
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

A Platform Programming
Paradigm for Heterogeneous
Systems Integration

By KAI-BJÖRN GEMLAU , LEONIE KÖHLER , AND ROLF ERNST , Fellow IEEE

ABSTRACT | To cope with growing computing performance

requirements, cyber–physical systems architectures are mov-

ing toward heterogeneous high-performance computer archi-

tectures and networks. Such architectures, however, incur

intricate side effects that challenge traditional software design

and integration. The programming paradigm can take a key

role in mastering software design, as experience in automotive

design demonstrates. To cope with the integration challenge,

this industry has started introducing a programming paradigm

that efficiently preserves application data flow under platform

integration and changes with minimum performance loss. This

article will revisit this paradigm that is currently used for

lock-free multicore programming and explain its extension to

the system level. It will then explore its application to two

important developments in industrial design. This article will

conclude with an evaluation of its properties, its overhead, and

its application toward a robust design process.

KEYWORDS | Automation; industry 4.0; real-time (RT) program-

ming abstractions; smart manufacturing; system integration;

system-level logical execution time (SL LET).

NOMENCLATURE
ADAS Advanced driver assistance system.
API Application programming interface.
BCET Best case execution time.
BCRT Best case response time.
BET Bounded execution time.

Manuscript received March 21, 2020; revised August 21, 2020; accepted
October 11, 2020. This work was supported in part by the German Research
Foundation (DFG) under Grant ER168/30-2, in part by the German Federal
Ministry of Education and Research (BMBF) under Grant 16EM00285, and in part
by the Research Contract from Daimler. (Corresponding author:
Kai-Björn Gemlau.)

The authors are with the Institute of Computer and Network Engineering,
Technische Universität Braunschweig (TU Braunschweig), 38106 Braunschweig,
Germany (e-mail: gemlau@ida.ing.tu-bs.de; koehler@ida.ing.tu-bs.de;
ernst@ida.ing.tu-bs.de).

Digital Object Identifier 10.1109/JPROC.2020.3035874

BSW Basic software.
CDR Common data representation.
CPS Cyber–physical system.
DAG Directed acyclic graph.
DCPS Data-centric publisher-subscriber.
DDS Data distribution service.
DDSI DDS interoperability wire protocol.
ECU Electronic control unit.
EDP Endpoint discovery protocol.
ESP Electronic stability program.
FB Functional block.
FRER Frame replication and elimination for

reliability.
GALS Globally asynchronous locally synchronous.
GPGPU General purpose computation on graphics

processing unit.
HMI Human–machine interface.
HPC High-performance computing.
HRI Human–robot interaction.
HTL Hierarchical timing language.
IIoT Industrial Internet of Things.
I/O Input/output.
IP Internet protocol.
IPMCS Industrial process measurement and

control system.
IRQ Interrupt request.
IRT Isochronous real time.
LET Logical execution time.
LTTA Loosely time-triggered architecture.
MDD Model-driven development.
MPSoC Multiprocessor systems-on-chip.
NTP Network time protocol.
NUMA Nonuniform memory access.
OEM Original equipment manufacturer.
OPC UA OPC unified architecture.
OSI Open systems interconnection.
OS Operating system.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

PROCEEDINGS OF THE IEEE 1

https://orcid.org/0000-0003-2414-9566
https://orcid.org/0000-0002-7158-0650
https://orcid.org/0000-0002-6836-1748


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

PDP Participant discovery protocol.
pHRI Physical human–robot interaction.
PIM Platform-independent model.
PLC Programmable logic controller.
PSM Platform-specific model.
PTP Precision time protocol.
QoS Quality-of-service.
RAMI 4.0 Reference architecture model industry 4.0.
RE Runnable entity.
ROS 2 Robot operating system 2.
RTE Runtime environment.
RTPS Real-time publish subscribe protocol.
RT Real time.
SAE Society of Automotive Engineers.
SDN Software defined networking.
SL LET System-level logical execution time.
(SL) LET (System-level) logical execution time.
SOME/IP Scalable service-oriented middleware

over IP.
SPNP Static priority nonpreemptive.
SPP Static priority preemptive.
SW-C Software component.
SysML Systems modeling language.
TAI Temps Atomique International.
TAS Time aware shaper.
TDL Timing definition language.
TDMA Time division multiple access.
TSN Time-sensitive networking.
TTA Time-triggered architecture.
UDP User datagram protocol.
UML Unified modeling language.
VFB Virtual functional bus.
WCET Worst case execution time.
WCRT Worst case response time.
XML Extensible markup language.
ZET Zero execution time.

I. I N T R O D U C T I O N
CPSs are distributed hardware–software systems which
control and monitor physical processes [1]. All systems
industries rely on CPS technology including industrial
automation, automotive, or aviation technology, to name
just a few. To cope with growing computing perfor-
mance requirements, CPS architectures increasingly resort
to high-performance computer architectures, such as
MPSoCs, GPGPUs, or accelerators for machine learning.
Together with their related memory hierarchies, they are
combined with heterogeneous hardware architectures.

Programming such hardware platforms is coming closer
to parallel programming in HPC, but there are major dif-
ferences. CPSs consist of large, interdependent application
functions and services that are subject to timing and often
safety requirements. Usually, many such applications share
the same platform, requiring separation of function and
timing. Software technology is struggling to keep up with
this growing hardware and application complexity, just

like communication technology that must transport and
synchronize huge amounts of data.

A consequence of heterogeneity is the coexistence of
different parallel programming styles for different com-
ponents. Then, component integration requires software
integration that leads to predictable behavior at the system
level. Such software integration should be robust under
function changes and portable to updated architectures.
It should be controllable by the system programmer.

A suitable basis for such integration is found in the
LET programming paradigm [2]. Starting from a con-
cept for timed programming, LET has been developed
into a lock-free programming and integration paradigm
for shared memory multicore architectures in automotive
applications [3], [4]. It has been standardized and success-
fully introduced in series development at many automotive
companies. However, LET does not scale beyond tightly
integrated components.

In this article, we explain how to derive a system-level
extension of LET that has the needed properties of a
system-level CPS programming paradigm. We use a robot-
ics example to motivate its use in smart manufacturing.
It addresses key problems of data synchronization and
versioning in distributed systems enabling subsystem com-
position with predictable and robust timing.

This article is organized as follows. To begin with,
we discuss a case study from the application area of smart
manufacturing [5] and highlight the functional properties
that have to be preserved during integration. Since the
issues in the design process are not limited to the industrial
domain, we give an overview of related work and review
how the automotive domain has dealt with them so far.
This includes, in particular, the SL LET programming,
which is introduced in Section IV together with a summary
of its benefits in the development process of distributed
CPSs. We further show in Section V how the SL LET
concept fits state-of-the-art middleware enabling determin-
istic timing and data flow among participants. In addition,
we explain in Section VI how SL LET can be used to handle
the complexity in the design space of TSN, which is a
common communication backend for modern CPSs.

II. P R O B L E M S TAT E M E N T
In this section, the need for a platform programming par-
adigm for heterogeneous systems integration is motivated
and illustrated by a pHRI use case.

The pHRI example in Fig. 1 describes a scenario in
which a robot holds a potentially heavy workpiece
while a human is working on it [5]. Consequently,
it is not acceptable to simply stop the robot as soon
as the contact between them is detected. Instead,
the trajectory of the robot, the position of the
objects in the workspace, and the human–machine
interactions have to be closely monitored and
controlled.

2 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

Fig. 1. Different hierarchy levels in the pHRI use case.

A typical realization would include different levels
of factory automation: due to their complexity, jobs
such as image processing are suitable candidates
for centralized computing (also called cloud or fog
computing) [6]. An example would be a central
image-processing hardware per production line or
even beyond. All camera streams are sent to a
high-performance computer that produces a 3-D
map of objects as well as the detected facial expres-
sion of the worker. At the same time, the specific
production job (e.g., for individualized products)
comes from a cloud application. The cell controller
has to merge this information with data from the
robot sensors to plan the robot trajectory.

The development of a CPS starts typically with a high-
level, often executable description of the system func-
tionality. A popular modeling language for the functional
simulation of CPS applications is defined in the industrial
standard IEC 61499 [7]. Applications are here described
in terms of connected FBs with both event and data
inputs/outputs. Each FB represents a function that reads
inputs and produces outputs. There are two relevant mech-
anisms which may trigger the execution of an FB: It can be
activated periodically (time triggering), or it can be acti-
vated by an input event (event-based triggering). A chain
of linked FBs is called cause–effect chain and describes a
sequence of processing steps.

Fig. 2 provides an exemplary application model
with three FBs in the notation of IEC 61499. They
are activated periodically with a multiple of a base
period and have register-like communication, which
means that the output of an FB is overwritten by the
consecutive execution of the FB. The two involved
cause–effect chains are marked in red and green.

Often requirements relate to cause–effect chains, for
example, the specification of a maximum end-to-end
latency or the specification of the data flow between FBs.

A possible safety goal is that “the system must
detect the human worker with its camera and adapt
the robot trajectory such that the worker does not
get accidentally harmed.” Taking the robot velocity
into account, this can be translated into a latency
requirement like “it must not take longer than x

milliseconds from capturing the camera frame to
the reaction of the robot.”

Once the functional model of the CPS is approved,
it needs to be gradually refined and finally an implementa-
tion must be generated. An implementation is correct if
it preserves the properties of the functional model. The
choice of the RT programming paradigm mainly deter-
mines whether it is easy or difficult to translate the func-
tional model into a correct implementation. It is desirable
that an RT programming paradigm for CPSs features [8]:

1) time predictability;
2) data flow determinism;
3) composability;
4) platform independence.
Time predictability ensures that the timing properties

such as latencies and jitter of an implemented cause–effect
chain can be efficiently computed in advance; this serves
to check the correspondence between specification and
implementation.

Data-flow determinism is a property of the RT program-
ming paradigm that helps to preserve the deterministic
data flow specified in the functional model throughout the
implementation.

Since the functional model is a composition of compo-
nents which may execute in parallel, the RT programming
paradigm should support concurrence and synchroniza-
tion. In particular, it is desirable that component properties
are preserved through composition (so-called composabil-
ity) which eases not only design and verification but also
the reuse of components in different system configurations.

Platform independence means that time predictability,
data flow determinism, and composability are preserved
through a platform modification, even if the platform is
distributed and applies asynchronous communication net-
works. Platform independence is of importance since mod-
ern CPSs are subject to hardware and software updates as
well as reconfiguration.

The four requirements prioritize a manageable design
process with repeatable results over maximum perfor-
mance. Take data flow determinism as an example. Using
minimum age data values at all times could help to maxi-
mize automatic control performance, but data flow would
change with computation timing that, in turn, depends on
the execution platform, its load, temperature control, and
so on. The resulting nondeterministic data flow depends on
a large, time-variant parameter space that impacts system
behavior. This impact challenges a systematic design with

PROCEEDINGS OF THE IEEE 3



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

Fig. 2. Two cause–effect chains with oversampling and

undersampling that are joined at FB2.

predictable, platform-independent results. There might be
cases where this is acceptable, but it can hardly be the basis
of a manageable complex system design.

Unfortunately, the most common RT programming
paradigm—namely the BET paradigm [2], which models
the variability of execution times observed on conven-
tional platforms, has limited time predictability and does
not feature data flow determinism, composability, and
platform independence [8]. For this reason, the resulting
implementation has to be extensively tested to assure
that the implemented CPS fulfills the safety requirements.
A particular challenge is to preserve the data flow rela-
tions in cause–effect chains under BET. The described
time-triggered communication between FBs in Fig. 2, for
instance, leads to race conditions because the data to
be sampled is produced with run-time varying execution
speed, a problem which is aggravated with the dynamic
behavior of modern processing hardware. This unsatis-
factory situation has already been observed in domains
other than industrial automation. Particularly, in the case
of automated driving, where no human driver is able
to react to failures, stringent safety requirements have
to be met while function complexity grows asking for
heterogeneous high-performance platforms. At the same
time, automotive software development becomes more
agile and new functionality, as well as updates, have to
be rolled out in the field. Therefore, extensive testing
has to be avoided, and ad hoc implementations do not
scale anymore. The automotive industry has therefore
introduced LET as an RT programming paradigm satisfying
all of the above-named properties; it is now included in
the AUTOSAR standard [9]. However, LET is applicable
only in the scope of single-core and multicore processors,
an extension for distributed systems was recently proposed
under the name of SL LET [8] but only systems with
register-like communication semantics between FBs have
been discussed.

In this article, we explore whether SL LET can be
applied to program systems which feature complex data
flow including buffering and RT constraints. This problem
is particularly relevant for building correct distributed
heterogeneous CPS which includes RT middleware for
communication between remote applications. The middle-
ware and the underlying network communication are often

challenging to program because timely and deterministic
transport and delivery of data samples over synchronous
and asynchronous networks is required. The efficiency of
the presented solution with SL LET shall therefore be
demonstrated by applying it to the DDS, a middleware for
RT data distribution, and TSN, a set of standards for timely
communication over Ethernet. In the end, the solution is
evaluated including a discussion of the incurred implemen-
tation overhead.

III. R E L AT E D W O R K O N R T
P R O G R A M M I N G P A R A D I G M S
If a computing system has to interact with its physical
environment, then the system (re)actions must be appro-
priately timed to achieve the desired effects. Numerous
examples for such CPSs, which connect the world of infor-
mation technology and the physical world, can be found
both in the industrial and automotive domains. Software
design for CPSs belongs to the field of RT programming
because the correctness of programs depends on both
the computed values and the required execution times.
To describe the behavior of a program in time, different
programming paradigms are in use.

Synchronous-reactive programming relies on the ZET
paradigm, while the BET paradigm is widely used in the
field of classic scheduling theory [10]. The LET paradigm
[10], [11], which connects these two worlds, is becoming
increasingly popular in the domain of automotive RT soft-
ware [8]. A relatively new approach is the reactor-based
programming paradigm proposed in [12].

The ZET, BET, and LET programming paradigms can be
related to a basic notion of an RT process or a task model.
A task is any piece of software which consumes service of
the hardware element on which it runs. We assume here
that a task is activated repeatedly with a period T and an
offset ϕ, and each instance is called a job. Furthermore,
let every job read inputs at the start of its execution and
write outputs at its termination. A set of tasks with data
flow dependences is called application in this article.

A. Bounded Execution Time

The BET paradigm assumes that the delay between the
start and termination of a task τi, that is, its response
time Ri, varies with each job due to variations in its
own execution demand and variations in the interfering
workload of other tasks which are scheduled on the same
processing element. The BET paradigm specifies a relative
deadline di—also called BET—for each task τi. A task is
said to be correct if the WCRT Ri is not larger than this
BET di, which can be verified with techniques from classic
scheduling theory.

The BET paradigm is currently the prevalent paradigm
for RT programming because it truthfully models the
observable RT behavior of software on a conventional
execution platform. Indeed there is a close correspon-
dence between a BET task and an OS task. However,

4 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

the BET behavior of tasks satisfies only the property of
time predictability: by applying the techniques from classic
scheduling theory, it is possible to compute lower and
upper bounds on the response times and jitter of BET
tasks. The variations in the I/O timing of tasks lead to
nondeterministic data flow among jobs which read and
write their inputs and outputs. Moreover, the response
times, the input–output timing of tasks, and thus also the
data flow is not preserved in the case of composition or
platform modifications.

B. Zero Execution Time

The ZET paradigm assumes that with the occurrence of
an activation event, a task reads inputs, computes, and
broadcasts outputs in zero time. This synchrony hypothesis
is satisfied by any implementation, which can guarantee
that during the execution of one job, no other job of the
same or other tasks may arrive [13]. Temporal properties
are implicitly expressed in terms of event occurrences. This
ZET or also called synchronous-reactive behavior leads to
time predictability, data flow determinism, composability,
and platform independence [2]. Synchronous languages
to specify an application are, for example, the imperative
language Esterel [14], and the declarative data flow lan-
guages Luster [15] and Signal [16].

A synchronous application can be compiled to a finite
automaton, but the compilation is difficult and the entailed
program transformations impede traceability of safety
requirements [17]. Given this automaton and the char-
acteristics of the executing processor, it can be checked
whether the synchrony hypothesis is valid [18].

Another issue of the synchronous reactive program-
ming is the synthesis of distributed architectures [19],
[20], in particular, if synchronous components are com-
municating not over a synchronous but an asynchronous
network (GALS systems). For this challenging problem
of desynchronization, multiclocked synchronous model of
computations has been proposed [21], [22] as well as an
LTTA [23]–[25].

C. Logical Execution Time

An LET task λi reads its inputs at the activation instant in
zero time and writes its outputs in zero time at the elapse
of a constant logical execution time LETi. In comparison to
the ZET paradigm, the synchrony assumption is restricted
to the zero-time reading and writing of inputs and outputs.
The finite execution time eliminates the zero-delay loops
which lead to compilation problems in synchronous reac-
tive programming. Different languages formally describe
the semantics of LET tasks, where Giotto [26] was the
first, while HDL [27] and TDL [28] extend the expres-
sive capabilities by adding aspects like hierarchical LET
applications.

The LET paradigm enforces a deterministic I/O-timing
of tasks which leads to predictable response times, zero

jitter, deterministic data flow, as well as composability and
platform independence [2].

Obviously, the LET programming paradigm does not
correspond to the behavior of an OS task on a conventional
execution platform. However, it can be implemented with
little effort by an additional, lightweight software layer as
has been demonstrated in different works [3], [4], [29]
even for relevant platforms in the automotive industry. The
principle of those implementations is that: 1) task outputs
are buffered until they are published with the elapse of the
LET by some driver and 2) the inputs of a task are copied
immediately at its activation by some driver. If several
driver actions coincide, then first all write actions, and
then all read actions are performed to maintain causality.
The synchrony assumption, that driver actions occur in
logically zero time, is satisfied by an implementation,
if during driver execution no new events may occur [29].

The LET paradigm pays for its desirable properties.
Response time variations cannot be exploited since the
LET of a task must be chosen equal to or larger than
its WCRT. Moreover, buffers are required which store
outputs until they are to be published [30]. This has
prevented designers from applying the LET to the moment
when architectural complexity asked for a programming
paradigm that leads to deterministic timing and data
flow and enables MDD while being compatible with
legacy software and hardware artifacts. The LET paradigm
has been a success in the automotive industry because
it elegantly solves the problem of multiprocessor pro-
gramming with lock-free inter-core communication [31].
It should be noted that LET by itself does not increase
the workload, even though early implementations might
have used a nonworkload-preserving scheduling strategy
(see Section VII). Biondi and Di Natale [3] also pointed
out that due to the predictable timing of LET, memory
accesses can be optimized and contention avoided. The
LET paradigm is standardized in the AUTOSAR timing
extensions [9].

D. Reactors

Lohstroh et al. [12] and Lohstroh and Lee [32] very
recently proposed the reactor-based programming para-
digm which is a deterministic model for distributed sys-
tems. Reactors are concurrently executing objects that
exchange timestamped messages. Reactors are built from
reactions, which are triggered on message reception and
may produce an output message. Timestamping, which is
performed in terms of logical time, serves to determinis-
tically order the consumption of messages by reactions.
The proposed paradigm thus achieves data flow determin-
ism, and the data flow is also composable and platform-
independent. In contrast to (SL-) LET, the concept does
not imply time determinism. (SL-) LET uses time determin-
ism as an implicit way of timestamping, which has been
proved to be both intuitive and practical. It also enables
efficient implementations as shown in several studies in

PROCEEDINGS OF THE IEEE 5



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

the context of the automotive industry, and we will also see
further examples in Sections IV–VI in this article. In prin-
ciple, reactors should be time-predictable, but currently
no scheduling analysis has been demonstrated. It has only
been mentioned that run-time errors violating the deadline
can be detected. The integration in a design flow and
the integration of legacy components also remain unclear
given the novelty of the concept.

IV. S Y S T E M - L E V E L L E T : A N R T
P R O G R A M M I N G P A R A D I G M F O R
D I S T R I B U T E D S Y S T E M S
As motivated in the problem statement, we want to inves-
tigate in this article whether an LET-like programming
paradigm, which was already applied successfully in the
context of automotive systems, can also be a useful tool
for distributed industrial CPSs. The challenge here is to
support the implementation of RT middleware required for
communication between remote applications in industrial
CPSs. Such a middleware typically features complex data
flow with buffering and RT constraints.

The LET programming paradigm itself is not immedi-
ately applicable to distributed systems since the assumed
zero-time I/O hypothesis conflicts with the nonnegligible
delays of communication between remote nodes. A pos-
sibility is to include the communication delay within the
LET of a task as proposed in [33]–[35]. This leads to trans-
parent distribution in the sense of [33], however, it may
restrict the design space: not only that the transmission
delay can never be larger than the LET of the sender
task, but also the frequency of message transmission is
forced to equal the period of the sender task. Moreover,
this approach mixes application design and network design
which are separate fields both from a technical and an
organizational perspective. SL LET [8] extends the LET
programming paradigm to distributed systems by introduc-
ing the notion of time zones and explicit LET interconnect
tasks.

Concept, implementation, and benefits of SL LET are
presented in this section, while Sections V and VI discuss
how to program RT middleware and the underlying net-
work communication over TSN with SL LET.

A. Concepts

The SL LET programming paradigm relates to distrib-
uted RT systems with a bounded synchronization error
among the clocks of its nodes. An LET application, that is
to be executed on the hardware platform of this RT system,
consists of a set of communicating LET tasks.

Once the basic architecture of the hardware platform
and the mapping of the software functions to this platform
is decided, communication can be categorized as local and
remote. Local communication is characterized by the fact
that it can be performed in logically zero time, whereas
remote communication has too long delays for the syn-
chrony hypothesis to be fulfilled.

SL LET decomposes an LET application into distinct
subsets of LET tasks, which are called time zones, such that
for all LET tasks within a time zone local communication
applies and the classic LET programming paradigm is valid.

Definition 1 (Time Zone [8]): A time zone decomposi-
tion of an LET application is a partition of the set of LET
tasks. Each element of the partition is called time zone Z.

All LET tasks in the same time zone share a local clock,
which is approximate of the global clock. The maximum
time difference between any two local clocks is bounded
from above by a known finite error �.

Definition 2 (Synchronization Error [8]): The
maximum error between a time instant tZa

i in time zone Za

and the same time instant tZb
i in time zone Zb is bounded

by

∀a, b : tZb
i − � ≤ tZa

i ≤ tZb
i + �. (1)

The remote communication is realized by a so-called SL
LET interconnect task, which is a conventional LET task
copying data between a pair of remote time zones.

Definition 3 (Time Zone Interconnect [8]): An SL LET
interconnect task Φ is an LET task that copies an output,
which is stored in a memory m in a time zone Za to a
memory m� in a remote time zone Zb.

Note that SL LET does not constrain the low-level imple-
mentation of remote communication but makes the I/O
interface time-deterministic.

The broadcasting of task outputs in logically zero time
thus only applies within a time zone, whereas the SL LET
interconnect task is charged to deterministically deliver
data from remote nodes and deal with the problem clock
synchronization.

B. Implementation

The SL LET interconnect task is the main element which
distinguishes SL LET-based implementation of a distrib-
uted RT system from the implementation of the same
system with LET programming on the individual nodes and
BET-like communication between them.

An SL LET interconnect task is, like an LET task,
an abstract concept which can but does not have to map
to a single OS task. In the common case, the SL LET inter-
connect task describes the end-to-end timing of a remote
communication including the communication stacks in the
sender time zone and the receiver sender time zone as well
as the transmission on the network. Since the communica-
tion stacks and the network usually do not behave in a
time-deterministic manner, the desired behavior must be
enforced.

First of all, SL LET requires that all local LET schedules
are synchronized with regard to a global clock, which
can be realized by applying the PTP defined in IEEE
1588v2 [36] and starting the schedules with the occur-
rence of IRQs [4]. Time synchronization among remote

6 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

nodes is common in distributed systems and can thus
not be considered as an implementation overhead that is
specific to SL LET.

Second, to hide varying network transmission latencies
and out-of-order arrivals of packets, a possible strategy
is to introduce sequence numbering as well as buffering
and reordering in the receiving time zone [8]. Although
the addition of a sequence number in a packet is an
insignificant overhead, the overhead related to buffering
is of interest. Gemlau et al. [8] showed that the number
of required buffer entries N in the receiving time zone
which receives data from an SL LET interconnect task with
period T depends on the maximum network jitter WCRT −
BCRT, the maximum time required to read an entry from
a buffer ΔR, and the relative clock synchronization error �

between the communicating time zones. If LETΦ is chosen
at least as large as the maximum transmission time plus
the synchronization error such that LETΦ ≥ WCRT + �,
we have [8]

N = 1 +

�
LETΦ − BCRT + ΔR + �

T

�
. (2)

The relation shows not only that the memory overhead
is constant, but also that

1) the accuracy of the synchronization error and
2) the jitter LETΦ − BCRT

can be traded for the number of buffer entries and vice
versa.

C. Benefits of SL LET in the Design Flow and
Verification Process

SL LET is not only an RT programming paradigm but
supports in many respects an efficient design flow and
verification process which we will illustrate in this section
and later in Sections IV–VI by the pHRI use case intro-
duced in Section II which has stringent safety and timing
requirements.

1) SL LET Supports MDD: With the increasing com-
plexity of modern distributed CPSs both with regard to
the software architecture and the execution platform,
an ad hoc approach to the design of such systems with
high-performance requirements does not scale anymore.
An example of the increased complexity is the shift from
federated to integrated architectures [37] which is accom-
panied by the transition from single-core to multicore
controllers and the continued replacement of data buses by
networks. In the future, these networks will also be used to
connect the upper hierarchical levels of factory automation
to the control level and below [38]. At the same time,
it is desirable to reuse functionality and to be able to
modify platform configurations. Therefore, the design and
implementation process should feature compositionality
and platform independence.

MDD is a way of structuring and ultimately automating
the design process [39]. The development starts with

models of the system functions at a high level of abstrac-
tion to unburden the application design from implementa-
tion details. Such functional models are typically written
in domain-specific languages with support for graphical
entry and are often executable to enable functional simu-
lation. Generic examples for such languages are MATLAB/
Simulink, LabView, and others, but also the important
industrial standard IEC 61499 [7] proposes a modeling
language for applications of CPSs in terms of connected
FBs with both event and data inputs/outputs. The quoted
functional languages have in common that they have
synchronous-reactive semantics or can be associated with
such. In the important case of the standard IEC 61499,
which was published with ambiguous semantics [7], com-
patible synchronous semantics for the execution of FBs
have been proposed [40].

The top layer of Fig. 3 shows a coarse-grained
functional model of the pHRI. According to IEC
61499, it is built from FBs (FB1–FB9), including
data flow (bold lines) and event flow (arrows).
Individualized products are a typical industry
4.0 scenario, therefore FB1 represents the current
manufacturing job that may change for each work-
piece. The production cell is equipped with a set
of sensors like stereo or RGB-D cameras and laser
scanners (FB2) that feed the object detection (FB5),
to get a model of every object that is inside the
production cell. On the other hand, the human
worker can also be monitored, for example, by a
camera for facial expression or head position or
by body sensors for heart rate (FB3, FB6). This
provides information about the workers’ intentions
and their potential fatigue. The trajectory planning
FB7 combines these results with sensor data from
the robot (like force, ultrasonic distance sensors,
or actuator fault sensors) to compute a safe but
efficient trajectory for the robot arm. The following
collision detection (FB8) acts as a safety fallback
that has to decide between a potential hazardous
collision or an intended contact.
The execution of an FB might be either triggered
periodically (e.g., the trajectory planning in FB7)
or event-based (e.g., the object detection in FB5,
that starts as soon as a new image from the camera
arrives).

In an MDD, these functional models are then, manually
or automatically, synthesized in a series of model trans-
formations where a refined model should preserve the
properties of the more abstract model and the relation
between the models should be traceable.

If the SL LET programming paradigm is applied in
a system, then the model transformation is significantly
eased because the synchronous-reactive semantics of many
functional models are compatible with SL LET given that
the FBs are periodically executed. Also event-triggered

PROCEEDINGS OF THE IEEE 7



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

Fig. 3. Model-driven design process for the pHRI use case showing a functional model, a refined functional model, and a translation into

the SL LET programming paradigm which can be implemented, for example, as proposed in [8].

cause–effect chains of FBs can be treated if the first FB in
such a chain is periodically activated.

As we will see in the following, SL LET allows us to
address a major issue with MDD, which is to trace back
design decisions to the original safety requirements and
vice versa [17].

Fig. 3 shows multiple transformations and refine-
ments in the synthesis flow of the case study. The
functional model in the upper part of the figure rep-
resents the initial stage of the design process. Based
on the functional model, a first simulation can
be done without incorporating a specific hardware
platform. This already gives a first estimation of
the end-to-end latency for each cause–effect chain.
In the following, we will focus on the three colored
cause–effect chains, namely

1) red (FB2 ≺ FB5 ≺ FB7 ≺ FB8 ≺ FB9),
2) green (FB4 ≺ FB7 ≺ FB8 ≺ FB9),
3) blue (FB4 ≺ FB8 ≺ FB9),

which are supposed to have end-to-end timing
requirement. These cause–effect chains of interest
join and fork: the red and green one join at the
trajectory planning in FB7, which combines inputs
from FB5 and FB4. The green and blue one fork at
the output of FB4, such that this output can be used
by both FB7 and FB8.
First transformation: In the next step, a rough plat-
form design is used to map the FBs to different
devices. Additional FBs are added for middleware
communication between the devices. Their activa-
tion is either periodic or event-driven. A typical
choice for the period of a middleware FB is the
period of the data producer or the data consumer.

8 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

For example, FB4.1 is activated with the consumer
period such that the undersampling between FB4
and FB7 already occurs in the sender device, thus
reducing the overall network traffic. Requirements
with respect to data versioning also affect the choice
of the period since it has to be ensured that all
required samples are actually sent.
An example for a cause–effect chain with event
triggering is FB2 ≺ FB5 ≺ FB7, where FB2 is
activated periodically but FB5 and FB7 are event-
driven. The activation pattern of this chain reflects
the pipelining used in the image processing.

An acceptable delay for each middleware commu-
nication can be estimated in two ways. On the
one hand, the platform model might already indi-
cate where low-latency communication between the
devices is possible and where larger latencies have
to be expected. On the other hand, the end-to-
end requirement for each cause–effect chain can
be compared to the latency results of the pre-
ceding functional simulation which excluded com-
munication. As an example, it might not even
be possible to formally guarantee a worst case
latency for the image-processing pipeline in the red
cause–effect chain. Nevertheless, the later part of
the cause–effect chain is more deterministic and a
solution might be that from the end-to-end require-
ment of 120 ms, 80 ms can be assumed for the
image-processing part.
Since the first transformation is mostly a refinement
of the model, it is still manageable in the ecosystem
of the function developer. Consequently, simulations
can be redone incorporating the new assumptions
about communication delays.
Second transformation: In the subsequent transfor-
mation, an SL LET model is derived. Devices are
mapped to time zones admitting a bounded syn-
chronization error between their local clocks. An FB
can be translated to an LET task; typically the
period is adopted and the LET is chosen equal to
the LET of the block to reflect the semantics of
the functional model. Often the period is equal to
the LET. A middleware FB can be modeled by an
interconnect task which also inherits the period of
the FB and adopts the delay of the FB as LET which
may be longer than the period depending on the
maximum duration of a communication.
Moreover, SL LET is able to deal with cause–effect
chains which include event-triggered network com-
munication. In this example, the interconnect task
Φ5.1 models the production of new samples, net-
work transport, and object detection. The task Φ5.1

has a period of 25 ms (the sampling frequency of
the camera) and an LET of 80 ms. In contrast to a
BET model, this allows a deterministic data flow

behavior since FB7 can rely on a constant period
and data age of its inputs.
In Sections IV-C2–IV-C5, we will revisit this example
and show how further steps of MDD in combina-
tion with SL LET can be used to refine, adapt,
trace, and monitor timing properties of the system,
including separation of concerns between different
stakeholders.

2) SL LET Allows to Intervene in the Synthesis Flow and
Facilitates Specification of Timing Requirements: An advan-
tage of the (SL-)LET when compared to synchronous pro-
gramming is that a series of intermediate implementation
models are accessible to the system designers. These SL
LET models abstract both the applications and the execu-
tion platform and are helpful to explore system properties
before code generation. The SL LET models are intuitive,
close to the structure of a later implementation, and can
be manipulated through user interaction.

3) SL LET Enables Composability and Timed Modulariza-
tion: Today’s MDD focuses on modularization of software
functionality (see FBs in IEC61499). The goal is a division
of labor among different working groups, respectively,
among OEMs and suppliers. Besides intellectual property
concerns, a supplier pursues to reuse its developed func-
tionality in different projects and for different customers.
Since the behavior of an FB is the result of the input to
output relation but in combination with timing, the imple-
mentation must reproduce both. The latter aspect has been
neglected in many existing MDD processes, but it becomes
more important with high-performance integrated archi-
tectures. In fact, SL LET offers such modular, composable
timing interfaces which can serve as a contract between
different stakeholders. It is even possible to hierarchi-
cally assign LETs to subfunctions supporting a divide-and-
conquer principle.

4) SL LET Eases Modifications and Platform Changes:
SL LET facilitates the continuous evolution of systems by
updates and reconfiguration: SL LET hides variations in
response times and transmission times as long as the LETs
are not exceeded. Thus, modifications with limited changes
in the response times and transmission times, like the
update of a function, are transparent and do not require
a re-verification of the entire system.

The size of the LET is a deliberate design choice and
allows us to increase the robustness of the system toward
function updates at the expense of overhead. The robust-
ness margin of an LET task is easy to compute being the
difference between the LET and the current WCRT.

Also, the addition of a new component does not impact
other components as long as their response times and
transmission times can still be bounded from above by the
respective LETs. Only if it is not possible to circumvent the
transgression of an LET, it might be necessary to redefine a
(sub)set of time budgets in consultation with the function
developer.

PROCEEDINGS OF THE IEEE 9



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

Fig. 4. Generic distributed system with middleware layer.

5) SL LET Enables Efficient Implementation and Moni-
toring: SL LET effectively reduces the state-space of the
system with regard to its RT behavior due to the intro-
duced time determinism. This reduction in complexity
can be immediately exploited in the implementation of
the system. Examples are lock-free communication [31]
or the reduction of memory contention [3]. Moreover,
the contractual determinism of SL LET communication is
a basis for monitoring which can be implemented with low
minimal overhead. In Sections V and VI, we will discuss
those aspects and give examples how those properties
can be exploited in the design of middleware and the
configuration of a network.

V. S Y S T E M - L E V E L L E T : S U P P O R T I N G
T H E C O N F I G U R AT I O N A N D
I M P L E M E N TAT I O N O F M I D D L E W A R E
F O R R T D ATA D I S T R I B U T I O N
Industrial CPSs are of distributed nature: embedded con-
trollers in sensors, machines, actuators, and so on are
independent nodes in different physical locations but they
must co-operate on the factory floor or in a process plant to
achieve a common goal. In the future systems, even remote
databases and data-processing services are accessible by
connections to external servers. To facilitate the exchange
of information, distributed CPSs typically feature a mid-
dleware layer as illustrated in Fig. 4 which establishes and
manages the transparent distribution of data and ensures
its consistent representation. By hiding heterogeneity and
distribution to the individual applications, the middleware
eases significantly the design and reuse of applications.
A particular challenge for middleware in safety critical
environments is that the communication service should
fulfill soft or hard RT guarantees.

In this section, we discuss how SL LET can help to
efficiently configure and implement an RT distribution
middleware using the example of the DDS. Moreover,
we show how SL LET can be used to manage versions of
data samples in decentralized data caches.

A. Data Distribution Service

DDS is a scalable RT distribution middleware which is
well established in a wide range of applications, including
both industrial and automotive distributed systems [41].
As shown in Fig. 5, it consists of two layers: the upper layer

is defined in the DDS standard [42] specifying a DCPS
communication with the respective application interface
and QoS parameters. The lower layer, standardized as the
DDSI [43], defines an RT-capable middleware protocol
which sets the rules for message formats and message
exchange between applications.

1) Data-Centric Publish–Subscribe Model: The DDS fol-
lows a DCPS paradigm, that is, a global data space exists
to which data objects can be added or from which data
objects can be retrieved. In DDS, data objects are called
topics, and successive values for a topic are DataSamples.
An example of a topic is a sensor output which is updated
periodically, leading to a series of DataSamples over time.
In the following, we use the notation θu for a topic and the
notation θu,q for its qth DataSample.

All applications that can communicate with each other
are grouped in a domain, an individual application
is a DomainParticipant. Each DomainParticipant has a
publisher entity, consisting of several DataWriters, and
a subscriber entity, consisting of several DataReaders
(see Fig. 5). A DataWriter is topic-specific and commu-
nicates new DataSamples for its topic to the associated
publisher. The publisher then disseminates the data values
to all interested subscribers of other DomainParticipants.
The receiving subscribers forward the data values to the
respective topic-specific DataReaders.

Each of the DCPS entities DomainParticipant,
DataWriter, DataReader, publisher, subscriber, and
topic has a set of QosPolicies to specify its requirements
with regard to data availability, data delivery, data
timeliness, resources, and configuration [44]. Moreover,
a DCPS entity has also one or multiple listener interfaces
to be informed of incoming data or notifications in a
synchronous or asynchronous manner.

Finally, DDS assumes that a discovery mechanism is
available which: 1) detects the presence or absence
of DomainParticipants and the respective DataWriters
and DataReaders in the system and 2) enables nego-
tiation between DomainParticipants deciding whether
publisher–subscriber relations for common topics will be
established.

Fig. 5. DDS stack.

10 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

2) Quality of Service: A distributed CPS has to maintain
an internal model of the state of its physical environment
which has to be sufficiently accurate. Accuracy can relate
to different aspects, but we focus here on sufficient tem-
poral consistency. Data samples which describe the state of
some entity in the physical environment must be regularly
updated, so that all participants have the same view on
the environment. The requirement of temporal consistency
can be reflected in DDS by choosing the appropriate QoS
policies with regard to data availability and timeliness,
which are the following.

1) HISTORY: Specifies how many DataSamples are to
be cached at the DataWriter until they are delivered
(resp. at the DataReader until they are taken by the
application).

2) LIFESPAN: Specifies how long a sample that is pro-
duced by a DataWriter remains valid.

3) DEADLINE: Specifies the relative deadline for the
update of a data sample at the DataWriter (resp. the
DataReader).

4) LATENCY_BUDGET: Specifies the deadline for a mes-
sage transmission, which notifies the subscribing
application of a CacheChange.

An RT distribution middleware can handle QoS
demands of an application in two fundamentally differ-
ent ways: either it promises to do its best to satisfy the
requested QoS (best-effort QoS) or it negotiates a QoS con-
tract to which it adheres (guaranteed QoS). If best-effort
QoS applies, then the middleware attempts to achieve the
requested QoS by configuration and monitors the actually
offered QoS at run time notifying the application in case of
a failure. If guaranteed QoS applies, then the middleware
checks whether a QoS contract can be fulfilled and possibly
renegotiates parameters. Such contracting can be real-
ized offline at design time or online as a reconfiguration.
Regardless of how the contracting is realized, if guarantees
are to be given, then a system model and an appropriate
analysis must be available.

DDS applies the approach which offers best-effort QoS
for a topic. This is a good approach for applications with
soft RT requirements but unsatisfactory for those with hard
RT requirements. Therefore, Tijero and Gutiérrez [45] and
Pérez and Gutiérrez [46] explored how a system model for
DDS can be built which could then be subject to classical
schedulability analysis. Building such a model requires,
however, knowledge about the underlying software layers
and the execution platform, which must of course both
have a predictable RT behavior. This will be addressed in
Section V-B.

3) DDSI-RTPS: While the DDS standard [42] defines
the API for transparent communication as well as
the associated QoS parameters as explained above,
the DDSI standard [43] specifies the underlying
publisher–subscriber protocol which is called RTPS.
The RTPS is characterized by the structure of its entities,
the message contents, the procedure of message exchange,

and the discovery mechanism as will be detailed below.
Fig. 5 shows the interplay of DDS and RTPS.

a) Structure: RTPS has its own set of entities, namely
participants which are composed of a set of endpoints, that
is, readers and writers, as well as endpoint-owned His-
toryCaches which are subject to CacheChanges modifying
the cached data. The HistoryCache represents the interface
between RTPS and DDS. A DDS DataWriter posts new data
in the form of a CacheChange through a HistoryCache to
the RTPS Writer, that is then charged to send a message
to all paired RTPS Readers. An RTPS Reader then posts
the CacheChange to its HistoryCache, where the DDS
DataReader can retrieve it. Therefore, the HistoryCache
of a writer maintains a history of made CacheChanges,
while the HistoryCache of a reader maintains a history of
received CacheChanges by the paired writer.

b) Messages: An RTPS message consists of a header
and a set of submessages. Beside submessages for data,
there are also special control submessages for heartbeats,
acknowledgments, timestamps, and so on.

c) Behavior: RTPS also specifies the rules of message
exchange between writers and readers for the propagation
of CacheChanges, which partly depend on the chosen QoS
parameters. The DDSI standard also provides stateless and
stateful reference implementations of readers and writers.

d) Discovery: A PDP and an EDP must be part of
RTPS. The purpose of the PDP is to identify all participants
and their properties. The EDP enables communication
between two participants to discover the respective writers
and readers. The discovery also ensures that only end-
points with matching QoS parameters are connected.

B. Combining DDS and SL LET

The challenge in realizing a middleware for RT data
distribution is to find an efficient implementation which
ensures the specified QoS guarantees. In this section,
we show how SL LET programming abstraction can be
used for this purpose by the example of DDS. In particular,
we show how the DDS entities can be mapped to the
SL LET entities with a special focus on the HistoryCache,
and how the existing QoS parameters can be used to
configure SL LET-based DDS implementation.

1) Mapping DDS Entities to SL LET Entities: All Domain-
Participants which run on the same device in the system
belong to the same time zone. A time synchronization
protocol, for example, PTP, is used to bound the synchro-
nization error between the clocks of the different devices.

On each local device, the DomainParticipants are pro-
grammed such that their access to a HistoryCache through
the respective DataWriters and DataReaders follows the
LET programming abstraction. A DomainParticipant thus
writes with a period Tλ and the logical execution
time LETλ through the DataWriter to the HistoryCache
(resp. reads with a period Tλ through the DataReader
from the HistoryCache). The SL LET parameters can
be easily mapped to the QoS policies DEADLINE

PROCEEDINGS OF THE IEEE 11



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

Fig. 6. Comparison between SL LET buffer and DDS HistoryCache.

and LATENCY_BUDGET in DDS: as mentioned above,
the DEADLINE parameter specifies how often a DataWriter
must update a topic in the HistoryCache (resp. how often
a new DataSample must be supplied in the HistoryCache
of the paired DataReader). In a valid SL LET-based DDS
implementation, the period of reading and writing data
must be smaller than or equal to the DEADLINE. We choose
here Tλ = DEADLINE. The LATENCY_BUDGET specifies a
deadline for the message transmission of a DataSample,
such that the LETλ of the DomainParticipant can be as long
as LATENCY_BUDGET.

The communication between a pair of HistoryCaches
is specified by DDSI and can be mapped to SL LET
interconnect tasks. An SL LET interconnect task Φ mod-
els the entire RTPS message transmission including the
actions of the writer at the sending participant, the net-
work transmission, and the actions of the reader at the
receiving participant. While the I/O-behavior of Φ is thus
deterministic with parameters TΦ and LETΦ , it allows
any underlying network implementation if an appropriate
buffering scheme is applied [8]. The period TΦ must equal
to the period of the sending DomainParticipant, thus here
TΦ = Tλ = DEADLINE. The LETΦ must be chosen
smaller than or equal to the LATENCY_BUDGET. In the
following, we assume that LETΦ = LATENCY_BUDGET.
Finally, the release offset of LETΦ must equal LETλ .

Note that the direct mapping of DDS’s QoS policies and
SL LET parameters allows us to an immediate traceabil-
ity between the middleware specification and the related
implementation.

2) DDS HistoryCache and SL LET Buffering: The Histo-
ryCache, which acts as an interface between the DCPS
and RTPS layers in DDS, is closely related to the buffering
scheme used in SL LET [8]. Fig. 6 compares the two buffer-
ing concepts: the DDS HistoryCache is used to preserve
a configurable number of DataSamples. It thus stores the
most recent received sample of the topic θp,q and older
versions θp,q−1, θp,q−2, . . . —in total as many samples as
specified by the QoS policy HISTORY. On the other hand,
the buffering in SL LET prevents early arriving samples
from being published before the LETΦ of the interconnect
task Φ is elapsed. Therefore, it provides N buffer entries
(as depicted in Section IV-B) to store and reorder the
samples, until a sample θu,q is valid according to SL LET
semantics. Combining both approaches leads to a DDS
HistoryCache that follows SL LET semantics.

SL LET-based DDS HistoryCache is created, if the SL LET
buffer stores not only the current DataSample θp,q and the
future not yet published DataSamples θp,q+1, θp,q+2, . . . ,
but additionally preserves M − 1 = HISTORY − 1 old
DataSamples. By using t

Zb

outdate(q) = t
Zb

publ(q+M), the buffer
size can be calculated in the same way as proposed in [8]
leading to

N̄ = M +

�
LETΦ − BCRT + ΔR + �

T

�
. (3)

This can also be expressed with QoS parameters in DDS,
if the above DDS-to-SL LET mapping of parameters is
assumed

N̄ = HISTORY

+

�
LATENCY_BUDGETΦ − BCRT + ΔR + �

DEADLINE

�
. (4)

The LIFESPAN parameter is closely related to the con-
cept of the HistoryCache, specifying the maximum time
during which a DataSample is considered as valid. The
notion of a lifetime in DDS corresponds to the concept of
maximum data age in classic schedulability analysis, and
it is important for function developers that need to bound
the age of their input data. If DataSamples are placed at
nondeterministic instants in time in the HistoryCache, each
DataSample has to be annotated with a timestamp, so that
DDS can iterate over the oldest samples and remove them
from the HistoryCache as soon as their age exceeds the
specified LIFESPAN. This is an expensive procedure.

Due to the strict periodic behavior of SL LET, every
DataSample in the HistoryCache will always have a deter-
ministic maximum data age. Let DataSamples be sent with
the period TΦ and the transmission delay LETΦ , then the
data age of the nth most recent DataSample (1 ≤ n ≤
HISTORY) when it arrives at the HistoryCache is

min_data_age = LETΦ + (n − 1) · TΦ (5)

and just before it becomes the n + 1th most recent
DataSample, it reaches its maximum data age

max_data_age = LETΦ + n · TΦ . (6)

The maximum data age of the oldest entry in the Histo-
ryCache is thus LETΦ + M · TΦ or in terms of DDS

LIFESPAN = LATENCY_BUDGETΦ

+HISTORY · DEADLINE. (7)

Consequently, it is up to the function design whether he
specifies the number of entries that must be available in
the HistoryCache (HISTORY) or the required LIFESPAN of

12 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

Fig. 7. Nondeterministic data-age dispersion when multiple inputs with BET communication are combined.

each DataSample. It is important to mention that the lifes-
pan of the sample is specific to the reader (resp. the
receiving time zone). This flexibility is inherited from
the SL LET paradigm and allows, for example, to only store
the most recent sample in the sending time zone (normal
LET behavior), while the output of the SL LET intercon-
nect task has a reader-dependent lifespan in the receiving
time zone.

3) Mastering Dispersion in Data Ages: We have seen
that the implementation of a middleware for RT data
distribution like DDS is considerably eased if an SL LET-
based approach is chosen. On the one hand, mapping
QoS policies to SL LET parameters is straightforward such
that a correct configuration of a DDS implementation
is no longer problematic. On the other hand, the orig-
inal QoS requirements can be directly retrieved from
the implementation such that high traceability is given.
Moreover, we have shown that the nth DataSample in
a HistoryCache is guaranteed to be updated with period
DEADLINE and has a deterministic LIFESPAN. In the
following, we will consider the scenario in which a CPS
application reads DataSamples of two topics and thus
from two history caches that are updated by (remote)
DataWriters. A requirement is that the dispersion in data
ages of the DataSamples from the two different sources is
deterministic and behaves as observed in the simulation of
the functional model. We will see based on an example
that SL LET-based implementation for DDS, in contrast
to a BET-based implementation, fulfills this requirement
immediately.

Consider the trajectory planning (FB7) in the pHRI use
case from Fig. 3. It has to correlate sensor data from the
robot (FB4) with results from the camera-based object

detection (FB2, FB5). While the closely coupled robot
sensors have a higher sampling frequency and typically a
more deterministic data transport (low jitter), the complex
image processing and network transport leads to a higher
jitter in the red cause–effect chain. The jitter in the trans-
mission of DataSamples to the HistoryCaches is not part of
the functional model which assumes that the middleware
contributes a static delay.

a) BET-Based Implementation: Fig. 7 shows how a
BET-based communication between FB2+5, FB4, and FB7
might look like. We assume that all FBs have a strict
period and their schedules are started synchronously with
activation of job 0.

1) For simplicity, we model the beginning of the red
cause–effect chain (FB2, MW 2.1, FB5, MW 5.1) with
a single FB2+5+MW that produces samples with a
period of 25 ms. Let the execution of FB2+5 be
subject to a large jitter such that it might take between
15 and 80 ms from the recording of a camera image
until the processed data sample is received by FB7.
The variable part of the latency is represented by a
light gray box in Fig. 7.

2) Also for simplicity, we summarize FB4 with an MW
4.1 to a single FB4+MW, which has a five times
shorter period than FB2. We assume a low jitter for
the transmissions between FB4 and FB7.

3) We further restrict the example to pipelining, such
that DataSamples always arrive in order.

However, different routing paths in a real-world scenario
might result in out-of-order arrivals. This would lead to
an even higher complexity here, as the entry of a sample
in the history cache would not necessarily correlate with
its data age. Let FB7 store the three most recent samples

PROCEEDINGS OF THE IEEE 13



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

of each topic in its HistoryCaches (HISTORY = 3), they
can be used by FB7 to calculate the motion of detected
objects. The topics are named by their producer FBs. Snap-
shots of the HistoryCaches at the 32nd activation of the
consumer block FB7 are shown in the lower part of Fig. 7.
The first snapshot shows a corner case in which data is
produced and transmitted with minimum latencies for the
red cause–effect chain but with maximum latencies for the
green cause–effect chain, such that θcam,10, θcam,11, θcam,12,
and θsen,59, and θsen,60, θsen,61 are available at the moment
when FB7 reads. The second snapshot shows another
corner case: here data are produced and transmitted with
minimum latencies for the green cause–effect chain but
with maximum latencies for the red cause–effect chain,
such that θcam,7, θcam,8, θcam,9 and θsen,61, and θsen,62, θsen,63

are available at the moment when FB7 reads. The entries
of the HistoryCaches are also annotated with their current
data age.

The comparison of the two corner cases reveals a prob-
lem that the function developer of FB2 is faced with.
Although it is possible to specify the DEADLINE and
LATENCY_BUDGET parameters and they can be fulfilled
by a given BET implementation, there is no way to impose
and realize a deterministic data-age dispersion. Therefore,
the function developer has to implement FB7 with vague
assumptions about the correlation of the data ages in
the two HistoryCaches. Remember, however, that the two
inputs represent detected objects from the camera as well
as sensor data from the robot and a correct trajectory
computation is safety critical.

b) SL LET-Based implementation: By implementing the
above example with SL LET, a deterministic run time
behavior is enforced as shown in Fig. 8. The LET for the
block FB2+5+MW (resp. FB4+MW) is set to the sum
of LETs of the subblocks and the LATENCY_BUDGET(s)
for the middleware. The implementation behavior corre-
sponds consequently to the simulated, deterministic behav-
ior of the functional model: for instance, there is only one
possible state of the HistoryCaches in the example when
the 32nd job of FB7 is activated as illustrated in Fig. 7. It is
interesting to see that the dispersion in data ages is even
lower than observed in the BET setup due to the reduced
relative variability.

To cover the general case, let us now formally derive
the data-age dispersion of two DataSamples from topics θp

and θk which are read in simultaneously by a receiving
application FBj under the assumption of SL LET-based
implementation of DDS. To begin with, we determine
which DataSample of topic θp is in position n = 1 in the
HistoryCache Hp at the activation instant of ith job of FBj .
Clearly, the most recent available DataSample of topic θp

in the HistoryCache Hp must be θp,q with

q =
�
max q� | i · Tj ≥ q� · Tp + LETp

�
=

�
i · Tj − LETp

Tp

�
· Tp. (8)

Fig. 8. Data-age dispersion with SL LET.

At the moment when the ith job of the consumer FBj

reads the DataSample θp,q in position n = 1 of its Histo-
ryCache, it has the data age

data_age(θp
1→ FBj(i))

= i · Tj − q · Tp

= i · Tj −
�

i · Tj − LETp

Tp

�
· Tp. (9)

In the general case, when the ith job of the consumer FBj

reads the DataSample θp,q in position n of its HistoryCache
with 1 ≤ n ≤ HISTORY, the respective data age is

data_age(θp
n→ FBj(i))

= i · Tj −
�

i · Tj − LETp

Tp

�
· Tp + (n − 1) · Tp. (10)

In other words, the data age of the DataSample θp,q in
position n is always the same for the ith job of FBj in any
execution run of the implementation. This immediately
leads to a constant dispersion in data age when the ith
job of FBj reads a DataSample θp,q in position n and a
DataSample θk,l in position m:

data_dispersion
�
θp, θk

m,n→ FBj(i)
�

			data_age(p n→ FBj(i)) − data_age
�
k

m→ FBj(i)
�			 .
(11)

In conclusion, we can say that SL LET enables a fully
time-deterministic management of data versions both with
regard to absolute data age of DataSamples and the rela-
tive data ages of DataSamples from different topics.

4) Monitoring QoS Parameters in SL LET: The determin-
ism in an SL LET-based middleware enables an elegant
implementation of run-time monitoring. This is especially
relevant for complex CPSs where the timing behavior
cannot be formally proved during design time. Therefore,

14 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

adherence to the QoS parameters has to be validated
during operation. Different options are possible in the case
of a violation, which can either ensure that the system
enters a safe state (fail-safe) or that operation can continue
in a safe way (safe-operational). DDS provides the ability
to inform the application about a violated QoS parameter,
such that an appropriate reaction can be implemented by
the function developer. On the other hand, it would also
be possible to relieve the application from that burden by
integrating a reaction in the middleware itself.

An important monitoring case for the discussed
safety-relevant systems is the missing of an expected sam-
ple when the receiving job is activated. This might occur
either due to an unpredictable large delay in the preceding
part of the cause–effect chain or due to packet loss in the
network. Both cases would modify the data flow in the
cause–effect chain and could lead to a behavior that does
not correspond to the specification. Without SL LET, this
can only be implicitly detected by monitoring the interar-
rival times of the samples. Nevertheless, the absence of a
packet can only be detected by continuously setting a mon-
itoring event with a deadline relative to the last received
sample, which equals a watchdog timer. Timestamps can
also be used to monitor the latency of each transmission.
This already requires time synchronization between the
sender and the receiver and an exceeded latency budget
can only be recognized retrospectively.

By introducing SL LET, monitoring decisions can be
made with lower overhead. As shown above, DEADLINE
and LATENCY_BUDGET are used to describe SL LET-
based communication in DDS. Since both participants have
sufficient time synchronization, an explicit deadline for
each sample exists in the time zone of the receiver. This
deadline equals the LET mark for publishing the sample.
Consequently, it is possible to set periodic monitoring
events to the points in time when a new sample is to be
published in the receiver time zone. A special case for the
application of this monitoring is the image processing at
the beginning of the red cause–effect chain in the pHRI
use case (see Fig. 7). While the image processing includes
event-driven functions with pipelining, it can be abstracted
by an interconnect task. The input for the trajectory plan-
ning (FB7) can therefore rely on a constant period of
new samples (frame capture rate of the camera) and a
constant data age due to the abstraction of delay with
the interconnect tasks LET. Any form of misbehavior can
therefore be detected.

Based on the reliability requirements, multiple reactions
are conceivable. On the one hand, the application may
simply be informed about the missing sample, which can
also be done by delivering a predefined error value when
the sample is requested. In the case of fail-operational
systems, however, redundancy may be required. SL LET
simplifies the voting between multiple redundant inputs
like the time instant for voting is explicitly given by the
elapse of the interconnect task’s LET. At the time of voting,
one has to check whether the primary sample is available

or if the sample from the redundant path has to be used.
This can be done seamlessly by the middleware, such that
the application is not affected at all.

VI. S Y S T E M - L E V E L L E T : S U P P O R T I N G
T H E C O N F I G U R AT I O N A N D
I M P L E M E N TAT I O N O F T S N
TSN comprises a set of standards that are designed for
timeliness and reliable communication over Ethernet [47].
In Section VI-A, we will outline the relevant TSN standards
and their evolution. Based on that, Section VI-B shows
which challenges occur when TSN standards are deployed
in industrial automation systems and how SL LET can be
used to improve the design process regarding composition-
ality and platform independence.

A. Overview on TSN Standards

The first evolution of industrial and automotive net-
works was dominated by the introduction of fieldbuses
as, for instance, Profibus, Foundation Fieldbus, CAN,
or FlexRay [48], [49]. This paved the way for the first
distributed applications while reducing cabling costs and
weight. Meanwhile, Ethernet-based communication had
massive success in general-purpose computing due to the
unified communication backend, an extensible protocol
stack, and open standards.

Unfortunately, the missing time predictability of clas-
sical Ethernet required additional effort, resulting in
new industrial Ethernet variations like EtherCAT [50] or
Profinet [51]. However, such protocols support IP-based
communication only as an option for non-time-critical
communication and therefore again require a specialized
protocol stack and individual addressing. As part of the
fourth industrial revolution as well as in the context of
automated driving, the need for IP-based communication
that stays closer to the classical Ethernet standards arose.
This was mainly driven by the motivation of removing
unnecessary gateway complexity between different levels
of hierarchy (e.g., including applications in the cloud for
computation-intensive tasks or data aggregation). In the
domain of audio and video broadcasting, the TSN Task
Group was established to develop a new set of standards
providing QoS guarantees for Ethernet which go beyond
the eight priority classes defined in 802.1Q [52].

The set of TSN standards can be split into three major
topics, namely time synchronization, scheduling, and traf-
fic control. In the following, we will highlight the relevant
standards and their relation to industrial automation as
well as in-vehicle communication.

1) Time Synchronization: First, RT systems usually
require a common notion of time that has to be shared by
different system parts. For consumer electronics and web
services, the NTP provides a master–slave time synchro-
nization with an accuracy of a few milliseconds. In contrast
to this, factory automation imposes higher requirements
on clock synchronization. This includes a worst case

PROCEEDINGS OF THE IEEE 15



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

deviation of clocks in the order of tenth to a few hundred
nanoseconds as well as robustness against a failure of
the master clock. The PTP improves over NTP by provid-
ing a higher accuracy even down to a few nanoseconds
(IEEE 1588 [36]) and zero failover times with multiple
master clocks are possible (IEEE 802.1AS-rev [53]).

2) Scheduling: The second group of TSN standards
comprises scheduling and traffic shaping mechanisms to
ensure deterministic and low latencies for packet transfer.
Most notable is the 802.1Qbv TAS that specifies a TDMA
scheduling for strict temporal isolation of Ethernet traffic.
The TAS consists of two hierarchical levels. In the first
stage, a cyclic gate scheduler decides which priorities
(separated in different queues) are taken into account for
each TDMA slot. The second stage is the classic priority
scheduler according to 802.Q that selects the packet with
the highest priority for transfer. The cyclic behavior is
convenient for both, the automotive and the industrial
domain, since it is able to imitate the schedules of estab-
lished buses like FlexRay and Profibus and fits well for
periodic control applications.

802.1Qch aims to provide short end-to-end latencies by
synchronizing the TDMA slots on different network links.
The goal is to prevent long stall times that occur if a packet
arrives at the switch right when its corresponding TDMA
slot for next network link is over. Therefore, 802.1Qch
proposes a synchronization of the schedules for all links
on the critical path. This is closely related to the concept
of IRT communication in ProfiNet (RT_CLASS_3), where
intermediate buffering is eliminated [48].

One restriction implied by the TDMA schedule is the
guard band at the end of each TDMA slot. It ensures
that the last packet in the slot is not able to reach the
subsequent slot, enforcing thus the strict temporal isola-
tion. Therefore, during the guard band, whose size equals
a maximum-sized Ethernet packet (1534 Bytes usually),
no new transmission is allowed resulting in a bandwidth
reduction. To limit this problem, 802.1Qbu specifies frame
preemption, where a running transmission can be pre-
empted once by a higher priority frame [54]. This reduces
the size of the guard band to the size of the smallest
possible preemption fragment (64 Bytes).

3) Traffic Control: The third group of TSN standards
addresses the topics of traffic path control and reliability.
Path control and reservation as specified in 802.1Qca are
closely related to the domain of SDN. Besides shortest path
forwarding, it allows us to specify explicit trees for manag-
ing traffic paths. It also allows us to reconfigure those rules
during run time to adapt the network to system changes
like exceptions or updates.

Finally, 802.1CB specifies FRER which enables seamless
redundancy by replicating frames in the network switches.
Therefore, the clients should be relieved from the burden
of ensuring reliability on the application level.

In conclusion, TSN provides a large set of stan-
dards, targeting time-predictable and reliable Ethernet

Fig. 9. Coexistence between two brownfield systems with TSN.

communication. Unfortunately, this results in complex
design space with a variety of configuration parameters for
each standard [54]. To assist here, multiple TSN profiles
are currently under development proposing guidelines and
standard configurations for the deployment of TSN in
different domains [47]. Examples are IEC/IEEE 60802 for
industrial automation and IEEE 802.1DG for in-vehicle
Ethernet communication.

In the following, we will show how SL LET can be
used beneficially here to enable deterministic timing and
therefore compositionality.

B. Enabling Compositionality of TSN Networks
With SL LET

One of the most important aspects of the fourth indus-
trial revolution is the interoperability of all hierarchical lay-
ers [38]. Besides the hierarchy of a factory (see Section II)
with its different communication technologies, this also
covers organizational structures including stakeholders in
application design, verification, and integration. Obviously,
it is not affordable to simply replace existing structures and
start from scratch (also known as greenfield development).
Instead, a set of legacy hardware and the software will be
preserved (also called brownfield) and needs to be taken
into account.

Coexistence, as the first level of interoperability, means
that network and stream configuration is done in such a
way that the requirements of all existing stakeholders are
fulfilled. An example as shown in Fig. 9 is a setup with
brownfield devices from different vendors that should be
connected to a central TSN network. Therefore, a TDMA
schedule for the TAS needs to be implemented such that
the existing requirements, for example, with regard to the
network cycle time and their minimal TDMA slot size are
fulfilled, ensuring temporal and spatial isolation of their
communication. Computing such a TDMA schedule is an
optimization problem that has to be solved for the whole
network [54], [55].

The next reasonable level of interoperability is
co-operation. It means that existing devices as well as new
devices have to be connected to fulfill a common task.
In contrast to coexistence, which focuses on the lower
layers of the OSI model (physical, data link, and network
layer), co-operation also affects the upper layers such as
the applications. This requires a unified communication

16 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

Fig. 10. Tight coupling of network and application scheduling for

short latencies.

interface between the devices while each vendor still has
to preserve its intellectual property.

In the following, an example is discussed how such
a co-operating system can be integrated at the network
level: The TDMA cycle of the TAS is a property that affects
all connected participants. Formulated as an optimization
problem, a TDMA slot can be reserved for each message
that has to be transferred and the execution of applications
can be synchronized in order to achieve minimal latencies.
Fig. 10 illustrates a scenario in which the activation of
application 1 is synchronized to the arrival of input data.
As a result, network and application design as well as soft-
ware integration are coupled tightly together. One might
even state that “the system is built around the network.”

Although a system-wide optimization is able to achieve
the shortest possible latencies, there is a set of substantial
drawbacks connected to this approach of system design:
Global optimization prevents the division of labor between
network and application design as well as software inte-
gration. Typically those tasks would be done by different
teams and even different vendors. In particular, the exe-
cution period of control applications should be rooted in
the design of the controller and not be affected by the
network design or integration. The optimization results
show low stability, as only small changes in the input data
set might result in a very different output configuration.
Consequently, changes and reuse of software are made
difficult.

The discussion reveals that the major issue of the exist-
ing design process is the scheduling in TSN. Although
the end-to-end deadlines of each communication path are
part of the optimization problem [55], the timing is only
deterministic for one specific output configuration. This
is because the latency constraints only represent upper
bounds. While the TAS enables low jitter, a solution to
the optimization problem might lead to a latency that
is smaller than the constraint. Consequently, this does
not necessarily represent the behavior specified in the
functional model. Moreover, with each reconfiguration of
the network, the actual latency varies although the overall
constraint may still be fulfilled. This might lead to a
modification of the data flow in all cause–effect chains,
even though they are not directly affected by the update.

Fig. 11 shows an example where the message from the
sender is mapped to a TDMA slot such that the latency con-
straint is fulfilled (solid lines). The resulting dependence
between the sender and the receiver jobs is denoted by

the colors of the jobs. Assuming that the optimization is
repeated, for example, due to an update in the system,
the messages from the sender might be mapped to a
different TDMA slot. Although the latency constraint is
still fulfilled, this results in a different data flow that is
not detected by the function developer (dashed lines).
This is of particular importance when the reader uses data
versioning and combines inputs from multiple writers as
discussed in Section V.

SL LET can be integrated seamlessly in this process. The
specified LETs for the interconnect tasks can be used as
constraints in the optimization. Nevertheless, SL LET does
not imply any restrictions on the underlying scheduling.
If very short latencies are achieved by an optimized TAS
configuration, this can be abstracted by the interconnect
task as well as a heterogeneous network with larger
latencies. SL LET enables compositionality here since the
data are published to the applications independent of the
exact configuration of the network. The only restriction
is that the worst case latency constraints are met. If the
global scheduling is recalculated and the latency of one
cause–effect chain is smaller than before, this is not visible
to the applications and does not affect the behavior of the
entire cause–effect chain.

VII. E V A L U AT I O N
In this section, we evaluate SL LET in the context of
industrial CPSs. In Section VII-A, we show that SL LET
satisfies important properties of an RT programming par-
adigm for heterogeneous system integration which were
first stated in Section I. Section VII-B compares SL LET
to synchronous systems [14], LET [2], and the reactor
concept [12]. Finally, we investigate the implementation
and runtime overhead of SL LET in Section VII-C.

A. SL LET in the Context of Industrial CPS

SL LET, as an RT programming paradigm for indus-
trial CPS and thus safety-critical systems, must enable a
synthesis process that results in correct implementation
of the given functional model. We show that because
SL LET complies with the requirements from Section II,
namely time predictability and data flow determinism as
well as composability and platform independence, correct
implementation can be efficiently realized.

1) Time Predictability and Data Flow Determinism: The
implementation process typically starts from a function

Fig. 11. Modified data flow although optimization constraint is

still fulfilled.

PROCEEDINGS OF THE IEEE 17



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

model described in terms of the standard IEC 61499.
A correct implementation has to reflect the model in terms
of an unambiguous behavior during runtime. SL LET is
beneficial here, as it inherits the time predictability and
data flow determinism from LET and extends its applica-
bility to distributed systems. Time predictability is ensured,
since the SL LET interconnect task reads and writes at
defined time instants and therefore behaves like an LET
task in the source and destination time zone. In combi-
nation with the time synchronization between both time
zones, this ensures a predictable timing behavior for the
communication path covered by the interconnect task. Just
like it is done for LET in the local case, a response time
analysis can be performed for SL LET, covering everything
that is abstracted by the interconnect task.

It is important that SL LET is not restricted to specific
scheduling on the communication network, as long as an
upper bound for the latency can be computed. SL LET
especially allows us to incorporate event-triggered parts in
a cause–effect chain, as long as they have a time-triggered
start and endpoint. This is highly relevant for distributed
CPSs, as it enables the use of event-driven communica-
tion networks as well as abstracting processing pipelines.
In particular, the latter ones likely have a latency which
is much larger than the (sampling) period. This is an
improvement over LET, which is limited to time-triggered
cause–effect chains with implicit deadlines and is therefore
not applicable here.

Exactly as with LET, the deterministic read and write
instants enable data flow determinism for SL LET [8], [56].
This is a major benefit compared to BET, as it prohibits
ambiguous data flow caused by latency jitter.

We have further shown in Section V-B that this is not lim-
ited to a simple register-based communication semantic.
Instead, SL LET harmonizes with data versioning in state-
of-the-art middleware like DDS and the provided data
flow determinism allows us to tackle the synchronization
challenge when it comes to crossing cause-effect chains.

2) Composability and Platform Independence: The trend
toward higher flexibility in distributed CPSs requires a
design process that incorporates updates and modifications
as a central aspect, not as future work. Therefore, compos-
ability and platform independence gain more importance.

With SL LET, the distinction between logical and physi-
cal timing enables composability for distributed CPSs. The
data flow and timing behavior of an interconnect task is
not affected by modifications (e.g., by adding a foreign
interconnect task), as long as those modifications do not
endanger the LET of the interconnect task. Therefore, it is
favorable to include slack in the LET of the interconnect
task, making it more robust to changes.

The composable timing of an SL LET interconnect task
also eases monitoring of the implementation during run-
time. This is an important safety precaution for a CPS
that physically interacts with a human, where any abnor-
mal timing behavior in a cause–effect chain may cause

damage to health. With SL LET, each data sample has an
explicit, yet simple, deadline when it must be produced
and when a transmission has to be completed. