values for all considered system
properties. Consequently, the individual in question is non-working as well.

Algorithm 6 verifies if a given vector v lies in the relevant region. By configuring
the input variable max the algorithm can be used for system properties subject to
minimization (max = false) and maximization (max = true).

Note that the sets Fw and Fnw are updated during exploration directly after the
evaluation of the offsprings generated during the processing of each generation. More
precisely, for each working (non-working) individual i created during variation it is

Real-Time Syst (2008) 39: 31–72 57

Algorithm 6 isInRelevantRegion
INPUT: k-dimensional vector v, bounding working Pareto-front Fw , bounding non-

working Pareto-front Fnw , type of considered properties max ∈ {true, false}
OUTPUT: true: if v lies in the relevant region, false: otherwise

1: workingOK =!dominatedBy(v,Fw,max)

2: nonWorkingOK =!dominatedBy(v,Fnw, !max)

3: return workingOK && nonWorkingOK

checked whether i is Pareto-optimal with respect to the individuals contained in Fw

(Fnw). If this is the case, i is added to Fw (Fnw) and all individuals dominated by i

are removed.
It is not strictly necessary to remove dominated individuals from the correspond-

ing sets for our approach to work. However, by doing so the maintained sets are
kept small and the overall computational effort for checking whether or not a given
individual is contained in the relevant region is reduced.

The variation operators guiding the exploration process, which are presented in the
following sections, utilize Algorithm 6 to highly increase the generation of offsprings
directly improving the approximation of the sought-after sensitivity front. This leads
to decreased exploration time for the same quality of approximation.

6.4.1 Crossover operator

The crossover operator described in Algorithm 7 implements a heuristic strategy to
converge towards the sensitivity front, i.e. the boundary between working and non-
working systems. Its main function during exploration is to locally refine the ap-
proximation of the sensitivity front. It takes as input two parent individuals A1 and
A2 and generates two offsprings B1 and B2 by using the generalized mean function
(Definition 6), which maps well to the structure of the solution space.

Definition 6 (Generalized Mean) For positive numbers x1, . . . , xn the k-th mean is
defined as follows:

Mk(x1, . . . , xn) = k

√√√√1

n

n∑
i=1

xk
i .

Special cases: k → −∞ : min (x1, . . . , xn); k = −1: harmonic mean; k → 0: geomet-
ric mean; k = 1: arithmetic mean; k = 2: quadratic mean; k → ∞ : max (x1, . . . , xn).

For crossover the generalized mean is applied property wise on the property vec-
tors of the parent individuals (line 7). Figure 8 visualizes the behavior of the gener-
alized mean function for the 2-dimensional case. A and B represent two points we
want to “crossover”. If k = 1 is chosen we obtain the arithmetic mean between A

and B . This corresponds to a linear characteristic of the sensitivity front, which we
observe for instance in the case of load dependent system properties (see Fig. 12). For

58 Real-Time Syst (2008) 39: 31–72

Fig. 8 Coordinate-wise generalized mean between A and B for different k

the case that the crossover operator chooses k < 1 a convex characteristic of the sen-
sitivity front is approximated, whereas k > 1 leads to the approximation of a concave
characteristic.

For a better adaptation of the crossover operator to the solution space structure,
we modify the values calculated according to the generalized mean formula slightly
(lines 8–10). The aim of this modification is to obtain a n-dimensional curve con-
necting the considered crossover points. Such a connecting curve can be achieved,
for instance, by mirroring the calculated general mean values at the bisector defined
by the according parent property values in case that the first parent has a higher prop-
erty value than the second parent. Figure 8 shows the curve we obtain by applying
this modification.

The crossover operator utilizes Algorithm 6 presented in Sect. 6.4 to generate off-
springs lying in the relevant region (line 13). However, in some cases the algorithm
might fail to find such offsprings. Therefore, the maximum number of attempts is
bounded by the constant itermax. One reason for the algorithm not being able to find
offsprings lying in the relevant region might be that one of the selected parents for
crossover dominates the other one. However, such cases rarely occur during explo-
ration, and are therefore not distinguished in the crossover algorithm.

Note that the crossover operator automatically ensures, that all generated off-
springs lie within the bounding hypercube given by V init

pi
and Vext

pi
determined during

the creation of the initial population (Sect. 6.3.3) for all considered system properties
pi .

Real-Time Syst (2008) 39: 31–72 59

Algorithm 7 Crossover operator

INPUT:

parents A1 = (a11, . . . , a1n) and A2 = (a21, . . . , a2n)

kmin and kmax with kmax ≥ kmin
type of considered properties maximize (boolean)
bounding working Pareto-front Fw

bounding non-working Pareto-front Fnw

maximum number of attempts to reach relevant region itermax
OUTPUT: children B1 = (b11, . . . , b1n) and B2 = (b21, . . . , b2n)

1: for (i = 1; i <= 2; i = i + 1) do

2: Choose random k ∈ [kmin, kmax]
3: iter = 0

4: repeat

5: iter = iter + 1

6: for (j = 1; j <= n; j = j + 1) do

7: bij = Mk (a1i , a2i)

8: if (a1i > a2i) then

9: temp = min(a1i , a2i) + |a1i−a2i |
2

10: bij = temp − (bij − temp)

11: end if

12: end for

13: until (isInInterestingRegion(Bi,Fw,Fnw,maximize) || iter > itermax)

14: end for

6.4.2 Mutation operator

The described crossover operator leads to the local convergence of the obtained prop-
erty values towards the sought-after sensitivity front. In other words, it approximates
the sensitivity front “between” individuals considered by the evolutionary algorithm.

Of course, it is possible that the variety of the initial population is insufficient to
cover the whole sensitivity front by only using the crossover operator. Additionally,
the exploration may get stuck in sub-regions of the front, without the possibility to
reach other parts. Therefore, we introduce a mutation operator, enabling the evolu-
tionary search to break out these sub-regions and to cover unexplored parts of the
sensitivity front.

The proposed operator uses an adaptive mutation range which is based on the
current approximation quality of the bounding Pareto-fronts Fw and Fnw .

Definition 7 (Average and maximum front distances Davg and Dmax) Given the
bounding working Pareto-front Fw and the bounding non-working Pareto-front Fnw ,

60 Real-Time Syst (2008) 39: 31–72

the average and maximum front distances Davg and Dmax are defined as follows:

Davg =
∑

v∈Fw minw∈Fnw ‖v − w‖2

|Fw| ,

Dmax = max
v∈Fw

min
w∈Fnw

‖v − w‖2.

Note that during exploration it is sufficient to calculate Davg and Dmax once for
each processed generation before variation. By this means the computational effort
for the adaptive mutation range is kept minimal.

The mutation operator is described in Algorithm 8. It takes as input one parent
individual from which it creates one offspring by randomly increasing or decreasing
each property value by a random value bounded by Davg and Dmax. Note that com-
pared to a static mutation range, this adaptive approach considerably increases the
probability to create offsprings lying in the interesting region, and thus leads to an
increased convergence speed of the bounding Pareto-fronts Fw and Fnw .

Additionally, the mutation operator takes as input the minimum and the maximum
allowed values for each considered system property which are respected during muta-
tion. Note that these values correspond to V init

pi
and Vext

pi
calculated during the creation

of the initial population (Sect. 6.3.3).
Like the crossover operator, the mutation operator utilizes Algorithm 6 described

in Sect. 6.4 to generate offsprings lying in the relevant region (line 13).

7 Example

In this section we present a set of experiments performed on the automotive real-
time system example presented in Fig. 9. Section 7.2 presents the results of one-
dimensional sensitivity analysis of different system properties. Section 7.3 shows a
comparison between the multi-dimensional sensitivity analysis results obtained using
the exact and the stochastic algorithms.

The system presented in Fig. 9 contains two independent subsystems integrated
via a control-area-network (CAN). The signal processor (DSP) on ECU4 periodically
executes a filter task (T3) that sends data at completion over channel C3 on the bus
to the IP1 component on ECU5. The sensor Sens on ECU1 sporadically communi-
cates via the same network with the control task (T1) mapped on CPU. On CPU is
additionally executed a periodic task (T2) that sends data over channel C2 to the hard-
ware component HW located on ECU3. On both, CPU and CAN is assumed a static
priority preemptive arbitration policy. For each functional path is constrained a max-
imum end-to-end delay that the system has to satisfy in order to assure the proper
functionality.

Obviously, the interference of the logical communication channels C1,C2,C3 on
CAN and of the tasks T1,T2 on CPU leads to complex timing dependencies between
the elements of different communication paths. These dependencies must be captured
by the system-level analysis model.

Real-Time Syst (2008) 39: 31–72 61

Algorithm 8 Mutation operator

INPUT:

parent A = (a1, . . . , an)

minimum property values amin
1 , . . . , amin

n

maximum property values amax
1 , . . . , amax

n

average and maximum front distances Davg and Dmax
type of considered properties maximize (boolean)
bounding working Pareto-front Fw

bounding non-working Pareto-front Fnw

maximum number of attempts to reach relevant region itermax
OUTPUT: child B = (b1, . . . , bn)

1: iter = 0

2: repeat

3: iter = iter + 1

4: for (i = 1; i <= n; i = i + 1) do

5: Choose random x ∈ [Davg
2 ,Dmax]

6: Choose random boolean bool

7: if (bool) then

8: bi = min(ai + x, amax
i)

9: else

10: bi = max(ai − x, amin
i)

11: end if

12: end for

13: until (isInInterestingRegion(B,Fw,Fnw,maximize) || iter > itermax)

Fig. 9 The initial system
configuration

62 Real-Time Syst (2008) 39: 31–72

Table 1 Execution and communication times

Task Execution time Channel Communication time

T1 250 ms C1 17.50 ms

T2 10 ms C2 6.50 ms

T3 [2;4] ms C3 2.15 ms

7.1 Set-up

The actuators There are three actuators: the sensor sporadically sends data blocks
of 8 kB size to T1, with a maximum sending frequency of 1.66 Hz, which corresponds
to a sporadic event model with a minimum sporadic period of 1/1.66 Hz = 600 ms.
Process T2 is periodically activated by the RTOS (real-time operating system) on
the CPU with a period of 1/20 Hz = 50 ms and sends 3 kB of data at completion.
The signal processing application T3 on DSP has a sampling frequency of 10 Hz,
corresponding to a sampling period of 10 ms. T3 sends 1 kB of data at the end of
each execution. The three actuators are assigned to three generic event sources called
S1,S2,S3. The one-to-one correspondence is shown in Table 2.

The network Instead of sending the complete data block, the data packets are frag-
mented to avoid too long blocking times. Each 8 kB data block from Sens is split
into 32 packets of 262 byte each, 256 bytes plus 6 bytes protocol overhead–address,
length, and CRC. The 3 kB blocks from T2 are split into 24 packets of (128+6) = 134
bytes. Channel C2 has a higher priority than channel C1. The highest-priority channel
C3 does not split the DSP data packets, but only adds the 6 byte protocol information.
The initial network speed is 460 kB/s.

The overall average network load LCAN is:

LCAN = LSens−CPU + LCPU−HW + LDSP−IP1

= 13.3 kB/s + 60 kB/s + 100 kB/s

= 173.3 kB/s.

Execution and communication times The initial execution and communication
times of the tasks on CPU and of the channels on BUS are assumed constant. The DSP
application T3 has a variable execution time depending on the data to be processed.
The execution and communication times are listed in Table 1.

