
Self-Configuration in Hard Realtime Systems
Moritz Neukirchner, Steffen Stein, Harald Schrom and Rolf Ernst

Institut für Datentechnik und Kommunikationsnetze
Technische Universität Braunschweig

{neukirchner|stein|schrom|ernst}@ida.ing.tu-bs.de

Abstract—We present a runtime solution to self-configuration of
systems that are subject to hard realtime constraints. The presented
approach builds on an admission control scheme, that verifies the
implications of a configuration change on system timing, prior to
the actual reconfiguration process. Based on this verification process,
the self-configuration finds feasible priority assignments for otherwise
unacceptable applications, considering static priority preemptive (SPP)
scheduling and end-to-end path latencies.

I. INTRODUCTION

Many embedded systems evolve over their lifetime - be it through
updates or autonomous adaptation to their environment. If these
systems have to adhere to hard constraints, it becomes imperative
that feasibility of adaptations is verified before applying them in
the system. In [3] we have presented the EPOC framework, which
implements a model-based admission control scheme that performs a
timing verification within the system to provide hard realtime systems
with self-protection capabilities against infeasible adaptations. In this
demonstration we present an extension to this admission control
scheme that allows to autonomously find scheduling parameters under
which it is possible to accommodate adaptations, that would have
otherwise been rejected.

First we introduce compositional performance analysis theory,
which forms the algorithmic basis of the timing analysis, within the
admission controller. Then we recapitulate the EPOC architecture.
We will then outline the architectural approach and the algorithmic
basis of the self-configuration service. Finally we will elaborate on
the demonstrator setup and the properties of our framework.

II. IN-SYSTEM PERFORMANCE ANALYSIS

The model-based timing verification within the EPOC frame-
work builds on compositional performance analysis [1]. Systems
are modeled as task graphs which are mapped on computational
and communication resources. A task is activated due to activating
events. Furthermore, a task needs to be mapped on a computation or
communication resource to execute. If multiple tasks share the same
resource, then two or more tasks may request the resource at the same
time. In order to arbitrate request conflicts, a resource is associated
with a scheduler which selects a task to which it grants the resource
out of the set of active tasks according to some scheduling policy.
Scheduling analysis calculates worst-case task response times using
task set descriptions and activating event models as input data. Event
models describe the possible I/O timing of tasks. Input event models
capture event patterns leading to task activations. Based on input event
models for all tasks mapped on a resource, local scheduling analysis
can be performed and output event models can be derived. These
output event models are propagated to connected resources, where
they are used, in turn, as input event models for local scheduling
analysis.

Compositional performance analysis solves the global system-
level scheduling analysis problem by alternating local scheduling
analyses and event model propagation along event streams connecting
functionally dependant tasks.

Global system level performance analysis yields relevant timing
data such as task response times and end-to-end latencies for task
chains possibly spanning multiple processors.

Figure 1. EPOC-RTE Contracting Architecture

The global system-level scheduling analysis can efficiently be
implemented as a distributed algorithm [4]. The EPOC framework
implemented on the demonstrator uses such a distributed implemen-
tation of system-level performance analysis to decide about feasibility
of a configuration at run-time.

III. RUNTIME ENVIRONMENT

In order to use such a model-based analysis as a run-time feasibility
evaluator, the behavior and demands of the software as well as
the capabilities of the platform must be expressible in an efficient
way. We use contracts as description, where the requesting entity
specifies its own behavior/configuration and receives assertions w.r.t.
its constraints. We evaluate contract requests at run-time using in-
system performance analysis. An application or adaptation is only
admitted to the system, if analysis shows that all contracts are satis-
fied. Thus the system only transitions between provenly performance-
safe configurations.

Application contracts consist of a performance characterization of
the application as guarantee for the RTE and a set of constraints the
application assumes to adhere to. In our system this is a description
of the task-graph that constitutes the application, of the worst-case
timing behavior and of temporal constraints (end-to-end latencies).
If the performance evaluation of a set of contracts yields that all
contracts can be met, the RTE asserts that all applications comply
to their constraints given they behave as described in the contract
request.

The architecture of the EPOC-RTE, as shown in figure 1, is
separated into two domains - the Model Domain (left) and the
Execution Domain (right). While the former negotiates contracts
based on the provided model the latter enforces the parameter settings
of the model. The Contract Repository acts as an interface between
both domains. This architecture provides the advantage of decou-
pling analysis of system configurations from execution of accepted
applications. A further advantage is that system configurations can
be evaluated and explored in the model domain without the necessity
of executing the configuration on the actual system.

IV. SELF-CONFIGURATION APPROACH

We will now look at the Model Domain, and its extension for
self-configuration, in more detail. Figure 2 depicts the framework
architecture within the Model Domain.

Figure 2. Refined view of the Model Domain

New or updated applications are presented to the framework
through the Contract Interface using the Update Controller. The Con-
tract Negotiation component inserts the received model information
into the Model Analysis [4] to determine feasibility of the system
change. In case the system change can be accepted, the contract is
stored in the Contract Repository and the result reported to the Update
Controller. The Execution Domain then enforces the change.

If however an application cannot be accepted with the provided
parameters, the RTE autonomously tries to find a configuration under
which all constraints are satisfied. To accomplish this, the analysis
component is extended by a Model-based Constraint Solver [2]. In
case an infeasible update is detected, Model Analysis reports timing
metrics to the constraint solver, which creates a new configuration
based on the metric δ, which denotes a task’s responsibility for a path
latency violation (ω denotes the task’s worst-case response time, λ
the worst-case path latency and χ the path latency constraint).

δ = max
(
0,
ω

λ
∗ (λ− χ)

)
(1)

Scheduling priorities are assigned in descending order of δ. The
new configuration is again presented to Contract Negotiation for
evaluation. This control loop within the Model Domain is executed
until a feasible configuration is found or until a maximum number
of iterations is reached.

V. DEMONSTRATOR SETUP

Our demonstrator consists of a hardware setup, performing a
control task, which resembles a timing sensitive application. We
demonstrate that the runtime environment, as described above, detects
a possible violation of timing constraints upon insertion of a music
streaming application. It then autonomously determines a priority
assignment under which all constraints of both applications are met,
thus allowing parallel execution.

The seesaw inspired setup is depicted in fig. 3. The beam in the
middle is mounted movable at both ends on the surrounding frame.
The position of each end can be controlled by separate stepper motors.
One end is controlled by a user definable disturbance while the other
end is positioned by a closed-loop control application. The track
accommodates a ball which is to be balanced in the center position
at all times. To fulfill this task one controller is equipped with an
angle sensor and an array of IR photosensors.

The stepper motors are each connected to a controller board which
feature the proposed framework (fig. 4a). The disturbance application
(D1) resides on the right controller board and operates the locally
connected stepper motor. The control application (CCtrl, CComm,
CSensor) is distributed over both boards. The sensor task acquires
data from the sensors and transmits it via the CAN-Bus to the
controller task which positions the second stepper motor accordingly.
The latency from the sensor task to the controller task is constrained
to ensure correct operation of the control loop.

Figure 3. Mechanical setup of the demonstrator

(a) System setup without update

(b) System setup with update

Figure 4. System setup of the demonstrator

VI. DEMONSTRATOR ANALYSIS

When the user tries to insert the music application (MBuffer ,
MData, MPlay , MRequest) (fig. 4b) the framework performs a
distributed performance analysis to determine whether the control
and music application can be executed quickly enough to fulfill all
timing constraints. If required it autonomously reassigns execution
priorities, to solve the conflicts.

VII. CONCLUSION

We demonstrate a functional runtime environment that enables
runtime performance verification in hard realtime embedded sys-
tem. Timing metrics from the verification algorithm are used to
autonomously reassign execution priorities. Thus providing self-
configuration capabilities to the system.

REFERENCES

[1] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proc. -, vol. 152, pp. 148–166, 2005.

[2] M. Neukirchner, S. Stein, and R. Ernst, “A lazy algorithm for distributed
priority assignment in real-time systems,” in Proc. of 2nd IEEE Workshop
on Self-Organizing Real-Time Systems (SORT), 2011.

[3] M. Neukirchner, S. Stein, H. Schrom, and R. Ernst, “A software Update
Service with Self-Protection Capabilities,” in Proc. of the conf. on Design,
Automation and Test in Europe (DATE), 2010.

[4] S. Stein, A. Hamann, and R. Ernst, “Real-time property verification
in organic computing systems,” in Second Int’l. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, 2006.

