
Real-Time Syst (2006) 33: 101–137

DOI 10.1007/s11241-006-6884-x

A framework for modular analysis and exploration
of heterogeneous embedded systems

Arne Hamann · Marek Jersak · Kai Richter ·
Rolf Ernst

C© Springer Science + Business Media, LLC 2006

Abstract The increasing complexity of heterogeneous systems-on-chip, SoC, and dis-

tributed embedded systems makes system optimization and exploration a challenging task.

Ideally, a designer would try all possible system configurations and choose the best one

regarding specific system requirements. Unfortunately, such an approach is not possible

because of the tremendous number of design parameters with sophisticated effects on sys-

tem properties. Consequently, good search techniques are needed to find design alternatives

that best meet constraints and cost criteria. In this paper, we present a compositional de-

sign space exploration framework for system optimization and exploration using SymTA/S,

a software tool for formal performance analysis. In contrast to many previous approaches

pursuing closed automated exploration strategies over large sets of system parameters, our

approach allows the designer to effectively control the exploration process to quickly find

good design alternatives. An important aspect and key novelty of our approach is system

optimization with traffic shaping.

Keywords Real-time . Embedded . Distributed systems . System-on-chip . Performance

verification . Scheduling analysis . Compositional . Optimization . Design space

exploration . Traffic shaping . Evolutionary algorithms

1. Introduction

A major challenge of heterogeneous system optimization is the lack of coherent models and

systematic search techniques. For this reason it is important to evaluate a large number of

architectures and implementation alternatives. Ideally, the designer would try all possible

alternatives and choose the best regarding specific system requirements. Unfortunately, this

is not possible because the high number of design parameters in complex systems leads to a

very large design-space, prohibiting an exhaustive search. Consequently, good exploration

techniques are needed to find optimal, or at least good, design alternatives.

A. Hamann (�) · M. Jersak · K. Richter · R. Ernst
Institute of Computer and Communication Network Engineering, Technical University of
Braunschweig, D-38106 Braunschweig, Germany
{hamann, jersak, richter, ernst}@ida.ing.tu-bs.de

Springer

102 Real-Time Syst (2006) 33: 101–137

Manual design space exploration heavily reduces design productivity. It is highly desir-

able to automate at least part of the process. Of course, even automatic exploration cannot

search the whole design space in reasonable time. Therefore, it is important to find an appro-

priate sub search space containing good solutions. Restriction of the search space to crucial

system parameters is necessary to allow an efficient search for good design alternatives.

In this paper we present a framework for design space exploration and system optimiza-

tion using SymTA/S (Hamann et al., http://www.symta.org/), a software tool for formal per-

formance analysis. In contrast to previous approaches, our framework does not perform

a closed global exploration over a large set of design parameters. Instead it provides the

designer with the possibility to perform several successive exploration steps, modifying

(i.e. extending or restricting) the search space in every step as a reaction to the obtained

results. This user-controlled exploration approach allows the designer to guide the explo-

ration process and provides him insight to system-level performance dependencies. Based

on this knowledge she can identify step-by-step interesting design sub-spaces, worthy to be

searched in-depth or even completely. In order to enable such an user-controlled exploration

approach, our framework utilizes a compositional encoding of the search space and allows

the dynamic modification of the search space during exploration without losing already ob-

tained results.

An a priori global exploration does not permit such a flexibility and neglects the structure

of the design space, giving the designer no possibility to modify and select the exploration

strategy. In the worst-case, when the composition of the design space is unfavorable, this

can lead to non-satisfying results with no possibility for the designer to intervene. In many

approaches the only possibility for the designer in such a case consists in restarting the

exploration, hoping for better results.

An important aspect and one key novelty of our design space exploration approach is the

optimization of component interactions and dependencies with traffic shaping. Traffic shap-

ing weakens functional and non-functional performance dependencies between components

in the system and allows finding working system configurations, which are not possible

without traffic modulation. Consequently, traffic shaping can broaden the solution space

considerably leading to increased exploration efficiency.

The remainder of this paper is structured as follows. In Section 2 we first give an in-

troduction into the formal core of SymTA/S, including the application model, the utilized

standard event models, the compositional analysis methodology and the concept of event

stream adaptation (i.e. traffic shaping). In Section 3 we then give a survey of related work

in the domain of exploration and optimization of heterogeneous embedded systems. After-

wards, in Section 4, we explain the main concepts of our design space exploration approach.

These are the compositional encoding of the search space, the component interaction opti-

mization with traffic shaping, and the user-controlled exploration strategy. In Section 5 we

then present the concrete realization of our exploration framework based on multi-objective

evolutionary exploration techniques, including encoding and exploration strategies for dif-

ferent parts of the search space, optimization objectives and the design space exploration

loop. Afterwards, in Section 6, we describe a synthetical SoC example and perform several

exploration steps in order to optimize its performance (Section 7). Finally, in Section 8, we

perform experiments to evaluate the efficiency of our exploration approach.

2. The SymTA/S approach

SymTA/S (Hamann et al., http://www.symta.org/) is a formal system-level performance and

timing analysis tool for heterogeneous SoCs and distributed systems. The application model

Springer

Real-Time Syst (2006) 33: 101–137 103

of SymTA/S is described in Section 2.1. The core of SymTA/S is a technique to couple

local scheduling analysis algorithms using event streams (Richter and Ernst, 2002; Richter

et al., 2002). Event streams describe the possible I/O timing of tasks. Input and output event

streams are described by standard event models which are introduced in detail in Section 2.2.

The analysis composition using event streams is described in Section 2.3. A second key

property of the SymTA/S compositional approach is the ability to adapt the possible timing

of events in an event stream. The event stream adaptation concept is described in Section 2.4.

2.1. Application model

A task is activated due to an activating event. Activating events can be generated in a multi-

tude of ways, including expiration of a timer, external or internal interrupt, and task chaining.

Task communication in SymTA/S is modeled either using FIFOs or registers.

In the case of FIFO communication, each task is assumed to have one input FIFO. A task

reads its activating data from its input FIFO and writes data into the input FIFO of a depen-

dent task. A task may read its input data at any time during one execution. The data is there-

fore assumed to be available at the input during the whole execution of the task. SymTA/S

assumes that input data is removed from the input FIFO at the end of one execution.

Register communication in SymTA/S requires that the sender task writes the data into

register before the receiver task initiates the read routine. Therefore, this type of communi-

cation is only suited for time-triggered protocols. Note that in the case of register communi-

cation causal dependencies between communicating tasks cannot be exploited.

A task needs to be mapped on a computation or communication resource to execute.

When multiple tasks share the same resource, then two or more tasks may request the re-

source at the same time. In order to arbitrate request conflicts, a resource is associated with

a scheduler which selects a task to which it grants the resource out of the set of active tasks

according to some scheduling policy. Other active tasks have to wait. Scheduling analysis
calculates worst-case (sometimes also best-case) task response times, i.e. the time between

task activation and task completion, for all tasks sharing a resource under the control of

a scheduler. Scheduling analysis guarantees that all observable response times will fall into

the calculated [best-case, worst-case] interval. Scheduling analysis is therefore conservative.

A task is assumed to write its output data at the end of one execution. This assumption is

standard in scheduling analysis.

Figure 1 shows an example of a system modeled with SymTA/S. The system consists

of 2 resources each with 2 tasks mapped on it. R1 and R2 are both assumed to be priority

scheduled. Src1 and Src2 are the sources of the external activating events at the system

inputs. The possible timing of activating events is captured by so-called event models, which

are introduced in Section 2.2.

Fig. 1 System modeled with
SymTA/S

Springer

104 Real-Time Syst (2006) 33: 101–137

Fig. 2 Example of an event
stream that satisfies the event
model (P = 4, J = 1)

2.2. SymTA/S standard event models

Standard event models represent the possible timing of activating events of tasks in

SymTA/S. They are described using several parameters. For example, a strictly periodic
event model has one parameter P and states that each event exactly arrives periodically

every P time units. This simple model can be extended with the notion of jitter, leading

to a periodic with jitter event model. Such an event model is described by two parameters

(P,J). It generally occurs periodically, but it can jitter around its exact position within a jit-

ter interval J . Consider an example where (P, J) = (4, 1). This event model is visualized

in Figure 2. Each gray box indicates a jitter interval of length J = 1. The jitter intervals re-

peat with the event model period P = 4. The figure additionally shows a sequence of events

which satisfies the event model, since exactly one event falls within each jitter interval box,

and no events occur outside the boxes.

Periodic with jitter event models are well suited to describe generally periodic event

streams, which often occur in control, communication and multimedia systems (Richter

et al., 2003a). If the jitter is zero, then the event model is strictly periodic. If the jitter is

larger than the period, then two or more events can occur at the same time, leading to bursts.

To describe a bursty event model, the periodic with jitter event model can be extended with

a d− parameter that captures the minimum distance between events within a burst.

Additionally, sporadic events are also common (Richter et al., 2003a). Sporadic event

streams are modeled with the same set of parameters as periodic event streams. Note that

jitter and d− parameters are also meaningful in sporadic event models, since they allow to

accurately capture sporadic transient load peaks.

A more detailed discussion about the event models used in SymTA/S can be found

in Richter et al. (2003b).

2.3. Analysis composition

In the SymTA/S compositional performance analysis methodology (Richter et al., 2003a,b),

local scheduling analysis and event model propagation are alternated, during system-level

analysis. This requires the modeling of possible timing of output events for propagation to

the next scheduling component. In the following, first the output event model calculation is

explained. Then the compositional analysis approach is presented.

2.3.1. Output event model calculation

The SymTA/S standard event models allow to specify simple rules to obtain output event

models that can be described with the same set of parameters as the activating event mod-

els. The output event model period obviously equals the activation period. The difference

between maximum and minimum response times (the response time jitter) is added to the

Springer

Real-Time Syst (2006) 33: 101–137 105

activating event model jitter, yielding the output event model jitter (Eq. (1)).

Jout = Jact + (tresp,max − tresp,min) (1)

Note that if the calculated output event model has a larger jitter than period, this informa-

tion alone would indicate that an early output event could occur before a late previous out-

put event, which obviously cannot be correct. In reality, output events cannot follow closer

than the minimum response time of the producer task. This is indicated by the value of the

minimum distance parameter d−.

2.3.2. Analysis composition using standard event models

In the following, the compositional analysis approach is explained using the system exam-

ple in Fig. 1. Initially, only event models at the external system inputs are known. Since

an activating event model is available for each task on R1, a local scheduling analysis

of this resource can be performed and output event models are calculated for T 1 and T 3

(Section 2.3.1). In the second phase, all output event models are propagated. The output

event models become the activating event models for T 2 and T 4. Now, a local scheduling

analysis of R2 can be performed since all activating event models are known.

However, it is sometimes impossible to perform system level scheduling analysis as ex-

plained above. This is shown in the system example in Fig. 3.

Figure 3 shows a system consisting of 2 resources, R1 and R2, each with 2 tasks mapped

on it. Initially, only the activating event models of T 1 and T 3 are known. At this point the

system cannot be analyzed, because on every resource an activating event model for one

task is missing. I.e. response times on R1 need to be calculated to be able to analyze R2. On

the other hand, R1 cannot be analyzed before analyzing R2. This problem is called cyclic
scheduling dependency.

One solution to this problem is to initially propagate all external event models along all

system paths until an initial activating event model is available for each task (Richter, 2004).

This approach is safe since on one hand scheduling cannot change an event model period.

On the other hand, scheduling can only increase an event model jitter (Tindell and Clark,

1994). Since a smaller jitter interval is contained in a larger jitter interval, the minimum

initial jitter assumption is safe.

After propagating external event models, global system analysis can be performed. A

global analysis step consists of two phases (Richter et al., 2003b). In the first phase lo-

cal scheduling analysis is performed for each resource and output event models are calcu-

lated (Section 2.3.1). In the second phase, all output event models are propagated. It is then

checked if the first phase has to be repeated because some activating event models are no

longer up-to-date, meaning that a newly propagated output event model is different from

the output event models that was propagated in the previous global analysis step. Analysis

Fig. 3 Example of a system with
cyclic scheduling dependency

Springer

106 Real-Time Syst (2006) 33: 101–137

completes if either all event models are up-to-date after the propagation phase, or if an abort

condition, e. g. the violation of a timing constraint has been reached.

2.4. Event stream adaptation

A key property of the SymTA/S compositional performance analysis approach is the ability

to adapt the possible timing of events in an event stream (expressed through the adaptation

of an event model (Richter et al., 2003b)). There are several reasons to do this. It may be that

a scheduler or a scheduling analysis for a particular component requires certain event stream

properties. For example, rate-monotonic scheduling and analysis (Liu and Layland, 1973)

require strictly periodic task activation. Alternatively, an integrated IP component may re-

quire certain event stream properties. External system outputs may also impose event model

constraints, e. g. a minimum distance d− between output events or a maximum acceptable

jitter. Such a constraint may be the result of a performance contract with an external subsys-

tem (Tindell et al., 2003).

Event stream adaptation can also be done for the sole purpose of traffic shaping (Richter

et al., 2003b). Traffic shaping can be used e. g. to reduce transient load peaks, in order to

obtain more regular system behavior. Practically, event model adaptation is distinguished

from event model shaping in SymTA/S (Hamann et al., http://www.symta.org/). Adapta-

tion is required to satisfy an event model constraint, while shaping is voluntary to obtain

more regular system behavior. Two types of event adaptation functions (EAF) are cur-

rently used in SymTA/S: periodic EAFs, producing periodic event streams from periodic
with jitter input event streams, and d−-EAFs enforcing a minimum distance between output

events.

In the following we will briefly explain the concept of traffic shaping using d−-EAFs.

Compared to full synchronization, d−-EAFs provide promising peak load reduction and

load balancing capabilities with smaller buffers and delays. Larger d− values result in more

balanced system load and better schedulability, while they increase delays and buffering

requirements along task chains (or paths).

2.4.1. Traffic shaping with d−-EAFs

Scheduling and data dependent behavior induce jitter to the input-output timing of processes

and communication (Richter et al., 2003b). Such jitters accumulate in the system and can

lead to event bursts. Both effects increase timing uncertainty and worst-case peak load.

Such peak loads caused by bursty streams can be controlled by modulating the maximum

number of events per time, called traffic shaping. Traffic shaping reduces the impact of an

event stream on other streams at the cost of a potentially increased latency of the controlled

stream. The shaping effects are rather complex and require special modeling considerations

that will be explained in the following.

A bursty event stream is defined by three parameters, an average period T , a maximum

allowed jitter J , and a minimum event distance d− during bursts. As a popular measure of

system load in scheduling analysis, the η+(�t) function determines the maximum number

of events η+ for a given interval of time �t . Small time intervals are dominated by bursty

behavior, where the system load is only limited by the minimum event distance d−. Larger

observation intervals reveal the generally periodic nature of the event stream. The arrival
curve (Thiele et al., 2000) in Fig. 4 illustrates the two different regions. Both regions, i.e.

the periodic region and the region dominated by the burst, can be separately described with

Springer

Real-Time Syst (2006) 33: 101–137 107

Fig. 4 Event arrival curve of
incoming event stream

equations. The η+ function of the stream, illustrated by the black curve in Fig. 4, is the

minimum of them:

η+
in

(�t) = min

(⌈
�t

d−

⌉
,

⌈
�t + J

T

⌉)
. (2)

Using time-out buffers, designers can deliberately enforce an additional bound on the min-

imum event distances. Such time-out buffers represent traffic shapers that are inserted in

the design between two application components. The time-out mechanism buffers incoming

events such that no two successive events are released earlier in time than d−
timeout.

According to the extended real-time calculus approach of Thiele et al. (2001), the shaper

defines a sporadic upper-bound service curve (Thiele et al., 2000) with η+
timeout(�t) =

� �t
d−

timeout

�. The shapers output arrival curve can be calculated from both, input arrival curve

η+
in(�t) and shaper service curve η+

timeout(�t). In case of traffic shapers the usually complex

real-time calculus equations can be easily reduced to

η+
shaped(�t) = min

(
η+

timeout(�t), η+
in(�t)

)
= min

(⌈
�t

d−
timeout

⌉
,

⌈
�t

d−
in

⌉
,

⌈
�t + J

T

⌉)
.

The larger value of d−
in and d−

timeout will dominate the other, and we can further reduce the

η+
shaped(�t) function to the η+ function of an event stream with burst as introduced by Eq. (2).

In case of d−
timeout ≤ d−

in , the shaper does not actually represent an additional constraint. In

other words, the shaper is “inactive”, no events are buffered and the output arrival curve

equals the input arrival curve.

Obviously more interesting is the case of d−
timeout > d−

in . Input events are buffered and

the shaper “flattens” the burst slope of the output arrival curve according to d−
timeout:

η+
shaped(�t) = min(� �t

d−
timeout

�, ��t+J
T �). Figure 5 illustrates this behavior. The arrival curve

with a minimum distance of d−
in is above the service curve with a minimum event dis-

tance of d−
timeout. The block arrows indicate buffering. Thiele et. al. already recognized

that the vertical distance between the arrival and the service curve captures the so called

backlog (Thiele et al., 2000), i. e. the number of buffered events at a given point in time:

backlog(�t) = η+
in(�t) − η+

timeout(�t).

Springer

108 Real-Time Syst (2006) 33: 101–137

Fig. 5 Event arrival curve of
output event stream

The horizontal distance between the curves, i. e. the length of the arrows in the figure,

represents the delay of the corresponding event. The calculations are slightly more so-

phisticated than the backlog, although the specialties of traffic shaping reduce the com-

plexity of the general real-time calculus theory (Thiele et al., 2000). We recently in-

troduced another function δ−(n) that determines the minimum distance between n suc-

cessive events (Richter, 2004). Roughly speaking, δ−(n) is the inverse of η+(�t) since

it returns the earliest time �t at which the nth event (n ≥ 2) can arrive after the first

one. For the bursty arrival curve and the sporadic service curve, these are given by

δ−
in (n) = max((n − 1)d−

in , (n − 1)T − J) and δ−
timeout(n) = (n − 1)d−

timeout. Hence, the delay

is given by: delay(n) = δ−
timeout(n) − δ−

in (n).

The sought-after maxima of backlogmax = max�t>0 backlog(�t) and delaymax =
maxn≥2 delay(n) can be calculated through linearization of the discrete η+ and δ− functions.

Details can be found in Richter (2004). For this paper, the following qualitative explanation

shall be sufficient. It should not surprise that the worst-case buffering and delay situation

appears at the end of the input burst. At that time, the most events are stored “waiting” for

being processed until the buffer is empty and the behavior returns to “non-bursty”. And

clearly the last event of the input burst has to wait longest.

3. Related work

There is a large body of work in the area of design space exploration and optimization

of heterogeneous MpSoC and distributed systems. In the following we give an overview

of approaches for the optimization of different system parameters as well as frameworks

allowing to explore given systems at different levels of abstraction.

The approach described in Thiele et al. (2002) uses an analysis technique, called the

real-time calculus (Thiele et al., 2000), to estimate end-to-end packet delays and queuing

memory in network processor architectures. Based on this analysis technique a measure is

defined to characterize the performance of such architectures under different usage scenar-

ios. By means of design space exploration pareto-optimal architectures are searched trad-

ing good performance under several usage scenarios versus cost. The exploration is per-

formed using multi-objective evolutionary algorithms running a closed optimization over

all relevant search parameters, including type and number of resources in the target ar-

chitecture and the mapping of the tasks to the resources for each considered scenario

Springer

Real-Time Syst (2006) 33: 101–137 109

along with appropriate priority assignments. The presented results in a case study show

the efficiency of the approach. Unlike the approach in this paper, which works on con-

figurable chromosome strings, and thus allows to interactively constrain the search space,

the exploration in Thiele et al. (2002) covers all dimensions of the search space in a

closed automated approach. Constraining the design space is often required in practical

designs with a large design space. Also, the approach presented in this paper covers a

couple of important additional design features such as time slot assignment and traffic

shaping.

In Maxiaguine and Künzli (2004) the authors treat the reverse problem. Instead of deter-

mining worst-case buffer requirements and output stream properties for given input streams

and scheduling policies, the authors search for the input stream rates that can be supported

by a given stream processing architecture without violating on-chip buffer constraints. The

authors propose the integration of this technique into a tool for automated design space

exploration for fast performance evaluation of different stream processing architectures.

Garcia and Harbour (1995) presents a heuristic algorithm for priority assignments in dis-

tributed hard real-time systems. The algorithm tries to find priority assignments on each re-

source so that all global end-to-end constraints in the system are satisfied. Therefore, global

deadlines are iteratively decomposed into artificial local deadlines, which are then used to

assign deadline monotonic priorities on each resource. Once a working system configura-

tion is found the algorithm tries to find better solutions. Thereby, the quality of a solution

is expressed by a so-called scheduling index, which is defined as a function of the differ-

ence between the worst-case end-to-end delays and the global deadlines for each constraint

(lateness). The approach is limited to the optimization of end-to-end latencies. Also it does

not determine different (pareto-optimal) design trade-offs between latencies along multiple

paths. The utilized one dimensional metric offers only a narrowed view on the quality of a

system configuration.

The approach in Pop et al. (2004) focuses on system optimization in the domain of multi-

cluster embedded systems interconnected via gateways. The authors present a heuristic ap-

proach to map applications, modeled as sets of directed acyclic graphs, onto given archi-

tectures consisting of event triggered (ET) and time triggered (TT) clusters interconnected

via TDMA and priority scheduled communication resources. Thereby, each graph is asso-

ciated with an activating period and an end-to-end deadline, which has to be smaller than

the period. The optimization objective is to find a system configuration satisfying all graph

deadlines. The method proposed is a closed optimization over all parameters in the system,

i.e. the partitioning of the application to the ET and TT clusters, the mapping of the tasks

on resources within the clusters and the optimization of the bus access of the TDMA and

priority scheduled interconnecting buses. In order to break down the complexity of the prob-

lem, the authors segment the optimization into three steps. First an initial configuration of

all system parameters is generated. If the system configuration is not working an iterative

heuristic is applied trying to optimize the partitioning and the mapping of the application. In

the third step, as a last measure to reach schedulability, a heuristic optimizing the bus access

is applied. In experiments the authors show that their optimization strategy is capable of

finding working configurations for more than 80% of randomly generated applications with

up to 250 tasks. Due to the restriction that the deadlines of a task graph must be smaller or

equal than its activating period, heuristics are adequate to tackle the given optimization prob-

lem, since only few complicated scheduling effects can occur under the given application

model. However, the situation is different if we allow deadlines greater than the period and

activation jitter. Also the optimization approach does not reveal design trade-offs between

different system constraints for the case that multiple solutions exist.

Springer

110 Real-Time Syst (2006) 33: 101–137

Givargis and Vahid (2002) describes the Platune framework allowing performance and

power tuning of a specific parameterized SoC platform. For a given application to be mapped

on the target SoC, Platune determines all sets of architectural parameter values representing

pareto-optimal solutions regarding power and performance. In order to speed up the explo-

ration process running on a large set of design parameters, the authors introduce a parameter

dependency model, which is used to cluster the search space into independent parts. In the

first step of the exploration the authors use an exhaustive algorithm to determine all local

pareto-optimal configurations for each of these independent parts. In the second exploration

step, the local pareto-optima are then merged iteratively to obtain pareto-optimal solutions

for the entire configuration space. In experiments the authors show the efficiency of their

approach for a given SoC platform, which can be clustered into small independent parts.

However, parameter dependencies are target platform specific and might be difficult to de-

termine in the general case. Also the system parameters of a given target architecture might

offer only few independencies prohibiting an efficient clustering of the search space. In the

latter case, exhaustive exploration becomes infeasible and needs to be replaced by more

sophisticated exploration methods.

The Spacewalker (Snider, 2001), part of the PICO project from HP Labs, searches for

pareto-optimal embedded systems for given applications. The search space is explored using

a hierarchical divide-and-conquer approach. In the first step different subsystem are explored

independently. From the sets of obtained pareto-optimal subsystems global systems are con-

structed and evaluated in the second step. This hierarchical exploration approach seems to

work well for the architecture presented in the paper. However, for performance dependent

subsystems the combination of local pareto-optima rarely leads to global pareto-optima.

In Dick and Jha (1998) an approach for the co-synthesis problem, called MOGAC, is

presented. For a given embedded system specification the authors use a multi-objective ge-

netic algorithm to determine an optimal system architecture, i.e. hardware/software process-

ing elements and communication links, as well as the mapping of the application onto this

architecture including a non-preemptive static schedule for each processing element. The

application model used is similar to the one used in Pop et al. (2004), i.e. DAGs with asso-

ciated periods and deadlines. Optimization objectives during exploration are system price,

power consumption and processing time. The approach represents an interesting method

addressing the co-synthesis problem with stochastic search techniques. However, the au-

thors perform a closed exploration over all possible system parameters without providing a

methodology to reduce the huge search space or to control the exploration. Consequently,

the approach might quickly reach its limits as system size and complexity increases. An-

other drawback of the MOGAC approach is the utilized application model assuming non-

preemptive static scheduling on the processing elements restricting its applicability to many

real-world examples.

The Sesame framework, part of the Artemis (Pimentel et al., 1995) project, is used in

Erbas et al. (2003) to tackle the mapping decision problem of complex applications onto

heterogeneous embedded system architectures. The authors use evolutionary exploration

techniques to search for solutions, which are pareto-optimal regarding maximum process-

ing time, power consumption and system price. These solutions are then input to a simu-

lation framework for further evaluation. The Sesame approach differs form the other ap-

proaches in the sense that it uses Kahn process networks to model applications rather than

task graphs and event stream models. Also it does not target system synthesis and does not

create schedules as exploration result. An interesting aspect in this approach is the explicit

distinction of working and non-working pareto-optimal design alternatives, preventing the

Springer

Real-Time Syst (2006) 33: 101–137 111

possible convergence of the exploration towards a set of pareto-optimal infeasible solutions,

which could happen, for instance, using MOGAC.

4. Compositional design space exploration approach

In the following sections the main concepts of our compositional exploration approach,

which is based on multi-objective evolutionary exploration techniques (Deb, 2001), are pre-

sented. Note that realization details are presented in Section 5.

First, we discuss and motivate the compositional encoding of the search space used in our

exploration framework (Section 4.1). Afterwards, we will explain the concept of optimizing

component dependencies and interactions with traffic shaping and show by means of a small

example, that it can broaden the solution space considerably (Section 4.2). Finally, we will

present our user-controlled exploration approach allowing the designer to effectively control

the exploration to quickly cover large search spaces (Section 4.3).

4.1. Compositional search space encoding

Figure 6 shows the compositional search space encoding concept of our exploration frame-

work. According to the underlying compositional scheduling analysis described in Section 2

the system is seen component wise for system exploration. During exploration, components

and event streams belonging to the search space are encoded as separate chromosomes. The

designer can interactively combine arbitrary chromosomes to compose the desired search

space. In the example, for instance, the search space consists of the scheduling parameters

on the resources CPU1, CPU2 and BUS as well as traffic shaping on the event stream con-

necting T 4 and C2. Note that during exploration, sets of concrete chromosome instances

(phenotypes) represent specific system configurations called individuals.

In addition to the encoding of the represented search space part, a chromosome defines

the local exploration strategy for the underlying component. More precisely, it possesses

evolutionary variation operators (mutation and crossover) for combination with other chro-

mosomes of its type. During exploration, these operators are applied chromosome-wise to

create new candidate system configurations.

We have chosen to split the overall system exploration into several entities, i.e. chro-

mosomes, controlling the exploration on local components rather than performing a closed

exploration over all search parameters for several reasons.

Fig. 6 System exploration
example

Springer

112 Real-Time Syst (2006) 33: 101–137

First, it is easier to establish a constructively correct encoding on a small subset of design

decisions. Consequently, the compositional encoding scheme ensures that all chromosome

values correspond to valid decisions such that any chromosome variation is constructively

valid. This improves the exploration process as it greatly reduces the effort of checking a

generated design for validity. It allows using the analysis engine of SymTA/S which requires

correct design parameters to apply analysis (e.g. sum of time slots no longer than the period,

legal priority setting, etc.).

Secondly, the compositional view on the exploration allows to integrate new component

analyses into system level exploration by simply adding a corresponding chromosome to

the exploration framework. This is important since SymTA/S is not limited to a fixed set of

component analyses with a common application model, but allows coupling arbitrary local

component analyses to system level analysis. Current component analyses in SymTA/S use

the application model presented in Section 2.1 and differ only in the utilized scheduling

policy (i.e. static priority preemptive, TDMA, EDF, etc.). However, SymTA/S is also capable

of coupling analysis techniques based on completely different application models like for

instance Kahn process networks.

Thirdly, the compositional encoding scheme leads to high flexibility of the exploration

framework. Each chromosome allows to define the specific encoding and exploration strat-

egy for the search space part it represents. In the simplest case, binary encoding and binary

variation operators like single-point crossover can be utilized resulting in uniform search

over all possible configurations. However, chromosomes can be encoded in more intuitive

ways using arbitrary data structures and problem-aware variation operators. In Hamann and

Ernst (2005) we have shown for the case of TDMA time slot optimization that such tailored

chromosomes can significantly increase exploration efficiency.

Finally, the compositional encoding approach allows adding and removing system pa-

rameters to design space exploration, even dynamically, which we exploit in our approach

allowing the designer to effectively guide the exploration process to quickly find interesting

design alternatives (see Section 4.3).

4.2. Component interaction optimization

One key property of design space exploration in SymTA/S is the optimization of component

dependencies and interactions using traffic shaping. Like explained in Section 2, components

in SymTA/S are connected via event streams. The manipulation of event streams via event

stream adaptation represents an interesting optimization possibility as it breaks open, resp.

weakens, performance dependencies between connected components.

An extreme measure would be to use periodic EAFs on every event stream in the system,

enforcing strictly periodic event models between all components. Clearly, this completely

decouples all performance dependencies between components, reducing the global opti-

mization problem to local optimizations on the single components with respect to global

system constraints. However, since periodic EAFs induce high latency on the underlying

event streams and require large buffers, such a measure would surely lead to unaccept-

ably high end-to-end latencies and high buffering costs in the resulting system. There-

fore, mainly d−-EAF are useful for system optimization and exploration. Compared to pe-
riodic EAFs providing full synchronization, they allow to trade the grade of component

performance decoupling and peak load reduction versus increased delays and buffer sizes

along the shaped event stream.

To illustrate the benefit of controlling the component interaction with traffic shaping, we

consider the example system given in Figure 6. It consists of two CPUs connected via a BUS,

Springer

Real-Time Syst (2006) 33: 101–137 113

Table 1 System parameter (a)Core execution times

Computation task Core execution time

T1 [20, 20]

T2 [40, 40]

T3 [30, 30]

T4 [25, 25]

T5 [25, 25]

Communication task Core communication time

C1 [10, 10]

C2 [20, 20]

C3 [15, 15]

(b)Input event models

Input Event model

Src1 periodic, PSrc1 = 100

Src2 periodic, PSrc2 = 100, JSrc2 = 400

Table 2 Path latency constraints
Constraint # Path Maximum latency

1 Src1 → T3 800

2 Src2 → T5 600

all scheduled according to the static priority preemptive policy. The best-case and worst-case

execution times and the external activating event models are given in the Table 1(a) and (b).

In order to function correctly, the system has to satisfy the path latency constraints listed in

Table 2.

We can easily verify that there exists no priority assignment leading to a functioning

system satisfying the path constraints. However, if we add traffic shaping to the search space

we are able to find working system configurations.

Let us, for instance, consider the following priority assignment:� CPU1: T 2 > T 1� BUS: C2 > C3 > C1� CPU2: T 4 > T 5 > T 3

Without traffic shaping this system configuration yields the following end-to-end laten-

cies: 1630 time units for the path Src1 → T 3 and 680 time units for the path Src2 → T 5.

However, we can improve the system behavior tremendously by performing traffic shaping

with d−-EAFs.

Let us take a look at the worst-case response time of C1 with and without traffic shaping

at the output of T 4. Figure 7(a) visualizes the worst-case scheduling scenario of C1 without

traffic shaping in the system. Figure 7(b) shows the improved worst-case scheduling scenario

of C1 with a d−-EAF at the output of T 4, extending the minimum distance of successive

events from 25 to 50 time units. Note that the given activating event models for C1, C2

and C3 are analysis results of the iterative compositional scheduling analysis performed by

SymTA/S (see Section 2).

Springer

114 Real-Time Syst (2006) 33: 101–137

Fig. 7 Worst-case scheduling scenarios C1

We observe that the inserted d−-EAF leads to the reduction of the worst-case response

time of C1 from 305 to 70 time units. This is due to two effects. First of all, the d−-EAF re-

laxes the activation burst of C2, leading to more freedom for the lower priority tasks C1 and

C3 to execute. This results in less preemption, and thus earlier completion for C1 and C3.

Secondly, we observe smaller activation jitters for C1 and C3. The reason for that is, that

the positive effect of the d−-EAF does not only lead to shorter worst-case response times on

the BUS, but is also propagated through improved output event models, i.e. containing less

response time jitter, to the neighboring components. In our case, for instance, less activation

jitter is produced for T 2 on CPU1. The lower priority task T 1 is profiting from the reduced

activation jitter of T 2 in terms of a shorter worst-case response time, and thus less output jit-

ter. In the considered case the output jitter of T 1, and thus the input jitter of C1, was reduced

from 360 to 80 time units due to the effects of the inserted d−-EAF at the output of T 4.

Figure 8 visualizes the global impact, expressed by the end-to-end delays along the paths

Src1 → T 3 and Src2 → T 5, of d−-EAFs at the output of T 4 enforcing different d− values.

Possible d− values lie between 25 and 100 time units, given by the best-case execution time

and the activating period of T 4, respectively.

We observe that the latency of the path Src1 → T 3 falls with growing d−. This is not

surprising, since all tasks along the path have the lowest priority on their resources, and

are thus profiting highly from the inserted traffic shaper. For the path Src2 → T 5 the

situation looks different. We observe that first its latency falls, reaching a minimum for

d− values between 40 and 45 time units. Afterwards, its latency increases again. The rea-

son for this behavior is, that the traffic shaper does not only improve the systems tim-

ing behavior, but also introduces latency on the path Src2 → T 5. However, up to a d−

value of 69 time units the positive effect of the traffic shaper dominates the introduced

Springer

Real-Time Syst (2006) 33: 101–137 115

Fig. 8 System behavior with d−-EAFs at the outputof T 4

latency, leading to smaller latencies compared to the original configuration without traf-

fic modulation. Altogether, d−-EAF enforcing d− values between 50 and 57 time units lead

to working system configurations satisfying the given end-to-end constraints.

For the discussed example system the global impact of the inserted d−-EAF is rather

high, since the system behavior is dominated by the large input burst generated by Src2.

In the general case optimization through traffic shaping is not applicable in such a straight

forward manner.

However, the exploration of a small but realistic example system in Section 7

shows, that traffic shaping can lead to the discovery of interesting design alterna-

tives, which are not possible without traffic modulation. Additionally, experiments with

synthetical systems in Section 8.1 indicate, that traffic shaping can broaden consider-

ably the solution space leading to decreased exploration time to find working system

configurations.

4.3. User-controlled exploration strategy

In Section 4.2 we have seen how component interactions and dependencies can be opti-

mized using traffic shaping within the compositional exploration methodology of SymTA/S.

Traffic shaping improves the system behavior by weakening performance dependencies be-

tween components and reducing the global impact of transient load peaks. Consequently,

the system becomes more predictable through traffic shaping, and thus easier to optimize

and explore.

However, traffic shaping might not be sufficient as a control mechanism for an efficient

design space exploration in SymTA/S. Especially when facing large systems with a multi-

tude of parameters, design space exploration can hardly cover the complete search space in

adequate time, even with efficient stochastic search techniques. Consequently, it is crucial

to find appropriate sub search spaces containing good solutions.

The idea to restrict the search space to speed up exploration is nothing new and some

previous approaches contain techniques to do so. Common techniques try to automatically

partition the entire search space into (independent) parts and perform a hierarchical explo-

ration, i.e. local exploration on single components and subsequent recombination of the

locally pareto-optimal solutions (Givargis and Vahid, 2002). Limitations of such approaches

Springer

116 Real-Time Syst (2006) 33: 101–137

include, that the search space might contain only few independencies and the difficulty for

the designer to identify these without further aid. In other words, the exploration needs

information, which the designer wants to obtain by means of exploration. Consequently,

dynamic parameter dependencies are often heuristically ignored (Pop et al., 2004; Snider,

2001), which might lead to the incapacity of the underlying exploration algorithm to find

good solutions to the optimization problem.

The compositional exploration approach in SymTA/S pursues another strategy to increase

exploration efficiency. Instead of performing a closed automated exploration over all system

parameters or taking a priori heuristic assumption about the structure of the search space,

the control over the search process is transferred to the designer. Thereby, the exploration

concept consist in performing several successive exploration steps with modification of the

search space in every step as a reaction to previously obtained results. This concept enables

the designer to identify step-by-step interesting design sub-spaces, worthy to be searched

in-depth or even completely. A closed global exploration (Dick and Jha, 1998; Thiele et al.,

2002) does not permit such a flexibility and neglects the structure of the design space, giving

the designer no possibility to modify and select the exploration strategy. For large search

spaces this can easily lead to the incapacity of the design space exploration to find working

system configurations in adequate time.

Dynamic modifiability of the search space during exploration without losing already ob-

tained results is key to this user-controlled design space exploration approach. Search space

modification consists in adding and/or removing chromosomes to/from the search space.

Both operation can be easily performed on system configurations encoded according to

the compositional encoding scheme. In case of search space modification, pareto-optimal

configurations of the currently running exploration step are used as starting point for the

exploration step with the modified search space.

The following operations are performed in case that the search space of a running design

space exploration is modified by the designer:

1. Pause exploration

2. Discard non pareto-optimal configurations

3. Adapt remaining configurations

4. Reevaluate remaining configurations

5. Continue exploration

After modification of the search space by the designer the exploration is paused (step 1)

and all non-pareto optimal configurations are discarded from the set of currently consid-

ered system configurations (step 2). Note that this is the default behavior of our exploration

strategy. Alternatively, the designer may choose keeping arbitrary system configurations.

Afterwards, the remaining system configurations need to be adapted (step 3). For the case

that the search space is extended, each remaining configuration must be complemented with

parameters for the added part of the search space. By default our exploration strategy ini-

tializes the added part of the search space with (valid) random parameters. For the opposite

case, i.e. restriction of the search space, the designer must choose one configuration as com-

mon basis for the removed search space part for further exploration. After adaptation, the

remaining configurations are reevaluated (step 4), i.e. scheduling analysis is performed and

performance metrics (optimization objectives) are recalculated. Once this is done the explo-

ration can be continued with the modified search space (step 5).

Figure 9 shows an example exploration with two search space modifications.

Springer

Real-Time Syst (2006) 33: 101–137 117

Fig. 9 Example exploration with search space modifications

The first step of the exploration in the example is performed including the whole search

space represented by the chromosomes C1 to C9. Including the whole search space in the

first exploration step is advisable, since its starting point usually consists of random system

configurations representing poor designs in most cases. However, once design space explo-

ration has run for a while on the whole search space and successively begins to find better

system configurations, the designer might want to narrow the search space in order to speed

up the exploration process. We assume that in the given example the designer observed, that

the search space part represented by the chromosomes C6 and C7 showed only little differ-

ences for many pareto-optimal system configurations obtained in the first exploration step.

Consequently, she chooses to fix them and to start a second exploration step with the result-

ing reduced search space. After analyzing the obtained results of the second exploration step,

the designer decides to fix the chromosomes C1, C4 and C9 for similar reasons as before.

However, she also decides to reinsert the chromosome C7 into the search space. Reasons

for this decision might be, for instance, the observation that global constraints strongly in-

fluenced by the system parameters represented by C7 are violated in many obtained system

configurations.

Of course, the search space modifications performed in the above described exploration

example represent heuristic assumptions based on partial knowledge of the search space.

However, for the case of search space restriction, the designer can always reverse his deci-

sions if exploration results are not satisfying or if he discovers that important system param-

eter dependencies are neglected.

Experiments with large synthetical example systems show the efficiency of the user-

controlled exploration approach (see Section 8).

5. Realization of the SymTA/S exploration framework

In this section we will give a survey of the realization of the compositional design space

exploration framework in SymTA/S, which is based on evolutionary exploration techniques.

We will first describe several specific chromosomes representing sets of system param-

eters with according exploration strategies, which can be composed by the designer to pre-

cisely define the search space (Section 5.1). We will then introduce some example metrics

expressing desired or undesired system properties used as optimization objectives during

exploration (Section 5.2). Finally, we will explain in detail the iterative design space explo-

ration loop performed by our framework (Section 5.3).

Springer

118 Real-Time Syst (2006) 33: 101–137

5.1. Search space

We see the entire system as a set of independent chromosomes, each representing a distinct

subset of system parameters. A chromosome carries variation operators necessary for com-

bination with other chromosomes of its type. In SymTA/S we currently use the standard

operators mutation and crossover which are independently applied to the chromosomes dur-

ing exploration.

Besides an exploration methodology allowing to narrow the search space (see Sec-

tion 4.3), the strategy to guide the exploration through the search space, which is imple-

mented by the variation operators of the specific chromosomes, is also very important to

achieve high exploration efficiency.

In the following sections some chromosomes used in our exploration framework are pre-

sented.

5.1.1. Priority assignments on priority-scheduled resources

The optimization of priority assignments is a discrete permutation problem. In the con-

text of evolutionary optimization such permutation problems are well studied, and thus ef-

ficient coding techniques and variation operators achieving good optimization results are

known.

There exist several exact models of evolutionary algorithms based on a binary string rep-

resentation of the problem. However, in our exploration framework we encode the priority

assignment directly as a permutation. That means, the priority assignment on a resource is

encoded as a list of integers containing one entry per process denoting its priority level (with

1 representing the highest priority).

Starting from a random set of priority assignments, we solve the ordering problem given

by the permutation encoding by using a simple mutation operator and several crossover

operators from literature (for a small overview see Whitley and Yoo (1995)).

Mutating a priority assignment is simply achieved by exchanging the priority of two

processes and letting all others untouched.

For the crossing of two priority assignments we use Order Crossover (Davis, 1985),

Order Crossover 2 (Syswerda, 1990) and Position Based Crossover (Syswerda, 1990). In

experimental results they turned out to be effective in solving the problem of assigning

priorities on priority scheduled resources in the context of distributed systems.

Order crossover intends to preserve position information during the crossover process and

works as follows. The offspring inherits the priority assignments of the tasks between two

randomly chosen crossover points in the priority list from the first parent. The remaining

priorities are inherited from the second parent, beginning at the first position of its priority

list and adding them to the offsprings priority list starting from the second crossover point.

Thereby, priorities that are already assigned are skipped.

Parent 1 : 1 2 3 4 5 6

Parent 2 : 3 2 6 5 4 1

Cross Pts : * *

Offspring : 6 1 3 4 5 2

Springer

Real-Time Syst (2006) 33: 101–137 119

Order crossover 2 differs from Order Crossover in that several crossover positions are cho-

sen randomly and the order in which the priorities at these position occur in the second

parent is imposed to the first parent in order to create the offspring. Example:

Parent 1 : 1 2 3 4 5 6

Parent 2 : 3 2 6 5 4 1

Cross Pts : * * *

Offspring : 1 2 3 6 5 4

1, 3 and 5 are selected as crossover positions. The ordering of the priorities at these

positions from parent 2 will be imposed on parent 1. The priorities from parent 2 at the

selected positions are 3, 6 and 4. In parent 1 the same priorities are found at the positions 3, 4

and 6. In the offspring the priorities at these positions (i.e. 3, 4 and 6) are reordered to match

the order of the same priorities in parent 2 (i.e. 3, 6 and 4). Therefore of f spring[3] = 3,

offspring[4] = 6 and offspring[6] = 4. The remaining priorities are directly copied from

parent 1.

Position based crossover intends, just like Order Crossover, to preserve position infor-

mation. But instead of inheriting the priorities between two selected positions of one

parent, several random positions are chosen. The priorities at those positions are inher-

ited from the first parent and the remaining priorities are taken from the second parent in

the order they appear, skipping over all priorities already assigned in the offspring. Example:

Parent 1 : 1 2 3 4 5 6

Parent 2 : 3 2 6 5 4 1

Cross Pts : * * *

Offspring : 1 3 2 4 5 6

5.1.2. Time slot sizes on TDMA scheduled resources

The search space of all time slot assignments for the tasks on a TDMA scheduled resource is

very large, even if we fix the turn-length and the arithmetic precision. Turn-length variation,

which is often necessary to find good solutions, adds another search dimension. Since it is

unrealistic to try all possible time slot assignments and turn-lengths, a good strategy to walk

through the search space is indispensable.

One approach frequently used for continuous optimization problems like TDMA time

slot optimization in the context of evolutionary algorithms, is discretizing the desired search

space into a power of 2 and using a binary string representation with binary variation oper-

ators, like i.e. single-point crossover.

However, in the SymTA/S exploration framework we decided to use a real number cod-

ing of the problem variables with arithmetic variation operators. This is suitable for the

given problem because it gives much more control over the generated alternatives and allows

to implement problem-aware variation operators guaranteeing the validity of the generated

configurations.

In the following we introduce arithmetic real-coded variation operators tailored for time

slot and turn optimization on TDMA scheduled resources. Thereby, our exploration strat-

egy is split into two aspects: optimizing the admitted loads of the mapped tasks as well as

Springer

120 Real-Time Syst (2006) 33: 101–137

optimizing the TDMA turn-length. Both factors together define the quality of a time slot

assignment.

The reason for separating these two problem parameters is the increased control over

the optimization process. By configuring the probabilities for the use of the two different

operator types for crossover and mutation, the designer can decide which of them is the

preferred search parameter. In the extreme case, she can, for example, hold the turn-length

constant and optimize only by varying the admitted loads.

According to the two problem aspects we introduce four variation operators. One

crossover and one mutation operator that vary the admitted loads of the mapped tasks while

letting the turn-length constant as well as one crossover and one mutation operator that vary

the turn-length and make sure that the admitted loads of the tasks stay constant.

The crossover operators implement a heuristic strategy of converging towards solutions

lying “between” individuals currently considered by the evolutionary algorithm, whereas

the mutation operators serve to break out of local minima by increasing or decreasing the

admitted loads and the turn-length, respectively, within a configurable limit.

Extensive experiments using synthetical applications have shown, that the proposed vari-

ation operators are superior to standard binary-coded operators performing a uniform search

over all possible time slot assignments in respect of time needed to find valid time slot as-

signments for given systems. Thereby, the performance difference is particularly noticeable

for systems with narrow deadlines. Details about the experiments can be found in Hamann

and Ernst (2005).

Creation of the initial population For the creation of the initial population we specify an

initial TDMA turn-length turninit . Note that choosing a sub-optimal initial turn-length for

the initial population does not lead to the incapability of the time slot chromosome to find

valid solutions because the proposed variation operators are capable of adapting the turn-

length in the course of optimization. Nevertheless, if the designer chooses a good initial

turn-length the chromosome converges faster towards the solution space.

Let R be a TDMA scheduled resource subjected to optimization with the tasks

T0, . . . , Tk−1 mapped on it. The worst-case execution time, i.e. assuming no interrupts, of

Ti is denoted by WCETi , its activating period by periodi and the length of its time slot by

sloti . In the following we refer to a specific time slot assignment as individual.
In order to create only valid (i.e. resource not overloaded, etc.) individuals for the initial

population, we have to ensure that for each task Ti its maximum load loadmax;i does not

exceed its admitted load loadadm;i .

loadadm;i ≥ loadmax;i ⇔ sloti
turninit

≥ WCETi

periodi

⇔ sloti ≥ WCETi

periodi
∗ turninit

This implies for Ti a minimum time slot

slotmin;i = WCETi

periodi
∗ turninit .

Algorithm 1 is used to create the initial population which is uniformly distributed in

the search space of all valid time slot assignments with a turn-length of turninit . To do

so, it randomly distributes the initial turn to the tasks T0, . . . , Tk−1. It respects the above

Springer

Real-Time Syst (2006) 33: 101–137 121

Fig. 10 Crossover operators

mentioned minimum time slot length to prevent the creation of non-schedulable individuals.

Algorithm 1 Create valid initial individual
Input : initial turn-length: turninit

minimum time slots: slotmin;0, . . . , slotmin;k−1

Output: valid time slot assignment for T0, . . . , Tk−1

1: free = turninit ;
2: set = {0, 1, . . . , k − 1};
3: while (set
= ∅) do
4: choose random r ∈ set ;
5: set = set \ r ;
6: if (set = ∅) then
7: slotr = free;
8: else
9: slotmax = free − ∑

x ∈ set slotmin;x ;
10: choose random slotr ∈ [slotmin;r , slotmax];
11: free = free − slotr ;
12: end if
13: end while

Crossover operators Algorithm 2 describes the crossover operator varying the admitted

loads while letting the turn-length constant. As input it takes two parent individuals from

which it creates two offsprings. Its optimization strategy is related to a binary search method.

The admitted loads of the offsprings are placed evenly (i.e. at 1
3

and 2
3
) in the re-

spective admitted load interval defined by the two parents. The time slots of offsprings

1 and offspring 2, respectively, are then calculated according to the turn-length given by

parent 1 and parent 2, respectively. Figure 10(a) gives an example for this crossover

operator.

The crossover operator varying the turn-length is described by Algorithm 3. It

also pursuits a binary search related strategy. Given the two parent individuals it

calculates their average turn-length (lines 1–7). Offspring 1 and offspring 2, respec-

tively, is then created by adapting the time slots of parent 1 and parent 2, respec-

tively, to the average turn-length letting the admitted loads untouched (lines 8–11).

Figure 10(b) visualizes the functionality of this crossover operator by means of an

example.

The described crossover operators lead to the convergence of the obtained time slot

assignments towards (locally) optimal solutions contained “between” individuals consid-

ered by the evolutionary algorithm. Of course, it is possible that the variety of the initial

Springer

122 Real-Time Syst (2006) 33: 101–137

Algorithm 2 Crossover admitted load
Input : time slots of parent p1: [slotp1;0, . . . , slotp1;k−1]

time slots of parent p2: [slotp2;0, . . . , slotp2;k−1]
Output: time slots of offspring o1: [sloto1;0, . . . , sloto1;k−1]

time slots of offspring o2: [sloto2;0, . . . , sloto2;k−1]
1: turnp1

= 0;
2: turnp2

= 0;
3: for (i = 0; i <= k − 1; i = i + 1) do
4: turnp1

= turnp1
+ slotp1;i ;

5: turnp2
= turnp2

+ slotp2;i ;
6: end for
7: for (i = 0; i <= k − 1; i = i + 1) do
8: loadadm;p1;i = slotp1;i/turnp1

;
9: loadadm;p2;i = slotp2;i/turnp2

;
10: difference =| loadadm;p1;i − loadadm;p2;i |;
11: if (loadadm;p1;i < loadadm;p2;i) then
12: sloto1;i = (loadadm;p1;i + difference/3) ∗ turn p1

;
13: sloto2;i = (loadadm;p2;i − difference/3) ∗ turn p2

;
14: else
15: sloto1;i = (loadadm;p1;i − difference/3) ∗ turn p1

;
16: sloto2;i = (loadadm;p2;i + difference/3) ∗ turn p2

;
17: end if
18: end for

population is insufficient to find good solutions only by using these crossover operators.

Additionally, the exploration may get stuck in a local optimum, without the possibility to

reach globally better solutions.

Therefore, we introduce two mutation operators, enabling the evolutionary algorithm to

break out of local optima and to reach parts of the search space not yet considered.

Algorithm 3 Crossover turn
Input : time slots of parent p1: [slotp1;0, . . . , slotp1;k−1]

time slots of parent p2: [slotp2;0, . . . , slotp2;k−1]
Output: time slots of offspring o1: [sloto1;0, . . . , sloto1;k−1]

time slots of offspring o2: [sloto2;0, . . . , sloto2;k−1]
1: turnp1

= 0;
2: turnp2

= 0;
3: for (i = 0; i <= k − 1; i = i + 1) do
4: turnp1

= turnp1
+ slotp1;i ;

5: turnp2
= turnp2

+ slotp2;i ;
6: end for
7: turnnew = (turnp1

+ turnp2
)/2;

8: for (i = 0; i <= k − 1; i = i + 1) do
9: sloto1;i = slotp1;i/turnp1

∗ turnnew;
10: sloto2;i = slotp2;i/turnp2

∗ turnnew;
11: end for

Mutation operators The mutation operator varying the admitted load while letting the turn-

length constant is described by algorithm 4. As input it takes one parent individual from

which it creates one offspring. After initialization, r
2

pairs of tasks are chosen (lines 6–7).

Springer

Real-Time Syst (2006) 33: 101–137 123

For each of these pairs the first task gives a part of its disposable time slot (i.e. the time slot

it can dispense without overloading the resource) to the second (lines 8–13). The percentage

of the disposable time slot dispensed is randomly chosen in the interval]0, dmax ≤ 1], where

dmax is configurable. Figure 11(a) shows the functionality of this mutation operator by means

of an example.

Algorithm 5 describes the mutation operator varying the turn-length. First the target turn-

length is chosen, by increasing or decreasing the turn-length of the parent by a percentage

randomly chosen in the interval]0, dmax ≤ 1], where dmax is configurable (lines 1–11). The

offspring’s time slot assignments are then calculated to sum up in the target turn-length

without altering the admitted loads given by the parent’s time slot assignment (lines 12–14).

Figure 11(b) shows the functionality of this mutation operator for a turn-length reduction of

20%.

Algorithm 4 Mutate admitted load
Input : time slots of parent p: [slotp;0, . . . , slotp;k−1]

max. % of disposable time slot dispensed: dmax

Output: time slots of offspring o: [sloto;0, . . . , sloto;k−1]
1: turn p = 0;
2: for (i = 0; i <= k − 1; i = i + 1) do
3: sloto;i = slotp;i ;
4: turn p = turn p + slotp;i ;
5: end for
6: choose pair random r ∈ [2, . . . , k];
7: choose r distinct integers q0, . . . , qr−1 ∈ [0, k − 1];
8: for (i = 0; i <= r − 1; i = i + 2) do
9: slotdisposable = slotp;qi − loadmax;qi ∗ turn p;

10: choose random double dapplied ∈]0, dmax];
11: sloto;qi = sloto;qi − dapplied ∗ slotdisposable;
12: sloto;qi+1

= sloto;qi+1
+ dapplied ∗ slotdisposable;

13: end for

Algorithm 5 Mutate turn
Input : time slots of parent p: [slotp;0, . . . , slotp;k−1]

max. % by which turn is cut or extended: dmax

Output: time slots of offspring o: [sloto;0, . . . , sloto;k−1]
1: turn p = 0;
2: for (i = 0; i <= k − 1; i = i + 1) do
3: turn p = turn p + slotp;i ;
4: end for
5: choose random boolean b;
6: choose random double dapplied ∈]0, dmax];
7: if (b = true) then
8: turnnew = turnp + dapplied ∗ turnp;
9: else

10: turnnew = turnp − dapplied ∗ turnp;
11: end if
12: for (i = 0; i <= k − 1; i = i + 1) do
13: sloto;i = slotp;i/turnp ∗ turnnew;
14: end for

Springer

124 Real-Time Syst (2006) 33: 101–137

Fig. 11 Mutation operators

5.1.3. Traffic shaping

A traffic shaping chromosome represents a d−-EAFs performing traffic shaping on an

event stream connecting two functionally dependent components. In our framework it is

realized using a real number representation of the minimum distance d− and arithmetic

real-coded variation operators. Its search range can be bounded by a search interval and

the arithmetic precision. For convenience reasons, the bounds of the search interval can

be configured by specifying the allowed buffering delays produced by the traffic shaper

(more comprehensible for timing constrained systems) or the allowed buffer sizes needed

for the traffic shaper (more comprehensible for buffer constrained systems). Internally,

these specifications are translated into corresponding d− values for the search interval (see

Section 2.4).

