
Morpheus DDR SDRAM Controller
Documentation

Sean Whitty
whitty@ida.ing.tu-bs.de

November 5, 2007

This is the official documentation of the DDR SDRAM
controller (CMC, Central Memory Controller) used in the
Morpheus project.

1 Architecture

1.1 General Architecture

The DDR-SDRAM controller architecture is shown in Fig-
ure 1.

Requests to the SDRAM controller are made by appli-
cations via an ST Bus Protocol Type 3 interface, which
provides the connection from the Morpheus ST Bus Pro-
tocol Type 3 based STNoC Network On Chip to a config-
urable number of application read and write ports. In the
context of the Morpheus project, the number of ports has
been set to 2 application read ports and 2 application write
ports. See Section 2.2.2 for a description of the exact num-
ber of words read/written per memory access request and
Section 3.2 for a detailed description of the application port
protocol.

Many applications can perform concurrent memory ac-
cesses, however it is not guaranteed that requests to the
same memory address from different ports are executed in
order. See also Section 1.5.

Memory access requests first enter the NoC-CMC
Interface, where read and write requests from Mor-
pheus applications are buffered and converted from NoC
packets to regular CMC read and write requests buffered
and sent to the CMC in burst request format (see Sec-
tion 1.2).

After entering the CMC (central memory controller),
memory access requests first reach the address translator,
where the logical address is translated into the physical
rank/bank/row/column quadruple required by the SDRAM,
where a "rank" designates a single or group of SDRAM
modules controlled by a unique chip select signal. See Sec-
tion 2.2.3 for more details.

Concurrently, at the data buffers, the write request data
is stored until the request has been scheduled; for read re-

quests a buffer slot for the data read from the SDRAM is
reserved.

The requests then enter the core part of the SDRAM
controller, the two-stage buffered memory access sched-
uler (see Section 1.3). After one request is selected, it
is executed by the access controller and the data transfer
to/from the corresponding data buffer is initiated by the
data I/O module. Finally, external data transport and signal
synchronization for DDR transfers is managed by the DDR
Interface (see Section 1.4).

1.2 NoC-CMC Interface

The NoC-CMC Interface connects the CMC to the
Morpheus Network On Chip using the ST Bus Type 3 Pro-
tocol [5]. It is responsible for ensuring adherence of NoC
requests and CMC responses to their respective transfer
protocols, as well as the internal buffering of memory re-
quests and data. In addition, it serves as an error detection
unit by identifying unsupported CMC commands and issu-
ing the proper error response to the transfer initiator. As
shown in Figure 2, the interface consists of four compo-
nents: Command Dispatch, Command Buffer Read, Com-
mand Buffer Write and Response Dispatch.

1.2.1 Command Dispatch

The Command Dispatch module is responsible for ensur-
ing the validity of incoming requests, the forwarding of
valid requests, and the generation of error response pack-
ets. If an request is deemed valid, it is forwarded to the
proper Command Buffer. If an error was detected, the
Command Dispatch module generates an error response
packet, which is transmitted to the Response Dispatch
module. See Table 1 for a list of supported commands and
parameters.

Although the NoC-CMC Interface has an address
bus width of 29 bits, the user must ensure that only the valid
address space of the CMC is addressed. The NoC-CMC
Interface uses word addressing, while the CMC uses

1



2-Stage
Buffered
Memory

Scheduler

AT

AT

AT

AT

Access
Controller

Data
I/O

W

W

R

R

DB

DB

DB

DB D
D

R
 -

 S
D

R
A

M
(e

x
te

rn
a
l)

R/W data bus

Client 
Ports

NoC-CMC

W

NoC-CMC

NoC 
Ports

R

W

DB

AT

Read Port

Write Port

Address Translation

Data Buffer

Request Flow

Data Flow

Legend:

Example shown with 2 read and 2 write ports

Figure 1: SDRAM controller architecture

byte addressing. Therefore, the usable NoC address space
is smaller. The exact size can be calculated as

valid NoC addr. bits =
CMC address bits − log2(wordsize in bytes) (1)

If a non-burst aligned address is accessed (the address
does not correspond to the first word in a burst), the user
must ensure that the last word of the request is located
within the same burst. For example, it is possible to issue
an ST32 request to address 9, since the request contains
4 data words. Therefore the final address of the command
would be 13, and this is a valid request. An invalid exam-
ple would be an ST64 request to address 9, which contains
8 words and ends at address 17. This overlaps the burst
border (a burst ends at address 1 and the next burst ends at
address 16) and is therefore not supported.

1.2.2 Command Buffer Write

The Command Buffer Write module accepts incoming
write requests from Command Dispatch and transfers these
requests in burst format to the CMC.

The internal buffer structure is divided into a data and
address buffer. Write requests, which can have differ-
ent word lengths, require only a single address, which is
independent of request size. Therefore, the sizes of the
two buffers at synthesis time are completely independent
of one another. The only requirement is that the data

Supported commands and parameters
Signal name Available parameters
Opcode (opc) ST08, ST16, ST32, ST64

LD08, LD16, LD32, LD64
Lock (lck) Lock is not supported,

lck = ’0’
Byte enable (be) Byte is not supported,

be = ’11111111’
Address (address) Only the lowest address bits

can be utilized. The exact size
of the address space is
determined using Equation 1.
The data corresponding to the
command must be contained
within a single burst

Transaction ID (tid) No restrictions
Source (src) No restrictions
Priority (pri) Priorities are not supported;

signal ignored
Attribute (attr) Attributes are not supported;

signal ignored

Table 1: Supported commands and parameters

2



Figure 2: NoC-CMC Interface

buffer s hould always be able to store more than one com-
plete burst. Also, because applications can best utilize
the CMC’s scheduling optimizations when working with
ST64 commands (8 data words), an address buffer should
be 1

8 the size of the data buffer.
When data is written from the buffer to the CMC, the

conversion of the request into a burst-oriented CMC re-
quest takes place. If a request is smaller than a burst, the
additional words remaining in the burst, which can be tech-
nically deemed “empty,” are masked out when the data
is written to SDRAM. A counter initialized to the lowest
three address bits is used to define the position of the first
valid data word inside a burst.

1.2.3 Command Buffer Read

The Command Buffer Read module receives read requests
from Command Dispatch and forwards them to the CMC.
In addition, it is responsible for receiving data words read
from the CMC and converting this burst-oriented data into
valid NoC response packets.

The main component of the Command Buffer Read
module is a temporary storage FIFO. Using multiple point-
ers, this buffer keeps track of the position for the next in-
coming request, the position for the next request that will

be sent to the CMC, and the position of the read request
that next expects to receive read data from the CMC. A rel-
atively simple pointer management is possible due to the
internal CMC re-ordering of read requests into their origi-
nal request order.

Read requests that are smaller than a complete burst are
treated similarly as in Command Buffer Write. Addition-
ally, only the burst address of the request is passed to the
CMC. A counter initialized to the lowest three address bits
is used to define the position of the first valid data word in-
side a burst. A second counter, which is set to the number
of words to be read, defines the final data word to be read.

1.2.4 Response Dispatch

Response Dispatch controls the distribution of response
packets to the NoC, as well as the management of the re-
sponse packet control signals. Since each of the other three
NoC-CMC Interface modules can transmit a response
packet, the Response Dispatch module has been imple-
mented with two separate buffers and a simple arbitration
algorithm.

The first buffer handles write responses and error re-
sponses, which always consist of a single cell since no real
data is transmitted. The second buffer is responsible for

3



Bank
Buffer

Bank
Scheduler

Request
Scheduler

Request
Buffer

Figure 3: Two-stage buffered scheduler

read responses. A read response packet can consist of 1-8
cells.

The transfer of the outgoing packet to the NoC uses pri-
ority arbitration. After successful transfer of a full packet,
the current active buffer assigns the transfer priority to the
other buffer, except in the case that the second buffer is
empty.

1.3 Two-Stage Buffered Scheduler

Figure 3 shows the scheduling stages. For now, a sec-
ond high priority branch, including flow control, is omit-
ted. This feature is not currently supported in the CMC de-
signed for the Morpheus architecture. However, this fea-
ture can be easily incorporated into a later version of the
CMC.

1.3.1 Request Buffer, Request Scheduler

The single-slot request buffers are used to decouple the
clients from the following scheduling stages. The first
scheduler stage, the request scheduler, selects requests
from these buffers, one request per two clock cycles, and
forwards them to the bank buffer FIFOs. By applying a
round-robin arbitration policy, a minimum access service
level is guaranteed.

1.3.2 Bank Buffer, Bank Scheduler

The bank buffer FIFOs, one for each bank, store the re-
quests according to the addressed bank. The second sched-
uler stage, the bank scheduler, selects requests from these
bank buffer FIFOs and forwards them to the access con-
troller for execution. In order to increase bandwidth uti-
lization, the bank scheduler performs bank interleaving to
hide bank access latencies and request bundling to mini-
mize stalls caused by read-write and rank switches.

For more details on the CMC architecture, see [1, 2].

1.4 DDR Interface

A significant challenge for the CMC design was the timing
synchronization along the DDR-SDRAM data path. This

DDR Interface was especially difficult to implement
due to the fact that the controller itself is clocked at half
the speed of the memory, as well as the lack of informa-
tion such as exact signal delays on the board itself through
tristate drivers and I/O pads. A functional interface must
therefore be able to adapt itself to many timing require-
ments. For this purpose, three features were included in
the interface:

• DLL elements used to create delay of Data Strobe sig-
nal (dqs)

• Flexible Capture Unit for transferring data with sys-
tem clock

• Moving Data Valid Window for acquisition of data on
the internal data bus

Figure 4 shows a schematic diagram of the interface. It
is important to note that 8 Data signals (dq) are always as-
sociated with a single Data Strobe dqs and Data Masking
dqm bit. The interface drives a total of 8 dqs signals in or-
der to achieve a word size of 64 bits. Therefore, the struc-
ture shown is often repeated in the actual implementation.
To simplify the schematic, however, redundant elements
are eliminated. The following sections describe the DDR
Interface in terms of write and read requests. All sig-
nal names are based on Figure 4. For more information,
consult [4].

1.4.1 SDRAM Write Access

During write requests, the CMC assumes bus control and
drives all interface signals via the signals dq_drive and
dqs_drive. To double the data rate on the dq lines, a
simple double data rate Flip Flop was developed with two
data inputs and a single data output. On a rising clock edge,
input D0 is registered and on a falling clock edge, input D1
is registered. The Data Mask signal is similarly generated,
which exists to mask out specific data words inside a burst
in order to prevent overwriting data in memory. Within the
controller itself, all signals are completely synchronous to
one another, and the synthesis process is responsible for
the observation of setup and hold times of individual gates.

4



Figure 4: Interface to DDR-SDRAM

However, due to unknown timing information such as sig-
nal layout delays, an exact timing cannot be determined at
synthesis time.

The delay introduced to the dqs’ signal can only guar-
antee that the Data Strobe arrives at the SDRAM after the
data itself and therefore that the correct data is registered.
It must be noted, however, that different memory modules
on the chip can be placed different distances away from the
controller, amongst other possible tolerance issues related
to manufacturing. Therefore, the interface was designed
with maximum flexibility in mind. Each of the 8 dqs sig-
nals has its own DLL, and all DLLs can be configured in-
dependently of each other via the configspace module.
See Section 2.5 for detailed DLL information.

Figure 5 represents a simplified example of a write re-
quest. A burst of 8 data words is written into DDR-
SDRAM. The first data word is masked out (dqm = 1),
meaning this position is not overwritten in memory. The
Data dq and the corresponding Data Strobe dqs’, which
is the reference signal for data acquisition by the memory,
are generated by the CMC and therefore synchronous to
the system clock. If we assume the simplification that the
PCB trace for the dq and dqs’ signals are the same length,
meaning that the data arrives at the same time as the sys-
tem clock, it becomes clear that the Setup Time is violated.
In this case, the DLLs shift the dqs’ signal to the mid-
dle (timing-wise) of the data word in order to generate the

most tolerant timing situation possible (the DLLs are also
subject to jitter, so the delay is not constant). This creates
a new delayed Data Strobe signal called dqs.

1.4.2 SDRAM Read Access

The unknown delay times can also create communication
problems between the CMC and DDR-SDRAM modules
during read requests. After the CMC sends the CAS sig-
nal, the memory module does not transfer the data onto the
dq bus and set the Data Strobe until the amount of time
specified by the CAS latency parameter (2, 2.5, or 3 clock
cycles) has passed.

The DDR-SDRAM specifications require that all 8 Data
signals that belong to a single Data Strobe do not become
valid in the same instant. As shown in Figure 6, all Data
signals can only be acquired via a DQS edge during a given
time window. This time window is known as the Data Valid
Window and its duration can be calculated as follows, using
the SDRAM Timings shown in Table 2:

tHP = min(tCH · tCK , tCL · tCK) (2)
tQH = tHP − tQHS (3)
tDV = tQH − tDQSQ (4)

To provide timing synchronization, the Data Strobe sig-
nals can be supplied in the middle of the Data Valid Win-

5



Figure 5: Burst write with data masking

Figure 6: DDR Data Valid Window

dow, with the help of the DLL elements provided for the
DQS signals generated by the DDR-SDRAM during read
requests. This, in combination with the three-stage Cap-
ture Unit, allows for proper acquisition of data as shown in
Figure 4.

After the data has been acquired by the Capture Flip
Flops using the corresponding Data Strobe, they must be
properly transfered into the Sync Flip Flops. There is no
relationship between the DQS signal and the CMC system
clock, and therefore the Sync Flip Flops can be clocked
with either the CMC system clock or an inverted system
clock. The choice depends on which of the two clocks pro-
vide more tolerance in regards to meeting timing require-
ments and properly registering the incoming data. Figure 7
illustrates both possible clocking methods for a data word
stored into the Capture Unit Flip Flops using a rising DQS
edge. The sum of tsetup and thold is the same in both cases.
However, in this example, acquisition with the falling edge
of the system clock creates a more balanced result, with
timing tolerance in both directions. Next, in the last stage
of the Capture Unit, the System Flip Flops ensure that both
data paths are now forwarded to the internal data bus with
the positive edge of the system clock. Two data paths are
required due to the CMCs internal reduction from double
data rate to single data rate transfers.

Finally, due to remaining unknown delay times, the Data
Valid Window may also be required to be shifted back so
that all words in a burst can be properly captured by the
internal bus. From this moment on, the data words are
completely in the system clock domain and can be further
processed by the CMC.

1.4.3 Alternatives to DLL Usage

As a possible alternative to the use of DLL elements, de-
lays built into the PCB trace itself were considered. Here,
the advantage is the removal of the complex logic used
to implement the interface using DLLs as well as a sig-
nificant savings in chip area. However, the disadvantages
of this solution prevented it from being considered for se-
rious use. The delay for individual signal lines must be
determined via its length on the board. With the mem-
ory blocks used during testing [4], a delay of at least 0.85
ns is required. With an approximate propagation speed
of vsignal = 20 cm

ns , this would require a signal length of
l = 17cm. This length is unrealistic for a modern architec-
ture. In addition, for an exact length calculation all delay
times must be known, which would force the controller to
be restricted to a specific memory module or in the best
case, those modules with almost identical timing behavior.

6



Parameter Description Unit

tCK clock period ns
tCH clock high-level width minimum tCK

tCL clock low-level width minimum tCK

tDQSQ DQS to last DQ valid ns
tQHS clock half period ns
tQH DQ-DQS hold ns
tDV data valid window ns

Table 2: SDRAM Timing Parameters

Figure 7: Data synchronization

1.5 Memory Coherency

• Reads and writes from different ports to the same ad-
dresses are potentially executed out-of-order. Pro-
vided that the bank buffers do not fill up, a distance
of 2n clock cycles, with n being the number of ports,
is enough to exclude any hazards.

• Reads from one port to different addresses might be
executed out-of-order, however they finish in-order.
This implies that the application always receives the
requested data in-order. The reordering takes place
inside the data buffers.

• Writes from one port to different addresses might be
executed out-of-order. This is a non-issue, however,
since they occur at different addresses.

1.6 Modules (Entities)

The complete controller consists of three modules (VHDL
entities), cmc_core, configspace and noc-cmc.
The entity cmc_core is the memory controller itself. This
controller core contains the modules described above, im-
plemented as separate entities. It also contains the DDR
Interface, which consists of the sdram_datapath
and sdram_addresspath entities that implement the
single data rate (address, control signals, clock) and double
data rate (data, data strobe, data mask) logic for communi-
cating with the SDRAM. This design allows for optimal
hierarchy control.

Finally, a single top-level module cmc_top exists to
instantiate each of the above entities.

2 Configuration

2.1 Overview

The SDRAM controller is largely configured by setting
generics (Table 3) for the top module (cmc_top entity).
However, a few generics need to be specified for the con-
troller core and the NoC-CMC interface (cmc_core and
noc-cmc entities). See Tables 4 and 5.

In addition, a few constants specifying maximum val-
ues must to be defined. These constants exist in the
cmc_package.vhd file (Table 6). There is no effect on
the generated code if these maximum values are larger than
actually needed, but the synthesis tool might generate more
warnings. If the values are too small, synthesis and simu-
lation will fail and appropriate messages will be printed. If
these values are larger than necessary for the actual config-
uration, information messages will report which constants
could be reduced. However, simulation and synthesis does
not know if more than one controller is used, which can
produce constant values that are too low for a specific con-
troller instance. Therefore, it is best to leave the constants
at larger values, since it has no negative impact other than
additional warnings generated by simulation and synthesis
tools.

2.2 Configuration Options

2.2.1 SDRAM Support

The CMC was designed to support a wide variety of DDR-
SDRAM modules. Its flexibility allows it to function
properly with all DDR-SDRAM modules that support the
generic values defined in G_SD_* in Table 3. These gener-
ics, along with the configspace module, configure the
current DDR-SDRAM and appropriate CMC settings. In
addition, the controller was designed to operate at the

7



Generic Description Current value

SDRAM
G_SD_DBUS_BITS databus width 64
G_SD_ABUS_BITS addressbus width 14
G_SD_BANK_BITS bank addressbus width 2
G_SD_NCS number of chip selects 2
G_SD_ROW_BITS number of row address bits 14
G_SD_COL_BITS number of column address bits 10
G_SD_PRE precharge bit 10
G_SD_BURSTLENGTH burstlength 8
NoC-CMC Interface
G_BUFF_CMD_LENGTH_RD read address buffer length 4
G_BUFF_DATA_LENGTH_RD read data buffer length 16
G_BUFF_ADDR_LENGTH_WR write address buffer length 4
G_BUFF_DATA_LENGTH_WR read data buffer length 16
G_BUFF_CELL_LENGTH response buffer length for error and write 4
G_BUFF_CELL_LENGTH_RD response buffer length for read 16
G_NOC_ADDR_BITS number of address bits of NoC/buffer 29
G_NOC_DATA_BITS number of data bits of NoC/buffer 64
G_APP_BURST_LENGTH CMC burst length 8
G_CMC_ADD2ADD_CYC min number of cycles between two read requests to cmc 3
Application
G_APP_NPORTS_RD_STD number of standard priority read ports 2
G_APP_NPORTS_RD_HIGH number of high priority read ports 0
G_APP_DATA_BITS_RD read port data width in bits (array) 64
G_APP_ADDR_BITS_RD read port address width in bits (array) 27
G_APP_NPORTS_WR_STD number of standard priority write ports 2
G_APP_NPORTS_WR_HIGH number of high priority write ports 0
G_APP_DATA_BITS_WR write port data width in bits (array) 65
G_APP_ADDR_BITS_WR write port address width in bits (array) 27
G_APP_SINGLE_BB_STD single bank buffer for standard priority false
G_APP_SINGLE_BB_HIGH single bank buffer for high priority false
Address Translator
G_AT_USE_TABLES disable / enable usage of address translation tables false
G_AT_TABLES_RD read port address translation tables (2 dimensional array) (see text)
G_AT_TABLES_WR write port address translation tables (2 dimensional array) (see text)
G_AT_MAPPER address mapper MAP_LOW
Flow Control (high priority ports only)
G_FC_T window size T in clock cycles (T = 0: flow control disabled) 0
G_FC_N requests: N requests within window of T clock cycles (N = 0:

flow control disabled)
0

Misc
G_SIMULATE compile for simulation, valid for behavioral simulation only false
G_SIMULATE_TCLK simulation clock cycle time 8 ns
G_MEM_EN enable SDRAM simulation module instantiation false
G_INT_DATA_BITS_WR internal data buffer − > data handler bus width 130
G_INT_DATA_BITS_RD internal data handler − > data buffer bus width 128

Table 3: Core CMC generics. Fixed values for Morpheus CMC shown

Generic Description Current value

G_SD_DBUS_BITS data bus width, MUST match core G_SD_DBUS_BITS generic 64
G_SIMULATE Compile for behavioral simulation (adjust some timing parameters) false
G_SIMULATE_TCLK System clock period, required if G_SIMULATE is set to true false

Table 4: DDR datapath generics

8



Generic description possible values

G_SD_ABUS_BITS address bus width, MUST match core G_SD_ABUS_BITS generic 14
G_SD_BANK_BITS bank address bus width, MUST match core G_SD_BANK_BITS generic 2
G_SD_NCS number of chip selects, MUST match core G_SD_NCS_BITS generic 2

Table 5: SDR datapath generics

Constant Description

C_APP_DATA_BITS_MAX maximum width of application port data bus
C_APP_ADDR_BITS_MAX maximum width of application port address bits
C_DATATAG_BITS_MAX maximum number of data tag bits, used internally
C_NCS_BITS_MAX maximum number of chip selects
C_BANK_BITS_MAX maximum width of bank address
C_ROW_BITS_MAX maximum width of row address
C_COL_BITS_MAX maximum width of column address
C_INT_DATA_BITS_WR maximum width of data buffer -> data handler bus (must be multiple of

(G_SD_DBUS_BITS + word mask))
C_INT_DATA_BITS_RD maximum width of data handler -> data buffer bus (must be multiple of

G_SD_DBUS_BITS)
C_DB_NBURSTS maximum data buffer size in bursts
C_LOGBANK_BITS_MAX maximum width of logical bank address

Table 6: Maximum constants in cmc_package.vhd

fixed speed of 200 MHz, which implies the use of DDR-
SDRAM operating at 400 MHz.

2.2.2 Application Ports

The generics G_APP_* in Table 3 configure the applica-
tion ports. There are only read and write ports, no read-
write ports. A maximum of 8 read and 8 write ports are
currently supported. These maximum values are not veri-
fied, however exceeding them will certainly lead to severe
clock frequency degradation. As stated above, the this ver-
sion of the Morpheus CMC has 2 independent read and 2
independent write ports.

The SDRAM controller has different generics and inter-
faces for read and write ports. Ports are numbered from
0 . . . nrd−1 for read ports and from 0 . . . nwr −1 for write
ports. If used, high priority ports come before standard pri-
ority ports (they have the lower port numbers).

Number of Ports. The number of ports is speci-
fied by the generics G_APP_NPORTS_RD_HIGH and
G_APP_NPORTS_RD_STD for read ports (high priority
and standard priority), G_APP_NPORTS_WR_HIGH and
G_APP_NPORTS_WR_STD specify the number of write
ports (high and standard priority). The Morpheus CMC in-
cludes standard priority ports only; therefore the generics
defining the number of high priority ports is set to 0.

Port data width. Each application port can
have a different data width, however it must be
a power of 2 and the maximum size is twice the

SDRAM data bus width 1. To specify the port
widths, the generics G_APP_DATA_BITS_RD and
G_APP_DATA_BITS_WR are used. Both generics take
arrays of positive values 2 that specify the port widths. For
read ports, the array range is 0 . . . nrd − 1; for write ports,
0 . . . nwr − 1 (write ports). The Morpheus CMC fixes the
data width of each port to 64 bits.

Port address width. Each application port’s address
bus can have a different size for instances when a given
application does not need to access the full memory
range. The maximum address width depends on the cur-
rent SDRAM configuration and can be calculated using the
following formula:

addrwidth = G_SD_ROW_BITS

+G_SD_COL_BITS
+G_SD_BANK_BITS
+dlog2(G_SD_NCS)e
+ log2 (G_SD_DBUS_BITS/8)

The port address widths are set using
the generics G_APP_ADDR_BITS_RD and
G_APP_ADDR_BITS_RD in the same way as for
the application port data width. For the current Morpheus
configuration, this equation provides an address width of
29 bits.

1Provided that the C_APP_DATA_BITS_MAX constant is set to at least
this value.

2type t_natural_array, defined in the utilities package

9



Figure 8: Address translation, 1st step

Figure 9: Address translation, 2nd step

Application burst length. SDRAM accesses are al-
ways performed at full SDRAM burst length (currently, 8
SDRAM words). Therefore, the CMC expects to receive a
full burst from the NoC-CMC interface on a memory write
access, or it receives a full burst from the SDRAM con-
troller on a memory read access, respectively. The num-
ber of words the NoC-CMC interface has to send or re-
ceive per memory access request depends on the SDRAM
burst length (currently, always 8) and the relationship of the
SDRAM data bus width to the application data bus width
and can be calculated using the following formula:

burstlength = G_SD_BURSTLENGTH

· G_SD_DBUS_BITS

G_APP_DATA_BITS_*(i)

Example: with a SDRAM burst length of 8, a SDRAM
data bus width of 64 bits and a port width of 64 bits, which
corresponds to the current Morpheus CMC settings, the
NoC-CMC interface always writes or reads 8 words per
memory access request.

2.2.3 Address Translation

The address translation consists of two steps, described in
Figures 8 and 9.

Logical to physical address translation. Since the
logical address is byte-aligned, but the SDRAM controller
can only address SDRAM words, the logical address is
SDRAM-word-aligned by discarding the

log2(G_SD_DBUS_BITS/8)

LSBs.
Example: if the SDRAM controller has a databus size

of 64 bits (8 bytes), the 3 lowest bits of the logical address
are discarded. Addresses are therefore byte-aligned. It is
the user’s responsibility to not use these lower bits and set
them to “0” (the superfluous address lines are discarded
during synthesis). During simulation, a warning message
is printed if these bits are not “0”, however this cannot be
checked during synthesis.

The following table-based address translation is op-
tional. To use it, the generic G_AT_USE_TABLES has
to be set to true. If this generic is set to false – the
default value – the tables are disabled and the SDRAM-
word aligned logical address is used as physical address.
In the Morpheus CMC, table-based address translation is
disabled due to lack of specifications necessary to create
the tables, as well as to reduce logic complexity. However,
as it is a standard CMC feature, it is described below.

The MSBs of the SDRAM-word aligned logical address
are used to select a base address from the address trans-
lation table, which is then added to the remaining logical
address bits to form the final physical address.

The size and content of the address translation table
can be configured on a per-port basis via the generics
G_AT_TABLES_RD and G_AT_TABLES_WR (read and
write ports). These generics each take a 2-dimensional ar-
ray, where the 1st dimension is the port number and the
2nd dimension the table entries for each port. To be able
to specify different table sizes for each port, the last entry
of each table has to be set to "-1". If desired, just one sin-
gle base address can be used by specifying a single entry
address translation table.

Table address entries are specified using bytes, but since
the SDRAM can only address words, the lowest

log2(G_SD_DBUS_BITS/8)

bits are discarded.

Physical to (rank)/bank/row/column translation.
Internally, different SDRAM ranks are treated as memory
bank extensions, since different memory modules may op-
erate independently similar to (but not exactly like) banks
within a single module.

The number of logical banks is therefore

G_SD_NCS · 2G_SD_BANK_BITS .

The following address translation step converts the phys-
ical address into the logical_bank/row/column triple.

To perform this step, three address translation mappers
exist. Regardless of the mapper used, the

log2(G_SD_BURSTLENGTH)

MSBs of the physical address (always the lowest 3 bits
with a burst length of 8) are used as the "burst start address"

10



and must be sent to the SDRAM as the lowest column ad-
dress bits. These specify which word of an SDRAM burst
is read/written first, implementing a critical word first ap-
proach.

a) MAP_HIGH: The MSBs of the physical address bits
are used as the logical bank address, followed by the
row address, followed by the column address. This
is a very simple address mapping and does not dis-
tribute memory requests across different banks, since
the MSBs generally do not change often. Used mostly
for debug purposes.

b) MAP_LOW: Like "MAP_HIGH", but the physical ad-
dress bits just above the "burst start bits" are used as
the logical bank address. This avoids the disadvan-
tage of "MAP_HIGH" because the lower address bits
change frequently. The Morpheus CMC utilizes the
"MAP_LOW" mapper.

c) MAP_EXOR: Like "MAP_HIGH", but the final logi-
cal bank address is created by XOR-ing the bank ad-
dress with the rest of the physical address (except the
"burst start address" bits). This distributes memory
request across banks even better than "MAP_LOW".
However, the generated address sequences appear rel-
atively random, making debugging more difficult.

The mapper is set globally for all ports by setting the
G_AT_MAPPER generic to MAP_HIGH, MAP_LOW (de-
fault) or MAP_EXOR as desired.

If MAP_EXOR is selected, the G_AT_MAPXOR_TABLE
generic specifies which bits of the physical address are
XORed with the bank address. The generic provides an
array of 32-bit masks, one mask for each logical bank ad-
dress bit:

logicalbankbits = G_SD_BANK_BITS

· log2(G_SD_NCS)

Each mask specifies the bits of the physical address that
are to be XORed with the corresponding bit of the log-
ical bank address. For example, with a two bank sys-
tem, if G_AT_MAPXOR_TABLE[0] = 16#0100# and
G_AT_MAPXOR_TABLE[1] = 16#0200#, bit 8 of the
physical address will be XORed with bit 0 of the bank ad-
dress, and bit 9 will be XORed with bit 1 of the bank ad-
dress.

Like the table addresses, the bits in the masks assume
byte-oriented physical addresses. As explained above, sin-
gle bytes cannot be addressed, and since different burst
start addresses specify the same memory area that is trans-
ferred by a burst access, the burst start address bits must
never change the bank address. For these reasons, the
lower

log2(G_SD_DBUS_BITS/8)
+ log2(G_SD_BURSTLENGTH)

bits of the masks are treated as zero. For example, take a
system with a data bus width of 32 bit (2 byte address bits)
and a burstlength of 8 (3 burst start address bits). In this
case, the lower 5 bits of the tables are treated as zero.

If the table provides only one entry and if the entry is 0
(the default value), a default scheme will be used in which
the physical address bits are XORed in a cyclic way with
the bank bits. For example, take the example above and
assume 4 banks (2 bank address bits): bit 5 of the physical
address is XORed with bank bit 0, bit 6 with bank bit 1,
bit 7 with bank bit 0, and so forth. With an 8 bank sys-
tem (for example, 2 ranks of 4-bank SDRAMs), physical
address bits 5, 8, 11,. . . are XORed with bank bit 0, physi-
cal address bits 6, 9, 12,. . . are XORed with bank bit 1, and
physical address bits 7, 10, 13,. . . are XORed with bank
bit 2.

2.3 Morpheus Specific Run-Time
Configuration

The exact values of the configuration generics described
above clearly depend on the type of DDR-SDRAM used,
the clock frequency, and overall board layout. For the
Morpheus CMC, many values for the generics have been
determined based on design requirements and cannot be
changed. This is in contrast to the flexible nature of the
original CMC design, which was created for use in an flex-
ible FPGA environment.

Despite the requirement that many parameters, such as
address bus width, data bus width, and the number of
application ports, must be determined before logic syn-
thesis, a certain degree of flexibility must remain in the
Morpheus CMC so that it may support different DDR-
SDRAM modules. To achieve this goal, a programmable
configspace module was created.

The configspace module is a programmable 16-
bit register set used to configure the CMC for a spe-
cific SDRAM module. It allows run-time configuration of
SDRAM timing, SDRAM layout, and of the DDR path
DLL elements used to generate necessary signal delays.
Additionally, the module contains two diagnostic registers,
which provide flags to assist in testing the controller func-
tionality.

Its interface to the Morpheus architecture is imple-
mented as an ST Bus Target Interface Type 1 [5]. The
interface only supports the Type 1 opcode “store 2 bytes”
(0010), without byte enable. Furthermore, only a single
cell operation is accepted. In the event of an unsupported
configuration attempt, the interface detects violations and
transmits a response opcode that indicates a configuration
failure, in which case the configuration registers do not
change state.

See Tables 7- 18 for a description of the function of each
register, as well as valid configuration values.

11



15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved trfc trp trw tcl trcd

Table 7: SDRAM Timing Register 1 (Address 0x00000000)

Register value Physical parameter (clock cycles)

RAS to CAS delay (trcd)
00 2
01 3
10 4
11 reserved
CAS latency (tcl)
00 2
01 2.5
10 3
11 reserved
Write recovery (twr)
0 2
1 3
Row precharge (trp)
0 2
1 3
Refresh cycles (trfc)
XXXXX Value between 00000 and 111111 represents the

number clock periods during a refresh cycle

Table 8: SDRAM Timing Register 1 configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
tref

Table 9: SDRAM Timing Register 2 (Address 0x00000002)

Register value Physical parameter (clock cycles)

Refresh interval (tref)
XXXXXXXXXXXXXXXX Value directly represents the number

of clock cycles between SDRAM re-
fresh cycles

Table 10: SDRAM Timing Register 2 configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved ncs ncols nrows

Table 11: SDRAM Layout Register (Address 0x00000004)

Register value Physical parameter (clock cycles)

Number of row address bits (nrows)
00 12
01 13
10 14
11 reserved
Number of column address bits (ncols)
00 9
01 10
10 11
11 12
Number of chip selects (ncs)
0 1
1 2

Table 12: SDRAM Layout Register configuration

12



15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved idd icc

Table 13: CMC Setup Register (Address 0x00000006)

Register value Physical parameter

Polarity of internal SDRAM capture clock (icc)
0 Normal system clock used
1 Inverted system clock used
Additional delay to data available signal (idd)
XXX Value directly represents the number of clock cycles

for additional delay to wait before accepting incom-
ing SDRAM data as valid

Table 14: CMC Setup Register configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved user_cmd

Table 15: DLL Setup Register X (Address 0x00000008-0x00000028)

Register value Physical parameter

Additional delay to data available signal (user_cmd)
XXXXXXXXX Value between 000000000 (min) and 110001111

(max) directly represents delay command applied
to DLL element. There are 17 total DLLs; 8 input,
8 output, 1 data strobe.

Table 16: DLL Register configuration

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
reserved cmd data addr eop add burst add space opc be lck

Table 17: Diagnostics Register (Address 0x00000030-32)

Register value Meaning

Lock (lck)
0, 1 1 Signifies a protocol error
Byte enable (be)
0, 1 1 Signifies byte enable usage caused a protocol error
Opcode (opc)
0, 1 1 Signifies invalid opcode caused a protocol error
Address space (add_space)
0, 1 1 Signifies access outside valid address space
Address offset (add_burst)
0, 1 1 Signifies address offset creates an error
End of package (eop)
0, 1 1 Signifies end of package caused a protocol error
Address buffer overflow (addr)
0, 1 1 Signifies buffer overflow in Command Buffer Write
Data buffer overflow (data)
0, 1 1 Signifies buffer overflow in Command Buffer Write
Command buffer overflow (cmd)
0, 1 1 Signifies buffer overflow in Command Buffer Read

Table 18: Diagnostics Register

13



2.4 Initialization

Before the first read or write command can be issued, the
CMC must be initialized. The initialization procedure in-
cludes the initialization of the SDRAM, during which the
SDRAM is allowed to arrive at a stable state after sys-
tem start-up, as well as the initialization of the controller
itself via the configspace module (see Section 2.3),
which must be loaded with valid initialization data. This
configuration interface is the only module that does not
automatically revert to a defined state via the Chip Reset
nreset signal. When the Chip Reset signal is activated,
the CMC begins its configspace module-dependent
initialization procedure. This procedure first ensures that
the Mode Registers of the DDR-SDRAM module are prop-
erly set, which contain the physical description of the
DDR-SDRAM (Timing and Layout). The procedure also
performs initial calibration of the DLL elements.

It should be noted that the DDR-SDRAM standard re-
quires a delay of 200 µs after SDRAM clock stabilization
before the initialization sequence can be started [3]. This
delay ensures that the SDRAMs internal DLL elements
have been initialized. These DLLs are not to be confused
with the DDR Interface DLLs. This delay is not cre-
ated by the CMC itself and must be verified by the user.

In addition to the above initialization steps, the con-
troller must also be fine-tuned for error-free operation due
to various design factors unknown at the time of implemen-
tation, such as gate-specific setup and hold times and sig-
nal delays created by the physical chip layout. Therefore,
with the help of a test phase, it must be determined which
settings ensure error-free controller operation. An example
test phase could consist of a test burst of known data, which
is written into memory via the CMC and then immediately
accessed with a read request. With each “test access,” con-
sisting of one write and read operation, a different config-
uration could be used. In this way, a multi-dimensional
test field can be generated, which demonstrates with which
parameters the CMC is functional.

2.5 DLL Elements

DDR-SDRAM interfaces require precise timing con-
straints to guarantee proper data delivery to SDRAM and
proper capturing of SDRAM data. Therefore, it is neces-
sary to introduce certain delays to the signals involved in
the DDR-SDRAM interface. To attain this goal, 8 Delay
Locked Loops (DLL) exist for read signals, 8 DLLs exist
for write signals, and a final DLL exists to delay the DQS
Tristate drive signal. All 17 DLL elements are identi-
cal and contain a programmable register (user_cmd) that,
via its 400 possible values, can generate a signal delay from
3.7 ns to 9.2 ns (see Table 15 and 16) [6]. The worst and
base case behavior depends on input voltage and operating
temperature. A more detailed explanation of the function-
ality of the DLL elements within the DDR-SDRAM inter-
face can be found in Section 1.4.

2.6 Diagnostic Register

The ST Bus Protocol supports only very basic error report-
ing, with information regarding the source and the type of
the failed request. However, information with a specific er-
ror code or status information is not provided. On the other
hand, data traffic and the behavior of the Morpheus HREs
are difficult to predict, which makes this type of informa-
tion about the error’s origin desirable.

The two diagnostic registers described in Tables 17 and
18 were created for this purpose. These registers contain
status information from the NoC-CMC Interface and
can be read over the existing ST Bus Type 1 Interface de-
signed for CMC configuration. With the help of an ST
Bus to AMBA bus converter, this information can be eas-
ily accessed, providing the user with information regarding
buffer overflows and problematic read or write requests.

3 Usage

3.1 Application Interfaces

The Morpheus CMC’s main interface is the NoC-CMC
Interface. All clients compliant with the ST Bus Pro-
tocol Type 3 interface can send and receive requests from
the CMC. However, this interface simply converts requests
based on the Type 3 protocol into CMC formatted requests.
For a full understanding of the CMC functionality, it is im-
portant to understand the design of the internal application
interface as well, despite the fact that this interface is hid-
den to the client in the context of the Morpheus project.

The controller application interface (ports)
use records (t_app_reqwr, t_app_reqrd,
t_app_reprd). With a configurable CMC, the
data and addr fields of these records must be
declared using the C_APP_DATA_BITS_MAX and
C_APP_ADDR_BITS_MAX constants from the
cmc_package file, which will probably not match
the real port data and address widths. Therefore, the exact
range need to be specified when accessing these fields.

For the Morpheus CMC, because it is designed specif-
ically for the Morpheus architecture, these constants do
match the real port data and address widths. The sec-
ondary specification remains for flexibility in future CMC
versions.

3.2 Application Protocols

For all read and write requests to the CMC, the following
protocols must be followed to ensure proper operation. The
NoC-CMC Interface ensures compliance with these
requirements. However, clients connecting to the CMC via
the NoC-CMC Interface should also support a similar
read and write protocol to prevent stalling in the interface.
Therefore, a detailed explanation of the CMC application
protocol is provided.

14



Figure 10: Application read protocol

3.2.1 Read Protocol

See Figure 10. Issuing requests:

t0 If busy is low, the client places the logical address on
address and raises req_avail.

t1 Application releases req_avail, CMC acknowl-
edges by raising busy.

t2 CMC keeps busy high.

t3 Controller releases busy.

t4 Application is ready to issue next request.

Note t3: Controller might delay releasing busy if internal
buffers are full.
Read replies (finishing read requests):

t0 Controller writes 1st data word on data and raises
data_avail.

t1 Controller writes 2nd data word on data and keeps
data_avail high.

tn Controller writes last (n-th) data word on data, keeps
data_avail high and raises last_data.

tn+1 Controller releases data_avail and last_data.

3.2.2 Write Protocol

See Figure 11. Issuing requests:

t0 If busy is low, the client places the logical address
on address, puts 1st data word on data and raises
req_avail.

t1 Application puts 2nd data word on data and re-
leases req_avail, controller acknowledges by ris-
ing busy.

tn Application puts last data word on data, controller
releases busy.

tn+1 Application is ready to issue next request.

Note tn: Controller might delay releasing busy if internal
buffers are full. If a write request to port i is finally exe-
cuted, the bit i in the o_app_donewr vector will be set
for one clock cycle.

3.3 Clocks

The Morpheus CMC is designed to operate at 200 MHz. It
uses a single system clock input named clk. Internally, the
SDRAM clocks are derived using this single clock input.

In the CMCs original FPGA incarnation, three phases
of a 125 MHz clock were used to simplify the communi-
cation between the CMC and the DDR memory modules.
The phases 0 ◦, 90 ◦ and 180 ◦ were therefore created and

15



Figure 11: Application write protocol

included in the FPGA clock net, external to the CMC itself,
using a Xilinx custom DCM block (digital clock manage-
ment). Such blocks do not exist in the supplied ST Tech-
nology Libraries. Therefore, the design was redone to uti-
lize two phases of the 200 MHz clock described above, 0 ◦

and 180 ◦. The 180 ◦ phase shift is created using simple in-
version but must be precise relative to the 0 ◦ shifted clock.

3.4 Reset

The Morpheus CMC includes a reset signal input. This re-
set signal, which is active-low, launches the initialization
procedure described in 2.4 when a digital high value is de-
tected on its input for one clock cycle. When a reset is per-
formed during normal operation, the CMC is re-initialized
with the values currently stored in the configspace
configuration registers, the SDRAM is re-initialized, and
the contents of SDRAM are no longer considered valid.

3.5 Instantiation

The CMC modules use the so called "component-less" in-
stantiation method, which means that no components are
declared and that the cmc library has to be accessed di-
rectly by using the "entity" statement.

For compatibility with the Morpheus HDL database, two
blocks are instantiated as components.

3.6 Resource usage

Resource usage heavily depends on the CMC configura-
tion. For the Morpheus design, configuration decisions are
fixed. Therefore, precise resource usage can be reported.

The Morpheus CMC relies on the ST Microelectron-
ics 90 nm technology libraries, as well as Delay Locked
Loop technology libraries and custom ST memory mod-
ules (memory cuts) for internal storage. In each of the
above technology libraries, a single gate occupies a total
area of 4.4 µm2/gate.

Table 19 shows the resource usage for a SDRAM con-
troller on the Morpheus platform with

• 2 NoC-CMC client ports

• 4 standard priority application ports, 2 read and 2
write

• 64-bit application data bus size

• MAP_LOW address mapping with default setup

• 64-bit SDRAM data bus

• 13-bit SDRAM address bus (13 bits row, 10 bits col-
umn)

• 4 SDRAM banks

• 2 chip selects

• QoS disabled (prioritization and flow control)

• Multiple bank buffer FIFOs for standard priority re-
quests

• 17 total DLL elements used for internal DDR signal
delays

• 2 custom 512 word x 65 bit ST memory cuts

• 2 custom 512 word x 64 bit ST memory cuts

16



Module Size (µm2)
cmc_core 1,353,859
ST memory cuts 1,145,855
configspace 5,725
dqs_delay 257,024
noc-cmc_top_0 118,222
noc-cmc_top_1 118,320
noc-cmc_top_2 118,433
Synthesizable area (µm2) 568693
Synthesizable area (KiloGates) 126

Table 19: CMC example resource usage

3.7 VHDL Code
The Morpheus CMC source tree is maintained as a hierar-
chical HDL database. Consult Morpheus Deliverable 4.5.1
Preliminary Description of HDL Database for more infor-
mation.

4 Conclusion
This concludes the documentation of the Morpheus DDR
SDRAM controller. Application partners wishing to cor-
rectly utilize the controller to access external memory
should consult [3, 4, 5, 6] for further relavant information.

References
[1] Sven Heithecker, Amilcar do Carmo Lucas, and Rolf Ernst. A Mixed QoS

SDRAM Controller for FPGA-Based High-End Image Processing. In Workshop
on Signal Processing Systems Design and Implementation, page TP.11. IEEE,
2003.

[2] Sven Heithecker and Rolf Ernst. An FPGA Based SDRAM Controller with
Complex QoS Scheduling and Traffic Shaping. In International Symposium on
Field-Programmable Gate Arrays (FPGA), page 277. ACM, February 2005.

[3] JEDEC. Double Data Rate (DDR) SDRAM Specification. JEDEC Solid State
Technology Association, JESD79C edition, March 2003.

[4] Micron Technology, Inc. 512Mb DDR SDRAM Component:
MT46V64M8BN-5B. Data sheet, Micron Technology, Inc., April 2004.

[5] Alberto Scandurra. STBus Communication System: Concepts And Definitions.
Technical Report V3.2, ST Microelectronics, April 2006.

[6] ST Microelectronics. DLL User Manual.

17


	Architecture
	General Architecture
	NoC-CMC Interface
	Command Dispatch
	Command Buffer Write
	Command Buffer Read
	Response Dispatch

	Two-Stage Buffered Scheduler
	Request Buffer, Request Scheduler
	Bank Buffer, Bank Scheduler

	DDR Interface
	SDRAM Write Access
	SDRAM Read Access
	Alternatives to DLL Usage

	Memory Coherency
	Modules (Entities)

	Configuration
	Overview
	Configuration Options
	SDRAM Support
	Application Ports
	Address Translation

	Morpheus Specific Run-Time Configuration
	Initialization
	DLL Elements
	Diagnostic Register

	Usage
	Application Interfaces
	Application Protocols
	Read Protocol
	Write Protocol

	Clocks
	Reset
	Instantiation
	Resource usage
	VHDL Code

	Conclusion

