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Abstract—Highly-automated driving involves chains of percep-
tion, decision, and control functions. These functions involve data-
intensive algorithms that motivate the use of a data-centric mid-
dleware and a service-oriented architecture. As an example, we
use the open-source project Autoware.Auto, which bases on the
Robot Operating System (ROS) 2. Often, function chains define a
safety-critical automated control task with weakly-hard real-time
constraints. Providing the required assurance by formal analy-
sis, however, is challenged by the complex hardware/software
structure of these systems. We therefore propose an approach
that combines measurement, suitable distribution of deadlines,
and application-level online monitoring that serves to supervise
the execution of service-oriented software systems with multiple
function chains and weakly-hard real-time constraints. We fur-
ther evaluate our proof-of-concept implementation in ROS2 on
an environment perception use case from Autoware.Auto.

I. INTRODUCTION

The Robot Operating System (ROS) is one of the most
popular (open-source) frameworks for building complex soft-
ware in robotics. In particular, ROS2 (successor of ROS1) is
focusing on establishing a service-oriented architecture by cen-
tering the framework around existing Data Distribution Service
(DDS) middlewares. This concept increases the modularity,
reusability and flexibility of the software system.

One of the basic functionalities of a robotic system is
to perform environment perception using cameras, lidars or
other sensors. This is also a functionality that we observe in
the automotive domain more frequently as it is required for
achieving highly-automated driving. Interestingly, the automo-
tive domain takes a similar path by standardizing middleware-
centric architectures based on DDS and SOME/IP [1]. Fur-
thermore, there are even projects such as Autoware.Auto [2]
that build their software stack on ROS2 to tackle autonomous
driving use cases. In this paper, we use the perception stack
from the Autoware.Auto project as depicted in Fig. 1 as a
running example. It shows an environment perception system
with two lidars (front and rear). The blue boxes correspond
to single-threaded processes that subscribe to DDS topics and
publish DDS topics on their own. Here, we also denote these
processes as services or ROS nodes. The lidar data is sent
periodically as DDS topics to the fusion service on Electronic
Control Unit (ECU) 1, which joins the data (based on their
timestamps) and publishes a DDS topic comprising a point
cloud. The classifier service on ECU 2 subscribes to this
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Fig. 1: Autoware.Auto perception stack example.

topic and therefore receives the point-cloud data via the DDS
middleware. It classifies the data into ground points and non-
ground points, which are both published as separate topics.
The non-ground points are used by the object-detection service
that uses a clustering algorithm to publish the bounding boxes
of detected obstacles. Together with the ground points, the
detected objects are received by the plan service that decides
on the trajectory to be followed by the vehicle.

In conjunction, all services form a processing chain or event
chain for which we must meet certain timing/performance
constraints. On the one hand, we can assume a throughput
requirement in form of a minimum frames per second that
must be achieved. On the other hand, we also have an end-to-
end latency requirement. The latency requirement is important
because computing a trajectory on the basis of lidar data
that was recorded too far back in the past will render the
resulting trajectory unusable. Especially when used in the
context of highly-automated or autonomous driving, the per-
formance of such event chains become essential for the correct
and safe operation. A latency requirement in this scenario
is not necessarily a hard requirement but rather a weakly-
hard requirement, i.e. occasional violations are tolerable if
they do not occur too often. Although the formal analysis of
hard and weakly-hard latency requirements is meanwhile well
investigated [3], its practical application is challenged by the
increasing complexity of software frameworks such as ROS2
and of high-performance architectures, which optimize for
average-case throughput rather than worst-case predictability.
Furthermore, as the impact of latency violations likely depends
on the current driving situation, the severity of a violation
cannot be predicted analytically. In this paper, we present
a possible solution that consist in runtime mechanisms for
detecting latency violations and in involving the application
in handling the detected violations appropriately.
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The paper is structured as follows: We resume related work
in Section II. Thereafter, we introduce our monitoring concept
in Section III, by defining the system model, its basic mecha-
nisms as well as proposing a trace-based budgeting approach.
In order to show the applicability of the monitoring to state
of the art systems, we describe a lightweight implementation
within the Autoware.Auto platform in Section IV. The evalu-
ation of the implementation is then done in Section V. Last,
we draw a conclusion in Section VI.

II. RELATED WORK

Runtime behaviour of computing systems can be analysed
by many existing tracing frameworks [4]–[6]. These frame-
works preliminary aim at an offline evaluation as they gather
a high volume of trace data. In this work, we focus on
online monitoring instead, that is capable of timely reactions to
latency violations. Online monitoring, also known as runtime
monitoring or runtime verification is a long known concept
for providing assurance in critical domains. By continuously
observing critical properties, protective or reactive counter-
measures can be taken. Early approaches aim to validate the
correctness of execution of real-time systems at runtime [7]
or target to protect critical system functions by early violation
detection and corrective action [8]. In the automotive domain,
monitoring is applied to limit the execution time of tasks and
thereby achieve time protection between different criticality
levels [9], [10]. Another approach for isolating tasks or groups
of tasks is to monitor the arrival patterns of arbitrary tasks as
well as their arrival workload at runtime [11], [12]. Several
other framework evolved around runtime monitoring concepts,
like [13] or [14]. An overview of different monitoring tech-
niques for safety-critical multicore systems is provided in [15].

Yet, existing monitoring mechanisms are typically restricted
to local processing delays or single communication delays.
For instance, AUTOSAR Adaptive Platform (AP) supports
checkpointing [16] for observing the time between certain
progress points within the same application. However, it
does not sufficiently include communication latencies be-
tween processes. The latter become particularly important
in communication-centric architectures as mentioned in the
introduction. Therefore communication latencies must not be
neglected, especially with the increasing safety requirements
involved with the autonomous-driving vision. A possible ap-
proach is taken by DDS, which employs a Quality of Service
(QoS) mechanism to supervise message deadlines (i.e. their
inter-arrival time). The combination of local response-time
monitoring and monitoring of message deadlines could, in
principle, establish a monitoring of end-to-end latencies by
splitting an event chain into separately monitored segments.
Yet, special care must be taken to leave no unmonitored gaps,
i.e. to ensure that all parts of the event chain are monitored.
In this paper, we therefore present a monitoring approach that
observes communication events which are already exposed by
the API and naturally result in segmentations without gaps.
Moreover, by allowing individual segments to cross process

boundaries, we can reduce the number of monitored segments
and thereby simplify the assignment of local deadlines.

A short version of this paper is published in [17].

III. MONITORING CONCEPT

In the previous sections, we have motivated the need of
latency monitoring of end-to-end event chains. We now de-
velop our decentralized monitoring concept that bases on a
segmentation of event chains into local and remote segments,
which are individually monitored. The segmentation of our
example is indicated in Fig. 1 and explained in further detail
below. With the decentralized approach, we aim at efficient
implementation of monitoring mechanisms without relying on
additional, and potentially unreliable, network communication.

For an event chain c, we have several performance require-
ments: Since all segments execute concurrently, the throughput
requirement (minimum frames per second) translates to a
maximum latency Bc

seg per segment. In consequence of the
throughput requirement, it is reasonable to assume that the
event chain is triggered periodically with a fixed period.
The end-to-end latency requirement is denoted by Bc

e2e. We
further assume a weakly-hard (m, k) constraint for the latency
requirement, which denotes that we can tolerate up to m
latency violations of Bc

e2e within k consecutive executions
[18].

Given a fixed segmentation of an event chain, we now
develop a decentralized monitoring concept such that the
performance requirements are met or violations are detected
and reacted to in time. In the remainder of this section, we first
clarify the terminology before we elaborate on how latency
violations are handled and how we can determine individual
segment deadlines from the given performance requirements.

A. System model and terminology

An event chain c is defined as a sequence of segments
si ∈ Sc, where i denotes the position of the segment in the
chain. A segment si starts with a communication event esist
and ends with a communication event esie . Let tsist,n and tsie,n
denote the timestamps of the n-th start event and end event of
si respectively. We can further assume an in-order delivery of
middleware messages such that the n-th observed start/end
event corresponds to the n-th activation/completion of the
corresponding segment. The start and end events of a segment
must have the same rate. Note, that a system may comprise
an arbitrary number of event chains. Moreover, an event (and
its corresponding segment) can be involved in multiple event
chains.

In Fig. 2, e.g., there are two event chains which share all
but the first two segments and are activated synchronously
with the same period. Asymptotically, the activation rates of
both chains must be the same to avoid an ever increasing
event backlog at the join in the fusion service. As we monitor
communication events of the middleware, we focus on two
observable event types by which the segments are delimited:
publication events and receive events. Conceptually, there are
no gaps between segments such that esie = e

si+1

st , which
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includes tsie,n = t
si+1

st,n . A local segment sl starts with a receive
event and ends with a publication event on the same ECU,
whereas a remote segment sr starts with a publication event
and ends with a receive event on another ECU. By maximizing
the length of the local segments, an event chain is described
by an alternating sequence of remote and local segments.

The latency requirement of an event chain c is expressed
by its latency budget Bc

e2e, which is allowed to be exceeded
up to m out of k consecutive executions. As we follow
a decentralized monitoring approach, the budget is divided
among the corresponding segments, so that the following
equation must hold:

Bc
e2e ≥

∑
si∈Sc

dsi (1)

Here, dsi denotes the deadline of segment si, i.e. the maximum
time between the n-th start event of a segment and the
corresponding end event.

B. Temporal exceptions and propagation mechanisms

The basic idea of latency monitoring is to continuously ob-
serve communication events at runtime and to raise temporal
exceptions whenever an end event does not occur in time.
These exceptions are then handled by the application itself
or by a system-level entity to perform further diagnostics or
take appropriate countermeasures. Using exceptions to evoke
application-level actions is justified, because it is only possible
at that level to decide if a particular temporal exception
corresponds to a fault. This approach avoids false positive
failure diagnosis as would result from low-level monitoring. In
general, an exception handler either recovers from a violation
and still provide usable data, or it propagates the violation
to the next segment. The propagation of all unrecoverable
violations is essential, as it allows us to use the (m, k)-
constraint from Bc

e2e also for the individual segment deadlines
dsi . Without propagation, the deadline misses would add
up, thus leading to undetected violation of the event chain’s
(m, k)-constraint. In order to enable a recovery, violations
must be detected before dsi and the latency of the exception
handler itself must be bounded. The latter is achieved by
executing the exception handling on the highest scheduling
priorities. We therefore split dsi into a monitored deadline
dsimon and the maximum latency of the exception handling dex:
dsi = dsimon + dex.

Without monitoring, the n-th latency lsin of a segment si is
the difference between its corresponding end and start event
timestamps: lsin = tsie,n − t

si
st,n. An end event originates from a

regular publication or receive event. With monitoring in place,
we define the segment latency as the time between a segment’s
start event and either the corresponding end event or the end
of the temporal exception, whichever occurs first. Monitoring
therefore limits this segment latency to dsi in case the end
event does not occur within dsimon. Note, that we do not abort
the execution of any services within a segment, i.e. despite a
temporal exceptions a segment still continues processing and
producing its end event. Based on the timestamp of the start
event of a segment si, the monitor initializes a timer to trigger

an exception after expiration of dsimon. If the segment terminates
in time, an end event esie is created, which causes the monitor
to stop the timer as well as further error handling actions. If the
segment does not terminate in time, a timeout is raised which
triggers the temporal exception. For local segments, which
end with a publication event, the exception is propagated by
omitting the publish action that coincides with the next and late
end event. As our monitoring mechanism for remote segments
is based on the assumption of a lossy transmission channel, it
will detect the missing publication event after a certain timeout
(cf. Section IV-B). For remote segments, which end with a
receive event, the exception is propagated by sending an error
propagation event instead of a start event to the monitor of the
subsequent local segment.

We visualized the principle of the temporal exceptions and
propagation mechanisms along a chain execution based on our
use case segmentation in Fig. 3. Here, the first segment, i.e.
the remote segment representing the front lidar data, finishes
within its budget ds0mon. Next, the local segment s1 exceeds its
deadline ds1mon, however, the error handling decided to recover
as the rear lidar is not too critical and the front lidar data is still
present. It therefore sends the current point cloud containing
only the information from the front lidar. As the following
remote segment failed to finish in time too, another exception
is raised after ds2mon. In this case, recovery is not possible and
the error is explicitly propagated to s3, which directly goes
into error handling in order to react fast to potential safety-
critical situations.

Algorithm 1 Remote segment exception handling.

1: procedure HANDLE REMOTE EXCEPTION(m)
2: data = user exception(m)
3: if data then . recovery case
4: issue receive(data)
5: return true
6: else . propagation case
7: propagate exception()
8: return false
9: end if

10: end procedure

Algorithm 2 local segment exception handling.

1: procedure HANDLE LOCAL EXCEPTION(m)
2: data = user exception(m)
3: if data then . recovery case
4: publish(data)
5: return true
6: else . propagation case
7: return false
8: end if
9: end procedure

Algorithm 1 and Algorithm 2 show the pseudocode of the
exception handling for remote and local segments respectively.
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Both procedures are called in case a temporal exception was
detected. Their argument m provides the current number of
misses within the last k executions. Furthermore, their return
value indicates whether it could recover from the current
exception (true) or whether it still counts as a deadline
miss (false). For both segment types, the application-specific
exception handler is called (Line 2 and Line 2). If the handler
was able to perform a recovery for a remote segment, it passes
the recovered data to the subsequent local segment (Line 4).
Otherwise, it propagates the exception by issuing an error
propagation event (Line 7). For local segments, the recovery
is performed by publishing the recovered data as a regular
middleware message (Line 4). The propagation, on the other
hand, does not require further actions as the subsequent remote
segment will detect a lost message after a certain timeout.
Note, that we assume that the monitor logic takes care of
discarding end events and their corresponding publication or
receive actions if an exception occurred before. Further details
are provided in Section IV.

C. Determining segment deadlines

In order to deploy the monitoring concept, we first have
to find reasonable segment deadlines. We already pointed
out, that formal analyses are not very practical on high-
performance architectures, thus we will follow a measurement-
based approach. First, we record one or multiple traces
(without monitoring) to measure segment latencies lsin ∈ Lsi

according to the aforementioned event definition. Next, we
have to add the worst-case response times (WCRTs) of the
monitoring exceptions1 to each of the traced values. This re-
sults in the so-called extended latency l′sin = lsin +dex ∈ L′si∀n
and is a candidate for the deadline dsi . The set of all extended
latencies is then called the extended trace L′si .

When determining dsi values for segments along a chain,
we want to fulfill Eq. (1). Yet, if we only took the maximum
extended latencies as lower bounds for dsi we would often

1As the exception handling may be safety-critical, a conservative WCRT
estimate should be acquired with analytical methods.

not be able to satisfy the end-to-end constraint. Our goal is
thus to find the minimum dsi that can still satisfy the (m, k)-
constraint, thereby accepting deadline misses as part of the
regular operation. Note, that a violation of the n-th chain exe-
cution is defined as an unrecoverable (i.e. propagated) deadline
miss of any of its corresponding n-th segment activations
within L′sin , si ∈ Sc.

We can formulate the following constraint satisfaction prob-
lem for determining the minimum possible dsi while respect-
ing whether deadline misses will be propagated or recovered.

find dsi ∈ N ∀si ∈ Sc (2)
subject to Bc

e2e ≥
∑

si∈Sc
dsi (3)

Bc
seg ≥ dsi (4)

m ≥ maxnMi(n) ∀si ∈ Sc (5)
with mi(n) = |{j|n ≤ j ≤ n+ k ∧ l′sij > dsi}| (6)

Mi(n) = mi(n) +
∑n−1

l=0 pl ·ml(n) (7)

First of all, Eq. (3) represents the event chains’ latency
budget constraint whereas Eq. (4) represents its throughput
requirement. Eq. (5) ensures that at any position n in the trace,
there are not more than m misses for every segment including
unrecoverable misses of preceding segments. Here, Eq. (6)
calculates the number of segment deadline misses that occur
between the n-th and n+k-th activation of the segment. Eq. (7)
takes propagation of deadline misses from preceding segments
into account where pl is the propagation factor of the segment
sl that can assume 0 (in case of perfect recovery) or 1 (in case
of propagation). For pl = 0, the constraint satisfaction problem
is split into several single-variable problems for each segment.
For pl = 1, we refer to heuristic methods or integer linear
programming (ILP), which is, due to limited space, out of the
scope of this paper. An event chain is then called scheduleable
if a solution to the constraint satisfaction problem exists.

IV. MONITORING IMPLEMENTATION

In this section, we present the details of how to implement
the monitoring mechanisms for local and remote segments.
We implemented the monitoring mechanisims in the libraries
of ROS2 Eloquent.

A. Monitoring of local segments

For the latency monitoring of local segments, we leverage
the fact that the start event and the end event of a seg-
ment occur on the same processing resource. These events
correspond to communication events such as the sending of
a message by a publisher or the reception of a message
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Fig. 4: Local segment monitoring on ECU 1 (cf. Fig. 1).

by a subscriber. In ROS2, the middleware is provided as
a library that is dynamically linked into every process, i.e.
there is no dedicated middleware process which could observe
the start events and end events. Instead, the timestamp of
every start event must be made available to the process in
which the end event will occur. For this purpose, additional
inter-process communication is required that should be faster
than the communication primitives provided by the middle-
ware. We therefore leverage shared memory and inter-process
semaphores. Figure 4 illustrates our approach on the example
of the segment that starts with the reception of the front
lidar message and ends with the publication of the combined
point cloud. In ROS2, the application logic is implemented
as callbacks that are activated by middleware messages or
timers and that are dispatched by a single-threaded executor.
Our implementation adds a high-priority monitor thread to the
process in which the end event occurs. This monitor thread
initialises the shared memory sections and semaphores so
that they can be used by other processes. For every local
segment, there is a distinct shared memory section whereas
each monitor thread has only a single semaphore. A monitor
thread waits on its semaphore and is resumed either when
the semaphore is raised or after a programmed timeout (using
sem_timedwait() on Linux). Every shared memory holds
two separate wait-free ring buffers, one for the start events and
one for the end events of the corresponding segment. During
initialisation of a ROS node, it connects to the shared memory
sections of the segments in which the node is involved. For
every start event of the node, it will also connect to the
semaphore of the corresponding monitor thread.

Whenever a start event occurs, the modified DDS subscriber
code posts the current timestamp into the corresponding ring
buffer in shared memory and activates the monitor thread via
its semaphore. The monitor thread is immediately resumed
as it takes precedence over the executor thread due to its
high scheduling priority. When resumed, the monitor thread
pops the timestamps from the ring buffers and adds a timeout
to an internal timeout queue for every start event according
to the defined latency budget dmon. For every end event,
the corresponding timeout will be removed from the timeout
queue. If a timeout has occurred and the corresponding end
event is not in the end-event ring buffer, the monitor thread
triggers the application’s exception handler.

After an exception has been handled, the next publication
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Fig. 5: ROS2 implementation of local segment monitoring
(added parts in red).

event will be skipped. To achieve this, the monitor thread
increments a shared counter that will be evaluated by the
publisher. In case the registered exception handler acts as a
recovery handler, it has already performed the publication.
Otherwise, it ensures that the violation is propagated to the
next (remote) segment. Whenever an end event occurs, the
publisher code posts the current timestamp to the correspond-
ing ring buffer. To save an unnecessary context switch, the
monitor thread is not notified since the processing of end
events is not time critical.

Figure 5 depicts the necessary modifications of the ROS2
framework by showing the added parts (exception callback,
monitor thread and shared memory) as red boxes.

B. Monitoring of remote segments

In contrast to the monitoring of local segments, the start and
end events of remote segments occur on different processing
resources. Thus, this limitation has to be addressed by a special
monitoring concept, overcoming lack of information, while
still providing reliable in-time deadline violation detection. In
the following, we will first introduce our general concept on
how to realize decentralized monitoring for a communication
between ECUs, before going into details of our specific remote
monitoring implementation in ROS2/DDS.

1) Theoretical concept for monitoring distributed communi-
cation evens: As stated above, distributed latency monitoring
always lacks the ability of making information available to
all components at the same time. In addition, the monitor
should be placed at the receiver, as latency violations impact
the functionalities subscribed to the monitored data. As a
basic assumption, we can state that we can not guarantee the
exchange of timestamps between the processing resources via
Ethernet with a deterministic timing, so that the exact start
event timestamp is not available for timer configuration of the
monitor at the receiver.

Yet, we can instantiate monitoring on the receiver side
without the need of any additional communication. In the
following, we discuss the applicability of two approaches in
the context of our safety-critical real-time requirements. We
start with the inter-arrival monitoring as a basic concept in
DDS followed by a more sophisticated synchronization-based
approach presuming time-synchronization of ECUs.
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Inter-arrival monitoring: This common monitoring ap-
proach, as used in DDS consists in observing the arrival
times on the receiver side. The implications are illustrated in
Fig. 6, which shows the periodic activations (green arrows)
of a remote segment and the earliest/latest occurrences of
its end events (red arrows). As event chains are activated
periodically the start events of a remote segment occur with
the same period i.e. Ps and are subject to arrival jitter Ja

s . On
account of varying execution times, the end events are further
affected by the amount of the network response time jitter
JR
s , exceeding the best-case response time (BCRT). In order

to apply inter-arrival monitoring, a timer is programmed after
each end event (received message) with tiamax, which represents
the maximum time between two consecutive end events. The
main limitation of this approach is that it does not detect
consecutive deadline misses as the timer is only programmed
on arrival of a message and thus, without interpretation of
any currently available timestamp. Thus, in case of (m, k)-
constraints, it is only suitable for m = 0. Another drawback
with this approach is that consecutive late arrivals can sum
up for tiamax ≥ Ps and without the ability of detection. As a
result, there is no way to safely detect any concrete dsmon value
modeled by tiamax, without the occurrence of false positives.
Such an approach is more suitable for liveliness rather than
real-time concerns.

Synchronization-based monitoring: A more sophisticated
approach for periodic communication can benefit from time
synchronization of control units, which is provided via Pre-
cision Time Protocol (PTP) [19] in modern cars. With time
synchronization, we can interpret the start event timestamp
tsst,n that is transmitted together with the data in DDS. The
timer for the reception of the n + i-th end event can then
be programmed with tsist,n = tsst,n-1 + (i + 1)Ps + dsmon with
dsmon = BCRT + JR

s + Ja
s + ε. Note, that for different (m, k)-

constraints, lower ds
r

mon values are possible depending on the
number of accepted deadline violation of the event chain, i.e.
m, as well as on the possibility to recover appropriately. The
principle of the synchronization-based approach is also shown
in Fig. 6. In contrast to inter-arrival monitoring, the pessimism
is bounded to the arrival jitter Ja

s and the synchronization error
ε. Ja

s +ε can be determined from the measured trace, based on
the received measured start timestamps. Note, that deviations
from the measured Ja

s and ε do not lead to undetected latency
violations: Imagine an activation occurs too late, this would
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Fig. 7: Remote monitoring integration into the ROS2/DDS
middleware.

result in a closer deadline for the corresponding transmission,
as we programmed the timer based on the previous start event.
On the other hand, an unexpected early activation would result
in the case, that the transmission could exceed the segment’s
budget without detection. However, this can only be the case,
if the previous segments along the chain finished earlier and
thereby left slack to be used by the remote segment. Note, that
the monitor works on a high level and is even transparent to
retransmissions of (partially) lost data e.g. over DDS, which
gives flexibility to lower levels.

2) Synchronization-based monitoring integration into DDS
and ROS2: The ROS2 middleware can be set up based
on different DDS implementations (different vendors), how-
ever, our implementation focuses on the default, which is
eProsima DDS. As motivated above, the synchronization-
based monitor is implemented at the receiver side, in order
to achieve short exception handling latencies related to the
subscribing application. Moreover, an implementation should
cover as much as possible of the communication latency
within the communication infrastructure depicted in Fig. 7,
to achieve seamless segmentation of the event chain. Thus, it
is appropriate in a DDS/ROS2 setup to integrate the monitor
directly in the interface to the application (represented by the
ROS middleware), which is the DDS subscriber. Higher layers
would lead to unnecessary complexity regarding the monitor-
ing integration, as the publishing timestamp is natively passed
up to the DDS Subscriber and receive events are directly
activating subscription callbacks (i.e. applications). Moreover,
the timestamp can directly be used to reconfigure the timer
for the next deadline tsist,n and exception callback events can
be triggered in parallel to receive events. We instantiate one
monitor for each subscriber listening to one communication.
The concrete monitoring parameters can then be configured
via the eProsima default XML-configuration. Note, that for
multiple communication partners on the same topic, multiple
monitors have to be instantiated, and differentiated based on
delivered DDS topic keys.
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Fig. 8: Behaviour of remote monitoring

3) Synchronizatin-based monitoring flow: Fig. 8 illustrates
our monitoring implementation in form of a sequence diagram.
The monitoring starts with the DDS publisher sending out a
new sample, including the send timestamp. After its reception
at the subscriber, the monitor initializes the deadline timer
based on the synchronization-based approach. Thereafter, it
passes the data towards the ROS2 subscriber as part of the reg-
ular operation. If the next sample arrives in time, the monitor
simply reconfigures the deadline expiration timer based on the
currently received timestamp. In case of a deadline violation,
an exception is signalled by the subscriber listener to the
ROS2 middleware, which causes the execution of the attached
callback. Besides this error handling mechanisms, also the next
monitoring deadline is configured. In this case we simply add
the configured publication rate of the event chain to the last set
deadline and restart the timer based on this value. Messages
that arrive too late, i.e. after the corresponding exception,
will be discarded in order to skip the corresponding receive
event. This allows the exception handler to either recover from
the violation (and issue the receive event itself) or implicitly
propagate the violation to the next (local) segment. Otherwise
we would violate the constant rate assumption needed for event
chain composability as well as for reliable (m, k)-constraint
checks.

V. EVALUATION

In order to underline our proposed monitoring concept, we
evaluate the involved overheads and the latency for detection
of and reaction to temporal exceptions. To achieve a bounded
exception latency tex, that we assumed in Section III, we
particularly have a look at the latency for the exception
detection and the entry to the application-specific handler. This
section is split up into the evaluation of local and remote
monitoring respectively.

A. Local monitoring

We evaluated our proof-of-concept (unoptimized) imple-
mentation of local segment monitoring on the aforementioned
Autoware.Auto use case from Fig. 1. In particular, we used
the pcap-data of a front lidar provided by Autoware.Auto and
instrumented and traced the software system on ECU2 using
LTTng [4]. We executed the software system on a Linux
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Variant
unmonitored
monitored

Fig. 9: Segment latencies on ECU2 with and without moni-
toring.

kernel version 5.6.4 with PREEMPT RT enabled (i.e. full
preemptivity). Everything was run on a Core i5-3210M Quad-
Core CPU. We assigned distinct real-time priorities to every
ROS process in descending order, i.e. the plan process had the
lowest priority. The monitor thread was assigned the highest
scheduling priority whereas the ksoftirq threads, which handle
the interrupts from the network controller, where executing
on a priority just below the monitor thread. For representing
performance and power optimizations, we allowed thread
migration between cores and frequency scaling.

Note, as a compatible trajectory planning service was not
available within Autoware.Auto, we replaced it with the visu-
alization service rviz2 as suggested by the project. This has
the implication that we can only monitor the local segments
up to reception of each topic within rviz2 since the latter
does not publish any topic. We therefore end up with two
local segments on ECU2: both starting from the reception of
the point cloud by the classifier service and ending at the
reception of either the objects topic or the ground points topic
(cf. Fig. 2).

Figure 9 shows a Tukey boxplot for the measured latencies
of the two segments on ECU2 with and without monitoring.
The plot summarises approx. 4700 data points for each seg-
ment. Without monitoring, we get segment latencies up to
600ms. For the monitoring, we used a segment deadline of
100ms and captured the time up until either the topic was
received or the corresponding temporal exception was raised
and handled. In consequence, we can guarantee a reaction
within 100ms after the segment’s start event. To get a more
detailed view on how exactly these 100ms are enforced, we
plotted only the cases in which a temporal exception occurred.
The resulting boxplot is depicted in Fig. 10 and bases on 934
data points for the objects segments and 1699 data points for
the ground-points segment. What we read from this figures
is that the detection and triggering of temporal exceptions
can take up to a few hundred microseconds in the worst
case. In comparison to the segment latency, we believe this
is an acceptable reaction time. Note, that the both segments
are monitored by the same monitor thread that processes the
buffers in a fixed order so that the ground points segment is
delayed by the processing of the objects segment.

In addition to the segment latencies, we also measured
the overheads that in consequence of the monitoring logic
in the DDS subscriber and the publisher. Figure 11 depicts
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Fig. 11: Measured overheads for local segment monitoring.

the results as Tukey boxplots. The start-event and end-event
overhead denote the time it took to post a start event to the ring
buffer or to post an end-event into the ring buffer respectively.
Both overheads are few 10-th of microseconds on average and
below 100us in the worst case. The monitor latency is the
time it took between posting a start event into the ring buffer
until the same event was read and processed by the monitor
thread. This latency is an indicator for the minimum segment
latency budget since the monitor thread must be guaranteed
to program the timer before the segment deadline. Last, we
also measured the execution time of the monitor thread in
total to get a notion of how much time it takes the process
and evaluate the incoming start and end events. In conclusion,
without any optimizations, we already achieved overheads for
the local monitoring that are significantly smaller than the
segment deadlines.

B. Remote monitoring

The evaluation of the remote monitoring approach has
been implemented in parallel to existing ROS2 deadline and
lifespan QoS monitoring mechanisms. Thus, we used the timer
connected with an timeout routine, both within the context of
the eProsima fastRTPS DDS middleware. The timeout routine
would then forward the exception to the high-priority monitor
thread, e.g. by using shared memory and a semaphore as we
used for local monitoring. As we already know the latency for
entering the high-priority monitor after posting an event, which
is below 200us, we evaluated the latency to enter the timeout
routing after the middleware deadline timer expires. In detail, it
is the difference between the entry of the timeout routine and
the actual configured monitoring deadline. Figure 12 shows
this implication as a Tukey boxplot with 472 points of data:
The latencies vary between short 100us and long outliers up
to nearly 2ms. This shows that the latency is much higher
compared to the local monitoring reaction time. The problem
arises from the fact that we do not run the middleware thread
at the highest priority. This would not be practical anyway,
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Fig. 12: Exception entry of the remote monitoring within the
DDS context.

as the entire network load would interfere with all regular
services. As we ran the evaluation with low CPU load, it can
be expected that more load will further worsen the results.

We can conclude, that monitoring entirely within the mid-
dleware is not sufficient for achieving short and bounded
reaction times. Therefore, we propose to forward the timer
programming and timeout handling to the high-priority mon-
itor thread instead of programming the timer within the DDS
subscriber. As we could use a similar scheme as used for the
local monitoring, we can expect similar latencies.

VI. CONLUSION

This paper presented an online monitoring concept for
safety-critical event chains for middleware-centric architec-
tures with end-to-end weakly-hard real-time constraints. As
end-to-end latencies cannot be sufficiently monitored using
existing methods, we proposed a new approach that consists
of two monitoring mechanisms that complement one another.
One mechanism aims at monitoring of latencies between
processes on the same processor and leverages shared memory
for exchanging timestamps with little overhead. The other
mechanisms reuses existing QoS mechanisms in the middle-
ware and allows a supervision of network latencies without
requiring additional network communication. Both mecha-
nisms are combined into an end-to-end monitoring scheme by
splitting an event chain into local and remote segments that
are individually monitored by the aforementioned mechanisms
so that a temporal exception is raised to the application in
case the segment deadline was exceeded. For this purpose,
we argued how the segment deadlines can be determined
from execution traces such that weakly-hard (m, k)-constraints
can be met and a certain time budget will be reserved for
exception handling. In our proof-of-concept implementation
in ROS2, we could show that the monitoring logic can be
implemented in a way that does not leave any unmonitored
gaps between segments. Our evaluation on an Autoware.Auto
use case further demonstrated that overheads are comparatively
low and well acceptable. Moreover, the latency for exception
handling can be bounded if timeouts are programmed and
received by a high-priority monitor thread.
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