The search strategy of the variation operators is similar to that of the TDMA time slot

chromosome, with the difference that only one problem dimension needs to be considered.

Starting from random d− values within the search interval, the search is conducted by one

crossover and one mutation operator. The crossover operator takes as input two parent con-

figurations and creates two offsprings. The d− values of the first and the second offspring are

placed at 1
3

and 2
3
, respectively, in the d− interval defined by the two parents. This strategy

leads to the convergence of the obtained d− values towards optimal solutions lying between

the configurations considered by the evolutionary algorithm. The purpose of the mutation

operator is to prevent the search getting stuck in local minima and to reach parts of the search

space, which are inaccessible by only using the crossover operator. It creates one offspring

by increasing or decreasing the d− value of the parent configuration by a random percentage

in the interval]0, dmax], where dmax is configurable.

5.2. Optimization objectives

The SymTA/S exploration framework is capable to perform a multi-objective optimization

of several concurrent optimization objectives, leading usually to the discovery of several

pareto-optima.

Optimization objectives can be any kind of metric defined on desired or undesired proper-

ties of the considered system. Note that some metrics only make sense in combination with

constraints. Each system configuration considered during exploration is associated with a

fitness vector containing one entry for every concurrent optimization objective.

5.2.1. Example metrics

In the following some example optimization objectives used in the SymTA/S exploration

framework will be introduced using the following notation:

Springer

Real-Time Syst (2006) 33: 101–137 125

R maximum response time of a task or

maximum end-to-end latency along a path

D deadline (task or end-to-end)

ω constant weight > 0

k number of tasks or

number of constrained tasks/paths in the system

Note that we exemplify using timing properties of distributed systems. Corresponding

metrics can easily be derived to optimize jitter and local or global buffer requirements.

A basic global metric for expressing the timing qualities of a given system configuration

is the weighted sum of completion times:

k∑
i=1

ωi ∗ Ri

Even though this metric can be used to minimize response times of tasks or end-to-end

latencies, its practical relevance is limited if we consider systems with timing constraints.

For such systems metrics taking deadlines into account are much more appropriate.

The lateness of a task or a path is defined as the amount of time by which it misses its

deadline. Consequently, a negative value denotes that the task (the path) completes before

the expiration of its deadline. In the case of constrained systems the lateness can be used to

define expressive global metrics for the timing properties of a given system configuration.

Following example metric can be used to minimize the (weighted) average lateness for a

given system:

k∑
i=1

ωi ∗ (Ri − Di)

The given metric expresses the average timing bahavior of a system configuration with

regard to its timing constraints. It might mislead an evolutionary optimizer and prevent him

from finding system configurations fulfilling all timing constraints, since met deadlines com-

pensate linearly for missed deadlines. For systems with hard real-time constraints, metrics

with higher penalties for missed deadline and less rewards for met deadlines can be more ap-

propriate, since they lead to a more likely rejection of system configurations violating hard

deadline constraints. Following example metric penalizes violated deadlines in an exponen-

tial way and can be used to optimize the timing properties of a system with hard real-time

constraints:

k∑
i=0

cRi −Di
i , ci > 1 constant

Another refinement of the global timing metric can be achieved by not using absolute

values for the lateness of a task (a path), but expressing it relatively to the constraint. Such

a metric is much more appropriate for systems containing timing constraints with different

orders of magnitude, as it does not discriminate small constraints in comparison to larger

ones. In the case of significant differences in the order of magnitude, small constraints would

simply be neglected using the prior metric. Following example metric penalizes relative

Springer

126 Real-Time Syst (2006) 33: 101–137

Fig. 12 Design space exploration loop

deadline misses in an exponential way:

k∑
i=0

c
Ri −Di

Di
i , ci > 1 constant

The above presented metrics integrate all timing properties of a given system configura-

tion into a single value. Using this metrics is making sense to quickly find good function-

ing system configurations. However, they do not provide information about possible design

trade-offs with regard to multiple timing properties.

For this purpose the SymTA/S exploration framework allows to use the above introduced

metrics for a subset of tasks or paths (including single ones). Together with the supported

pareto-optimization, this allows the designer to focus the optimization process on a set of

specific timing properties of the given system, and thus enables her to identify interesting

design trade-offs among the obtained solution set.

5.3. Design space exploration loop

Figure 12 shows the design space exploration loop performed in our framework (Hamann

et al., 2004). The Optimization Controller is the central element. It is connected to SymTA/S

and to an Evolutionary Optimizer. SymTA/S checks the validity of a given system configu-

ration and provides performance data necessary to calculate the performance metrics, which

are subject to optimization. The Evolutionary Optimizer is responsible for the problem-

independent part of the optimization problem, i.e. elimination of system configurations

and selection of interesting system configurations for variation. Currently, we use SPEA2

(Strength Pareto Evolutionary Algorithm 2) (Zitzler et al., 2001) and FEMO (Fair Evolu-

tionary Multiobjective Optimizer) (Laumanns et al., 2002) for this part. They are coupled

via PISA (Platform and Programming Language Independent Interface for Search Algo-

rithms) (Bleuler et al., http://www.tik.ee.ethz.ch/pisa/).

Note that the selection and elimination strategy depends on the used multi-objective opti-

mizer. FEMO, for instance, eliminates all dominated system configurations in every iteration

Springer

Real-Time Syst (2006) 33: 101–137 127

and pursuits a fair sampling strategy, i.e. each parent configuration participates in the cre-

ation of the same number of offspring configurations. This leads to a uniform search in the

neighborhood of elitist individuals.

The problem-specific part of the optimization problem is coded in the chromosomes and

their variation operators, i.e. crossover and mutation.

Before exploration can be started the designer has to select the desired search space (see

Sections 4.1 and 5.1) and the optimization objectives (see Section 5.2) she wants to op-

timize. The chromosomes representing the search space are included in the evolutionary

exploration, while all other system parameters remain immutable. After the designer has

selected the search space and the optimization task, SymTA/S is initialized with the im-

mutable part of the system, and the selected chromosomes are used as blueprints to create

the initial population. Note that each chromosome is responsible for creating initial values

for the system parameters it represents. Usually, chromosomes create random initial param-

eters in order to achieve a uniform distribution of the initial set of system configurations in

the search space. However, sometimes it may be favorable to initialize chromosomes with

heuristically determined parameters.

In the following we refer to a specific system configuration consisting of several specific

chromosomes (phenotypes) as individual.
For each individual in the population the following is done:� Step 1: The chromosomes of the considered individual are applied to the SymTA/S engine.

This completes the system and it can be analyzed.� Step 2 + 3: Each optimization objective requests the necessary system properties of the

analyzed system to calculate its fitness value.� Step 4: The fitness values are communicated to the Optimization Controller.

Once these 4 steps are performed for each individual inside the population, the Optimiza-
tion Controller sends a list of all individuals and their fitness values to the Evolutionary
Optimizer (step 5). Based on the fitness values the Evolutionary Optimizer creates two lists,

the list of individuals to be deleted and the list of individuals selected for variation, and sends

them back to the Optimization Controller (step 6). Based on the two lists the Optimization
Controller then manipulates the population, i.e. it deletes the according individuals, creates

new offsprings based on the individuals selected for variation, and adds them to the popula-

tion (step 7). Note that the variation operators, i.e. mutation and crossover, utilized to create

new individuals for the population are chromosome specific.

This completes the processing of one generation. The whole loop begins again with the

new created population.

At each moment during exploration the designer can choose to modify the search space.

This consists, like explained in Section 4.3, in adding/removing chromosomes to/from the

search space. The necessary adaptations and the reevaluation of the fitness values are per-

formed automatically by the framework and the next exploration iteration is then started.

6. System on chip example

The system in Fig. 13 represents a SoC consisting of a micro-controller (uC), a digital signal

processor (DSP) and dedicated hardware (HW), all connected via an on-chip bus (BUS). The

HW acts as an interface to a physical system. It runs one task (sys if) which issues actuator

commands to the physical system and collects routine sensor readings. sys if is controlled

by controller task ctrl, which evaluates the sensor data and calculates the necessary actuator

Springer

128 Real-Time Syst (2006) 33: 101–137

Fig. 13 System on chip example

commands. ctrl is activated by a periodic timer (tmr) and by the arrival of new sensor data

(AND-activation in a cycle).

The physical system is additionally monitored by 3 smart sensors (s1 – s3), which pro-

duce data sporadically as a reaction to irregular system events. This data is registered by an

OR-activated monitor task (mon) on the uC, which decides how to update the control algo-

rithm. This information is sent to task upd on the DSP, which writes the updated controller

parameters into shared memory.

The DSP additionally executes a signal-processing task (fltr), which filters a stream of

data arriving at input sig in, and sends the processed data via output sig out. All communi-

cation (with the exception of shared-memory on the DSP) is carried out by communication

tasks c1 – c5 over the on-chip BUS.

Computation and communication tasks shall have the core execution times (i.e. assuming

no interrupts) listed in Table 3. We assume the event models at system inputs specified in

Table 4. In order to function correctly, the system has to satisfy the path latency constraints

and the maximum jitter constraint at sig out listed in Tables 5(a) and (b). In the following

we assume that the DSP as well as the BUS are scheduled according to a static priority

preemptive policy.

Table 3 Core execution times
Computation task Core execution time

mon [10, 12]

sys if [15, 15]

fltr [12, 15]

upd [5, 5]

ctrl [20, 23]

Communication task Core communication time

c1 [4, 4]

c2 [4, 4]

c3 [4, 4]

c4 [8, 8]

c5 [4, 4]

Springer

Real-Time Syst (2006) 33: 101–137 129

Table 4 Input event models
Input Event model

s1 sporadic, Ps1 = 1000

s2 sporadic, Ps2 = 750

s3 sporadic, Ps3 = 600

sig in periodic, Pin = 60

tmr periodic, Ptmr = 70

Table 5 Constraints (a) Path latency constraints

Constraint # Path Maximum latency

1 si → upd 70

2 sig in → sig out 60

3 cycle (e.g. ctrl → ctrl) 140

(b) Maximum jitter constraint

Constraint # Output Event model jitter

4 sig out Jsig out,max = 22

7. Exploring the example system

In this section, we explore the given SoC example. We will do this in several steps, mod-

ifying the search space gradually. First we will perform a local optimization on the BUS
altering only the priorities of the communication channels. Afterwards, we will extend the

search space by allowing d−-EAFs at reasonable positions. During these two steps we will

assume the following priority assignment on the DSP: upd > f ltr > ctrl. Finally we will

optimize the system globally, i.e. the priority assignment on the BUS and the DSP as well as

traffic shaping. Optimization objectives during all these exploration steps are the minimiza-

tion of the path latencies (si → upd and sig in → sig out), the minimization of the cycle

latency (ctrl → ctrl) and the minimization of the jitter at output sig out (Jsig out).

7.1. Optimizing the BUS

The first step in our design space exploration is local optimization of the BUS. Although

there are only five communication channels on the BUS, it is not intuitive for the designer

which priority assignments lead to systems that meet all constraints. Local exploration of the

BUS will give us a first feeling about the systems behavior, and thus a deeper understanding

of its performance dependencies. Table 6 shows the obtained solutions.

Table 6 Pareto-optimal solutions: local optimization on the BUS

BUS tasks DSP tasks si →upd sig in→sig out ctrl→ctrl Jsig out

1 c5, c4, c1, c2, c3 upd, fltr, ctrl 55 42 120 18

2 c5, c4, c2, c1, c3 upd, fltr, ctrl 59 42 112 18

3 c5, c2, c4, c1, c3 upd, fltr, ctrl 59 46 108 22

4 c4, c5, c2, c3, c1 upd, fltr, ctrl 63 42 96 18

5 c5, c2, c4, c3, c1 upd, fltr, ctrl 63 46 92 22

Springer

130 Real-Time Syst (2006) 33: 101–137

As we can see there are five priority assignments for the communication channels on the

BUS leading to functioning systems. These solutions are pareto-optimal, which means that

they represent a certain trade-off between multiple objectives, leaving it to the designer to

decide which solution to adopt.

We observe that channels c4 and c5 have high priorities in all obtained solutions, whereas

channel c3 has throughout the lowest or second lowest priority.

7.2. Traffic shaping

In the second step we want to evaluate the optimization potential of selective traffic shaping

(see Section 2.4) for the given architecture. We extend our search-space by using d−-EAFs

at the output of task mon. It is making sense to perform traffic shaping at this location,

because the OR-activation of mon can lead in the worst-case scenario to bursts at its output.

That is, if all three sensors trigger at the same time, mon will send three packets over the

BUS with a minimum distance of 10 time units, which is its minimum core execution time.

This transient load peak affects the overall system performance in a negative way. A d−-

EAF is able to increase this minimum distance in order to weaken the global impact of the

worst-case burst. Exploration over the minimum distance d− of successive packets enforced

by the inserted shaper is subject of this exploration step.

We observed in the previous experiment that communication channel c3 was always as-

signed the lowest or second lowest priority. Even in the lowest case, the cycle constraint

(ctrl → ctrl) was easily met. Therefore, we will fix channel c3 to the lowest priority on the

bus. This narrows the search space considerably, the number of possible priority assignments

on the bus is reduced from 5! = 120 to 4! = 24.

Table 7 shows the additional pareto-optimal solutions found using d−-EAFs at the output

of mon extending the minimum distance of successive events to integer values between 11

and 20 time units. Solutions which are dominated by the results obtained in the previous

section are not listed.

We observe that performing traffic shaping at the output of mon leads to several new in-

teresting solutions. We found new priority assignments on the BUS which, combined with a

certain shaper, result in better values for the path constraints si → upd, sig in → sig out
and the jitter constraint Jsig out . Solely the previously obtained values for the cycle con-

straint ctrl → ctrl are not reached, but the constraint remains fulfilled by a large margin.

Only two different priority assignments, c5 > c1 > c4 > c2 > c3 and c1 > c5 > c4 >

c2 > c3, occur in the solutions listed in Table 7. Let us take a closer look on the global

impact of traffic shaping at the output of mon.

Tables 8(a) and (b) show the performance of the system with growing minimum distance

of events at the output of mon for these two priority assignments. Rows containing pareto

optimal solutions are emphasized. Note that in this example a shaper extending the minimum

Table 7 Additional pareto-optimal solutions: traffic shaping at mon output

BUS tasks DSP tasks d− si →upd sig in→sig out ctrl→ctrl Jsig out

6 c1, c5, c4, c2, c3 upd, fltr, ctrl 13 51 45 120 21

7 c1, c5, c4, c2, c3 upd, fltr, ctrl 14 53 45 116 21

8 c1, c5, c4, c2, c3 upd, fltr, ctrl 16 57 45 112 21

9 c5, c1, c4, c2, c3 upd, fltr, ctrl 17 63 41 112 17

10 c1, c5, c4, c2, c3 upd, fltr, ctrl 20 65 40 104 16

Springer

Real-Time Syst (2006) 33: 101–137 131

Table 8 System performance
with traffic shaping at mon output d− si → upd sig in → sig out ctrl → ctrl Jsig out

10 49 50 162 26

11 51 50 162 26

12 53 46 120 22

13 55 46 120 22

14 57 46 116 22

15 59 46 116 22

16 61 46 112 22

17 63 41 112 17

18 65 41 112 17

19 67 41 112 17

20 69 41 104 17

(a) BUS priorities: c5 > c1 > c4 > c2 > c3

d− si → upd sig in → sig out ctrl → ctrl Jsig out

10 45 54 162 30

11 47 54 162 30

12 49 50 120 26

13 51 45 120 21

14 53 45 116 21

15 55 45 116 21

16 57 45 112 21

17 59 45 112 21

18 61 45 112 21

19 63 45 112 21

20 65 40 104 16

21 67 40 104 16

22 69 40 104 16

(b) BUS priorities: c1 > c5 > c4 > c2 > c3

distance to a value between 11 and 20 time units needs to store at most one packet at a time.

To achieve larger minimum distances, two packets need to be stored in the worst-case.

We see that the value for the path constraint si → upd is climbing with growing mini-

mum distance. This is not surprising because the inserted shaper is creating additional la-

tency in the worst-case, depending on the desired minimum distance. The longest minimum

distance that does not lead to violation of the path constraint si → upd for the priority

assignments c5 > c1 > c4 > c2 > c3 and c1 > c5 > c4 > c2 > c3 are 20 and 22 respec-

tively. However, while the shaper leads to increased values for the path constraint si → upd,

the rest of the system is profiting from the weakend burst.

7.3. Including the DSP

So far, we obtained ten solutions representing different trade-offs for our example SoC by

using local exploration techniques. Now, we extend our search space by the priority assign-

ment on the DSP. Since we already observed that the cycle constraint is uncritical, we will

Springer

132 Real-Time Syst (2006) 33: 101–137

Table 9 Additional pareto-optimal solutions: global optimization

BUS tasks DSP tasks d− si → upd sig in → sig out ctrl → ctrl Jsig out

11 c5, c4, c1, c2, c3 fltr, upd, ctrl 10 70 27 120 3

12 c1, c5, c4, c2, c3 fltr, upd, ctrl 12 64 35 120 11

13 c5, c1, c4, c2, c3 fltr, upd, ctrl 12 68 31 120 7

14 c1, c5, c4, c2, c3 fltr, upd, ctrl 14 68 35 116 11

fix the priorities of communication channels c2 and c3 to the second lowest and lowest on

the BUS respectively. Additionally, we fix the priority of task ctrl to the lowest on the DSP.

In Table 9 we see the new system configurations found. Solutions which are dominated

by the results obtained in the previous sections are not listed.

The obtained solutions represent new interesting trade-offs because they lead to a low

jitter at sig out. This quality did not exist in any of the previously obtained system con-

figurations. However, the low jitter at sig out is bought with high values for the constraint

si → upd .

7.4. Summary of results

Table 10 gives an overview about all pareto-optimal system configurations found so far.

The best reached values for each objective are emphasized. For example an attractive solu-

tion might be one where all constraints are fulfilled with a healthy margin to the respective

maximum values. This is the case for solutions 4, 10, and 12 for instance.

For the given example system an exploration loop of 15 iterations with a population

size of 50 individuals found all pareto-optimal solutions for the experiments in the Sec-

tions 7.1, 7.2 and 7.3 in almost every run. This exploration takes approximately 20 seconds.

on a Pentium 4 at 2400 MHz.

Table 10 All pareto-optimal solutions

BUS tasks DSP tasks d− si → upd sig in → sig out ctrl → ctrl Jsig out

1 c5, c4, c1, c2, c3 upd, fltr, ctrl 10 55 42 120 18

2 c5, c4, c2, c1, c3 upd, fltr, ctrl 10 59 42 112 18

3 c5, c2, c4, c1, c3 upd, fltr, ctrl 10 59 46 108 22

4 c4, c5, c2, c3, c1 upd, fltr, ctrl 10 63 42 96 18

5 c5, c2, c4, c3, c1 upd, fltr, ctrl 10 63 46 92 22

6 c1, c5, c4, c2, c3 upd, fltr, ctrl 13 51 45 120 21

7 c1, c5, c4, c2, c3 upd, fltr, ctrl 14 53 45 116 21

8 c1, c5, c4, c2, c3 upd, fltr, ctrl 16 57 45 112 21

9 c5, c1, c4, c2, c3 upd, fltr, ctrl 17 63 41 112 17

10 c1, c5, c4, c2, c3 upd, fltr, ctrl 20 65 40 104 16

11 c5, c4, c1, c2, c3 fltr, upd, ctrl 10 70 27 120 3

12 c1, c5, c4, c2, c3 fltr, upd, ctrl 12 64 35 120 11

13 c5, c1, c4, c2, c3 fltr, upd, ctrl 12 68 31 120 7

14 c1, c5, c4, c2, c3 fltr, upd, ctrl 14 68 35 116 11

Springer

Real-Time Syst (2006) 33: 101–137 133

8. Evaluating the exploration framework

In this section we conduct experiments to evaluate our exploration framework and its user-

controlled exploration strategy regarding exploration efficiency (Section 8.1) and ability to

scale to systems which are difficult to optimize (Section 8.2).

8.1. Experiment 1: Exploration efficiency

In the first experiment we compare different exploration strategies with respect to their effi-

ciency, i.e. the average number of evaluated configurations to find the first working system

configuration.

Fully automated closed exploration over all free system parameters, a widely pursued

approach for the exploration of heterogeneous embedded systems, is taken as baseline for

comparing the efficiency of the introduced exploration capabilities of our framework, i.e.

optimization through traffic shaping and user-controlled exploration.

Accordingly, we evaluate three different exploration strategies:

1. closed exploration, i.e. including the scheduling parameters on all resources of the

explored system into the search space,

2. closed exploration extending the search space with traffic shaping on two event

streams in the system, and

3. user-controlled exploration.

Note, that all three exploration strategies are evaluated with our framework using the ac-

cording search space composition.

For evaluating the efficiency of the different exploration strategies we utilize randomly

generated systems with the following properties:� 30 tasks with complex application structures, such as multiple input/output ports and func-

tional cycles� 6 static priority preemptive or TDMA scheduled resources� task best-case and worst-case execution times between 5 and 100 time units� periods at the system inputs between 200 and 600 time units� jitter at the system inputs between 0 and 1000 time units� multiple end-to-end deadlines

During exploration the last presented metric in Section 5.2 is used as optimization objec-

tive to quickly find working system configurations satisfying all end-to-end deadlines in the

system.

Figure 14(a) shows the averaged results obtained by exploring 50 systems with the three

different strategies.

We observe that the closed exploration strategy needed to evaluate approximately

1900 configurations to find a working system in the average case. Compared to that,

extending the search space with traffic shaping on two event streams increased exploration

efficiency by almost factor 2. However, the best results were obtained by guiding the explo-

ration manually. For the considered systems, the user-controlled exploration lead to working

system configuration nearly 5 times faster than the closed exploration and more than 2.5

times faster than the closed exploration with traffic shaping.

The user-controlled exploration runs were performed modifying the search space two

times in the average case. First, exploration was started including all scheduling parameters

and traffic shaping at two selected positions. After reaching sufficiently low values for the

Springer

134 Real-Time Syst (2006) 33: 101–137

Fig. 14 Evaluation of the
exploration framework

utilized timing metric, the exploration was paused to modify the search space. At this point,

some end-to-end deadlines were already fulfilled, and the search space was restricted to

scheduling parameters on resources running tasks, which heavily contributed to the remain-

ing deadline violations. Afterwards, exploration was resumed. For the case that no working

system configuration was found after a while, exploration was paused again to perform a

second search space modification. After the second exploration step, rarely more than one

or two end-to-end deadlines remained violated, and it was not difficult to restrict the search

space to one resource or one position in the system for traffic modulation to obtain a working

system configuration in the third exploration step.

Note that the necessary decisions to modify the search space within the user-con-

trolled exploration runs were always taken within one minute. The evaluation of one

system configuration with the given size takes between 1 and 1.5 second on a Pentium

4 at 2400 MHz. Consequently, the overhead for one search space modification in the

performed experiments corresponds approximately to the evaluation of 40 to 60 system

configurations.

8.2. Experiment 2: Scaling of the exploration

In the second experiment we evaluate how the user-controlled exploration strategy scales

in comparison to the closed exploration strategy. Scaling in this experiment does not mean

increasing the size of the explored systems, but increasing the difficulty to find working

configurations for them.

Springer

Real-Time Syst (2006) 33: 101–137 135

More precisely, for a given set of constrained systems, generated in the same way as in

the previous experiment but containing 60 tasks and 15 resources, and a maximum bound of

5000 evaluated system configurations per exploration run, we are interested in how success-

ful user-controlled exploration performs in finding working system configurations compared

to fully automated closed exploration.

In order to compare scaling we perform two such experiments. The first experiment is

performed using the original end-to-end deadlines of the generated systems. For the second

experiment the end-to-end deadlines are narrowed by 5%, increasing the difficulty to find

working system configurations.

Figure 14(b) shows the averaged results obtained by exploring 50 systems with both ex-

ploration strategies. Note that all exploration runs were conducted without including traffic

shaping into the search space.

In the first experiment, the closed exploration succeeded for 94% of the considered sys-

tems to find a working system within the limit of 5000 evaluated configurations. However,

for the second experiment with the narrowed deadlines the success rate dropped to 64%.

This indicates that closed exploration has difficulties to scale to systems with narrow timing

constraints.

Compared to that, we had no problems finding working configurations for the given sys-

tems by manually guiding the exploration. Note that the search space modifications during

the user-controlled exploration runs were performed with the same strategy as in the exper-

iment described in the previous section.

9. Conclusion

In this paper we presented a framework for flexible design space exploration and system op-

timization for heterogeneous SoC and distributed systems using SymTA/S and evolutionary

optimization techniques.

The ambition of our framework is not to perform a global black-box optimization, but

to give the designer control over the exploration process. To that end, the framework allows

the dynamic (re)configuration of the search space during exploration without losing already

obtained results. This feature enables the designer to perform multiple exploration steps,

adjusting the search space as his understanding of the systems performance dependencies

grows, in order to guide the search process towards interesting design sub-spaces containing

good solutions. Thereby, the framework allows, at any time, a transparent comparison

of so far obtained design alternatives with respect to multiple optimization objectives.

Experiments using synthetical complex systems have shown that the user-controlled

exploration approach increases exploration efficiency in comparison to closed automated

exploration approaches.

In addition to classical optimization parameters, like e.g. scheduling, our framework sup-

ports system optimization by means of traffic shaping. The optimization potential through

traffic shaping in complex heterogeneous SoC and distributed systems is very high. We

saw in the discussed SoC example, that inserting a traffic shaper to reduce a transient load

peak considerably improved system behavior, and consequently lead to the discovery of

interesting design alternatives, which are not possible without traffic modulation. Addition-

ally, experiments with synthetical systems indicate, that traffic shaping can broaden consid-

erably the solution space, and thus can decrease exploration time to find working system

configurations.

Springer

136 Real-Time Syst (2006) 33: 101–137

Acknowledgment We would like to thank Lothar Thiele and his group from the ETH Zürich for providing
us with the PISA interface and the corresponding algorithms for multi-objective optimization.

References

Bleuler S, Laumanns M, Thiele L, Zitzler, E PISA—a platform and programming language independent
interface for search algorithms. http://www.tik.ee.ethz.ch/pisa/

Davis L (1985) Applying adaptive algorithms to epistatic domains. In Proc. of the 9th International Joint
Conference on Artificial Intelligence (IJCAI) Los Angeles (CA), USA, pp. 162–164.

Deb K (2001) Multi-objective optimization using evolutionary algorithms. John Wiley, Chichester.
Dick RP, Jha NK (1998) MOGAC: A multiobjective genetic algorithm for hardware-software co-synthesis

of hierarchical heterogeneous distributed embedded systems. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 17(10):920–935.

Erbas C, Erbas SC, Pimentel AD (2003) A multiobjective optimization model for exploring multiprocessor
mappings of process networks. In Proc. of the IEEE/ACM/IFIP International Conference on HW/SW
Codesign and System Synthesis (CODES-ISSS) Newport Beach, USA.

Garcia JJG, Harbour MG (1995) Optimized priority assignment for tasks and messages in distributed real-
time systems. In Proc. of the IEEE/ACM Workshop on Parallel and Distributed Real-Time Systems Santa
Barbara (CA), USA.

Givargis T, Vahid F (2002) Platune: A tuning framework for system-on-a-chip platforms. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 21(11):1317–1327.

Hamann A, Ernst R (2005) TDMA time slot and turn optimization with evolutionary search techniques. In
Proc. of the IEEE/ACM Design, Automation and Test in Europe Conference (DATE) Munich, Germany.

Hamann A, Henia R, Jersak M, Racu R, Richter K, Ernst R SymTA/S - Symbolic Timing Analysis for
Systems. http://www.symta.org/.

Hamann A, Jersak M, Richter K, Ernst R (2004) Design space exploration and system optimization with
symTA/S - symbolic timing analysis for systems. In Proc. of the 25th IEEE Real-Time Systems Sympo-
sium (RTSS) Lisbon, Portugal.

Laumanns M, Thiele L, Zitzler E, Welzl E, Deb K (2002) Running time analysis of multi-objective evolu-
tionary algorithms on a simple discrete optimization problem. In Proc. of the Parallel Problem Solving
From Nature Conference (PPSN) Granada, Spain.

Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the ACM 20(1):46–61.

Maxiaguine A, Künzli S, Chakraborty S, Thiele L (2004) Rate analysis for streaming applications with on-
chip buffer constraints. In Proc. of the IEEE/ACM Asia and South Pacific Design Automation Conference
(ASP-DAC) Yokohama, Japan, pp. 131–136.

Pimentel AD, Lieverse P, van der Wolf P, Hertzberger LO, Deprettere EF (2001) Exploring embedded-systems
architectures with Artemis. In IEEE Computer.

Pop P, Eles P, Peng Z, Izosimov V, Hellring M, Bridal O (2004) Design optimization of multi-cluster em-
bedded systems for real-time applications. In Proc. of the IEEE/ACM Design, Automation and Test in
Europe Conference (DATE) Paris, France.

Richter K (2004) Compositional performance analysis. PhD thesis, Technical University of Braunschweig.
Richter K (2004) On the characterization of communication traffic and task load models in performance

verification and architecture evaluation. Technical Report TR-SPI-04-01, Institut für Datentechnik und
Kommunikationsnetze, Technische Universität Braunschweig.

Richter K, Ernst R (2002) Event model interfaces for heterogeneous system analysis. In Proc. of the
IEEE/ACM Design, Automation and Test in Europe Conference (DATE) Paris, France.

Richter K, Jersak M, Ernst R (2003) A formal approach to MpSoC performance verification. IEEE Computer
36(4).

Richter K, Racu R, Ernst R (2003) Scheduling analysis integration for heterogeneous multiprocessor SoC. In
Proc. of the 24th IEEE Real-Time Systems Symposium (RTSS) Cancun, Mexico.

Richter K, Ziegenbein D, Jersak M, Ernst R (2002) Model composition for scheduling analysis in platform
design. In Proc. of the 39th IEEE/ACM Design Automation Conference (DAC) New Orleans, USA.

Snider G (2001) Automated design space exploration for embedded computer systems. Technical Report
HPL–2001–220, Hewlett-Packard Laboratories.

Syswerda G (1990) Schedule optimization using genetic algorithms. In Handbook of Genetic Algorithms
New York, Van Nostrand Reinhold.

Thiele L, Chakraborty S, Gries M, Künzli S (2002) A framework for evaluating design tradeoffs in packet
processing architectures. In Proc. of the 39th IEEE/ACM Design Automation Conference (DAC) New
Orleans, USA, pp. 880–885.

Springer

Real-Time Syst (2006) 33: 101–137 137

Thiele L, Chakraborty S, Gries M, Maxiaguine A, Greutert J (2001) Embedded software in network proces-
sors - models and algorithms. In Proc. of the ACM Workshop on Embedded Software (EMSOFT) Lake
Tahoe (CA), USA.

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In
Proc. of the IEEE International Symposium on Circuits and Systems (ISCAS) Geneva, Switzerland.

Tindell K, Clark J (1994) Holistic schedulability analysis for distributed hard real-time systems. Micropro-
cessing & Microprogramming 50(2–3):117–134.

Tindell K, Kopetz H, Wolf F, Ernst R (2003) Safe automotive software development. In Proc. of the
IEEE/ACM Design, Automation and Test in Europe Conference (DATE) Munich, Germany, pp. 616–
612.

Whitley DL, Yoo N (1995) Modeling simple genetic algorithms for permutation problems. In Foundations of
Genetic Algorithms III San Francisco, CA, Morgan Kaufmann, pp. 163–184.

Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength pareto evolutionary algorithm.
Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland.

Arne Hamann received his Maı̂trise degree in Computer Science
from the University of Bordeaux 1, France, in 2001, and his Diploma
degree in Computer Science from the Technical University of Braun-
schweig, Germany, in 2003. He is currently working as research sci-
entist in the Embedded System Design Automation Group of Profes-
sor Ernst. His research interests include formal timing analysis and
optimization of heterogeneous distributed real-time systems.

Dr. Kai Richter received a Diploma and a doctoral degree “summa
cum laude” in Electrical Engineering from the Technical University
of Braunschweig, Germany in 1998 and 2004. He authored more than
40 papers in internationally recognised journals and conferences. His
research interests include timing and performance analysis of dis-
tributed embedded systems and embedded system architectures. Since
2005, he is co-founder and Chief Technical Officer of Symtavision
that offers unique solutions and analysis tools, including SymTA/S
for system-level real-time scheduling analysis.

Dr. Marek Jersak received his Diploma degree in Electrical Engi-
neering from Aachen University of Technology, Germany in 1997
and his doctoral degree with honours from the Technical University of
Braunschweig, Germany in 2004. Between 1997 and 1999 he worked
as a Design Engineer for Conexant Systems, Newport Beach, Califor-
nia, on DSP compiler optimization and processor/compiler co-design.
Since 2005 he is CEO of Symtavision, a spin-off from the Techni-
cal University of Braunschweig focusing on timing analysis and opti-
mization for complex embedded real-time systems.

Rolf Ernst received a Diploma in Computer Science and a Ph.D. in
Electrical Engineering from the University of Erlangen-Nuremberg,
Germany, in 81 and 87. From 88 to 89, he was a Member of Tech-
nical Staff in the Computer Aided Design & Test Laboratory at Bell
Laboratories, Allentown, PA. Since 90, he has been a professor of
Electrical Engineering at the Technical University of Braunschweig,
Germany, where he heads the Institute of Computer and Communi-
cation Network Engineering. His current research interests include
embedded architectures, hardware-/software co-design, real-time sys-

tems, and embedded systems engineering. Rolf Ernst is an IEEE Fellow and served as an
ACM-SIGDA Distinguished Lecturer.

Springer