Resource scheduling The CPU and BUS are both scheduled according to a static
priority preemptive policy. Channels C3 and C1 have on BUS the highest and the
lowest priority, respectively. On CPU, task T1 has a priority higher than T2. Due to
the non-preemptive packet communication on the network and the fragmentation of
the data blocks, blocking times are calculated for the higher priority channels.

Real-time constraints The real-time behavior of the application is given by a set of
hard real-time constraints defined for the three functional paths of the system pre-
sented in Fig. 9. The constraints are listed in Table 2.

Real-Time Syst (2008) 39: 31–72 63

Table 2 Real-time constraints

Source Functional path Max delay (ms)

S1 Sens − C1 − T1 400

S2 T2 − C2 − HW 300

S3 T3 − C3 − IP1 10

Fig. 10 One-dimensional sensitivity analysis

7.2 One-dimensional sensitivity analysis

Figure 10 shows the initial values of the task execution times, the initial scaling fac-
tors of the resource speeds and the initial activation periods at system input, and their
corresponding feasibility slacks. The values in Figs. 10(a) and (c) are displayed in
logarithmic range.

7.3 Multi-dimensional sensitivity analysis

In Sects. 7.3.1 and 7.3.2 we show the results obtained using the exact and the sto-
chastic methods, respectively. In Sect. 7.3.3 we compare the two approaches and we
present a set of numbers showing the algorithm complexity.

7.3.1 Search-based analysis

We grouped the task pairs in three groups depending on the dependencies between
them. The first group consists of tasks with functional dependencies, i.e., the tasks

64 Real-Time Syst (2008) 39: 31–72

(a) WCETT3 − WCETC3

(b) WCETT2 − WCETC2

Fig. 11 Tasks with functional dependencies

belonging to the same dependency path. The obtained results are shown in Fig. 11.
The increase of the worst-case execution time of C3 leads to a higher jitter at the
input of C3 that may generate transient overload on the communication resource.
Therefore, the communication time of C3 must be adapted accordingly. That is why
the slack of C3 decreases linearly with the increase of WCETT3.

The second group contains tasks with load dependencies, i.e. tasks mapped on
the same resource. Figure 12 shows the results obtained for different pairs of chan-
nels mapped on CAN. Obviously, when increasing the communication volume of one
channel, the load on the network increases too. Thus, the available slack of all other
channels is reduced.

The last group is formed of tasks with no direct dependency, i.e. tasks that are
mapped on different resources and without any functional dependency between them.

Real-Time Syst (2008) 39: 31–72 65

(a) WCETC1 − WCETC2

(b) WCETC3 − WCETC1

Fig. 12 Tasks with load dependencies

Figure 13 shows the two-dimensional sensitivity results obtained for the worst-case
execution times of different pairs of independent tasks. As it can be observed in
Fig. 13(b), since tasks T3 and T1 are totally independent, variations of the worst-
case execution time of T3 does not affect the available slack of T1. Quite similar are
the results obtained for the task-pair T2 − C3. However, since both tasks T2 and C3

have a functional and a load dependency with C2, they are not totally independent.
Therefore, variations of WCETT2 lead to slight variations of the available slack of C3.

The second investigated system property is the speed of the processing and com-
munication elements. Figure 14 shows the two-dimensional sensitivity analysis of the
resource speed factors. Since the DSP and the CPU does not share common applica-
tion paths, the slack of the DSP’s speed is independent of the speed of CPU, as shown

66 Real-Time Syst (2008) 39: 31–72

(a) WCETT2 − WCETC3

WCETT3 − WCETT1

Fig. 13 Tasks with no direct dependency

in Fig. 14(a). Largely, are also the speeds of DSP and CAN (Fig. 14(b)). To keep the
feasible configurations below the sensitivity front, the axes have decreasing ranges.

The last investigated property is the task activation period. Figure 15(a) shows the
dependency between the activation periods of the application paths Sens − T1 and
T3 − IP1. We observe that for values of the former above 430, the feasibility slack of
the latter is constant. A further decrease of the period of Sens − T1 above 430 will
increase the load on CAN over the admitted limit. Therefore, the feasibility slack of
the period of T3 − IP1 is reduced accordingly. A more linear dependency is observed
in Fig. 15(b) between the periods of the application paths T2 −HW and T3 − IP1. This
is due to tighter latency constraints of these paths. Again, the range of the axes are
inverted to display the feasible region below the sensitivity front.

Real-Time Syst (2008) 39: 31–72 67

(a) sfDSP − sfCPU

(b) sfDSP − sfCAN

Fig. 14 Resource speed factors

7.3.2 Stochastic analysis

Figures 16(a) and (b) show the three-dimensional sensitivity analysis results obtained
using the stochastic approach presented in Sect. 6.3. Note that for both analyses our
exploration framework generated 100 generations with each 200 individuals, taking
approximately 5 minutes on a 2.00 GHz Athlon64 standard PC.

In both figures we observe that the two-dimensional projection of the sensitivity
front on the T 2 − C3 plan accurately approximates the curve in Fig. 13(a) obtained
using the exact approach.

68 Real-Time Syst (2008) 39: 31–72

(a) PS1 −PS3

(b) PS2 −PS3

Fig. 15 Activation periods

7.3.3 Accuracy and complexity

Figure 17 shows a comparison of the results obtained using the proposed approaches.
In the legend, the numbers assigned to the stochastic algorithm are the number of
generations and the number of considered individuals per generation. For the search-
based algorithm we used a search depth equal to 5. Table 3 shows the run-times (in
ms) of the search-based and stochastic algorithms. The search-based algorithm was
applied on two set of properties, one with monotonic relation (w/s_step) and the
other one with non-monotonic relation (w/os_step). The experiments were carried
out on a 2.00 GHz Athlon64 standard PC. The complexity of the search-based algo-
rithm is defined by the search-depth, while the complexity of the stochastic algorithm

Real-Time Syst (2008) 39: 31–72 69

(a) WCETC3 − WCETT2 − WCETC1

(b) WCETC3 − WCETT2 − WCETT1

Fig. 16 Three-dimensional WCET sensitivity

70 Real-Time Syst (2008) 39: 31–72

Fig. 17 Comparison of the two approaches

Table 3 The run-times of the algorithms (ms)

Search-based Stochastic

Depth w/ s_step w/os_step (#gen;#ind) WCET

3 1469 1526 (10;50) 16806

5 4334 4580 (30;50) 50327

7 15906 17924 (50;50) 85141

is determined by the number of generations and the number of individuals per gener-
ation.

8 Conclusion

Design robustness, measured as sensitivity to design parameter variations, is a key
concern in embedded system design. In this paper we presented a sensitivity analysis
framework for heterogeneous systems with complex timing dependencies and re-
quirements. The sensitivity analysis uses as basis the SymTA/S compositional analy-
sis methodology, which offers high scalability and adaptability. We presented a binary
search algorithm used for the one-dimensional sensitivity analysis of different system
parameters. Moreover, we described an exact and a stochastic approach for multi-
dimensional sensitivity analysis. The exact approach performs for two-dimensional
spaces better than the stochastic approach, but is limited to monotonous functions and
its complexity grows exponentially with the number of dimensions of the investigated
search space.

Real-Time Syst (2008) 39: 31–72 71

References

Audsley NC, Burns A, Richardson MF, Tindell K, Wellings AJ (1993) Applying new scheduling theory to
static priority preemptive scheduling. J Real-Time Syst 8(5):284–292

Bini E, Natale MD Buttazzo G (2006) Sensitivity analysis for fixed-priority real-time systems. In: 18th
Euromicro conference on real-time systems (ECRTS), Dresden, Germany, pp 13–22

Bleuler S, Laumanns M, Thiele L, Zitzler E (2003) PISA—a platform and programming language inde-
pendent interface for search algorithms

Chakraborty S, Knzli S, Thiele L (2003) A general framework for analysing system properties in platform-
based embedded system designs. In: Proceedings of design, automation and test in Europe (DATE),
Munich, Germany, March 2003

Cottet F, Babau JP (1996) An iterative method of task temporal parameter adjustment in hard real-time sys-
tems. In: Proceedings of the 2nd IEEE international conference on engineering of complex computer
systems (ICECCS), Montreal, Canada, October 1996

Hamann A, Jersak M, Richter K, Ernst R (2006) A framework for modular analysis and exploration of
heterogeneous embedded systems. Real-Time Syst J 33(1-3):101–137

Harbour MG, Garcia JG, Gutierrez JP, Moyano JD (2001) MAST: modeling and analysis suite for real
time applications. In: Euromicro conference on real-time systems (ECRTS)

Henia R, Racu R, Ernst R (2006) Improved output jitter calculation for compositional performance analysis
of distributed systems. In: 15th international workshop on parallel and distributed real-time systems
(WPDRTS), Long Beach, CA

Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System level performance analysis—the
SymTA/S approach. IEE Proc Comput Digit Tech 152(2):148–166

Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395
Katcher DI, Arakawa H, Strosnider JK (1993) Engineering and analysis of fixed priority schedulers. Softw

Eng 19(9):920–934
Lehoczky J (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: Proceedings

of the real-time systems symposium, pp 201–209
Lehoczky J, Sha L, Ding Y (1989) The rate monotonic scheduling algorithm: exact characterization and

average case behavior. In: Proceedings of the real-time systems symposium (RTSS). IEEE Computer
Society Press, Los Alamitos, pp 166–171

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.
J ACM 20(1):46–61

Live Devices, ETAS Group, RTA-OSEK in detail. http://en.etasgroup.com/products/rta
Palencia JC, Harbour MG (1998) Schedulability analysis for tasks with static and dynamic offsets. In:

Proceedings of 19th IEEE real-time systems symposium (RTSS), Madrid, Spain
Perathoner S (2006) Evaluation and comparison of performance analysis methods for distributed embed-

ded systems. Master’s thesis, Swiss Federal Institute of Technology, Zürich
Project S (2003) Institute of Computer and Communication Network Engineering, Technical University of

Braunschweig, Germany. http://www.symta.org
Punnekkat S, Davis R, Burns A (1997) Sensitivity analysis of real-time task sets. In: ASIAN, pp 72–82
Racu R, Jersak M, Ernst R (2005) Applying sensitivity analysis in real-time distributed systems. In: Pro-

ceedings of the 11th IEEE real-time and embedded technology and applications symposium (RTAS),
San Francisco, USA

Racu R, Hamann A, Ernst R (2006) A formal approach to multi-dimensional sensitivity analysis of em-
bedded real-time systems. In: 18th Euromicro conference on real-time systems (ECRTS). Germany,
Dresden, pp 3–12

Redell O, Sanfridson M (2002) Exact best-case response time analysis of fixed priority scheduled tasks.
In: Proceedings of the Euromicro conference on real-time systems (ECRTS), pp 165–172

Redell O, Trngren M (2002) Calculating exact worst case response times for static priority scheduled tasks
with offsets and jitter. In: Proceedings of the eighth IEEE real-time and embedded technology and
applications symposium (RTAS), Washington, DC, USA, pp 164–172

Regehr J (2002) Scheduling tasks with mixed preemption relations for robustness to timing faults. In:
Proceedings of the 23rd IEEE real-time systems symposium (RTSS), Austin, TX, December 2002

Richter K (2004) Compositional performance analysis. PhD thesis, Technical University of Braunschweig
Richter K, Racu R, Ernst R (2003) Scheduling analysis integration for heterogeneous multiprocessor SoC.

In: Proceedings 24th international real-time systems symposium (RTSS’03), Cancun, Mexico, De-
cember 2003

72 Real-Time Syst (2008) 39: 31–72

Seto D, Lehoczky JP, Sha L (1998) Task period selection and schedulability in real-time systems. In:
Proceedings of the IEEE real-time systems symposium (RTSS), Madrid, Spain, pp 188–198

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
Proceedings of the international symposium on circuits and systems (ISCAS), Geneva, Switzerland

Tindell K, Clark J (1994) Holistic schedulability analysis for distributed real-time systems. Microprocess
Microprogram Euromicro J (Special issue on parallel embedded real-time systems) 40:117–134

Vestal S (1994) Fixed-priority sensitivity analysis for linear compute time models. IEEE Trans Softw Eng
20(4)

Wandeler E, Thiele L (2006) Real-time calculus (RTC) toolbox
Yerraballi R, Mukkamala R, Maly K, Wahab HA (1993) Issues in schedulability analysis of real-time

systems. In: Proceedings of 7th Euromicro workshop on real time systems (EUROMICRO-RTS),
June 1993, pp 87–92

Zitzler E, Laumanns M, Thiele L (2002) SPEA2: Improving the strength pareto evolutionary algorithm for
multiobjective optimization. In: Proceedings of evolutionary methods for design, optimisation, and
control, Barcelona, Spain, pp 95–100

Razvan Racu Razvan Racu received a Diploma in Computer Engineering from
the University of Craiova, Romania, in 2002. He is working since 2002 as research
assistant in the Embedded System Design Automation Group of Professor Ernst,
at the Institute of Computer and Communication Network Engineering, Technical
University of Braunschweig, Germany. His research activities include real-time
scheduling, formal timing analysis, perfomance characterization and sensitivity
analysis of embedded systems.

Arne Hamann Arne Hamann received his Maîtrise degree in Computer Science
from the University of Bordeaux 1, France, in 2001, and his Diploma degree in
Computer Science from the Technical University of Braunschweig, Germany, in
2003. He is currently working as research scientist in the Embedded System De-
sign Automation Group of Professor Ernst. His research interests include formal
timing analysis and optimisation of heterogeneous distributed real-time systems.

Rolf Ernst Rolf Ernst received a Diploma in Computer Science and a Ph.D. in
Electrical Engineering from the University of Erlangen-Nuremberg, Germany, in
1981 and 1987. From 1988 to 1989, he was a Member of Technical Staff in the
Computer Aided Design & Test Laboratory at Bell Laboratories, Allentown, PA.
Since 1990, he has been a professor of Electrical Engineering at the Technical Uni-
versity of Braunschweig, Germany, where he heads the Institute of Computer and
Communication Network Engineering. His current research interests include em-
bedded architectures, hardware-/software co-design, real-time systems, and em-
bedded systems engineering. Rolf Ernst is an IEEE Fellow and served as an ACM-
SIGDA Distinguished Lecturer.

	Sensitivity analysis of complex embedded real-time systems
	Abstract
	Introduction
	Related work
	The SymTA/S approach
	Application model
	Standard event models
	Analysis composition
	Output event model calculation
	Analysis composition using standard event models

	Sensitivity analysis in SymTA/S
	Sensitivity analysis loop
	Parameters and objectives
	Binary search technique

	One-dimensional sensitivity analysis
	Task execution time
	Proof of correctness
	Algorithm implementation

	Resource speed factor
	Proof of correctness
	Algorithm implementation

	Activation period
	Proof of correctness
	Algorithm implementation

	Multi-dimensional sensitivity analysis
	Definitions and notations
	Search-based analysis
	Depth-search
	Smart step

	Stochastic analysis
	Analysis idea
	Search space encoding
	Initial population

	Bounding the search space
	Crossover operator
	Mutation operator

	Example
	Set-up
	The actuators
	The network
	Execution and communication times
	Resource scheduling
	Real-time constraints

	One-dimensional sensitivity analysis
	Multi-dimensional sensitivity analysis
	Search-based analysis
	Stochastic analysis
	Accuracy and complexity

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

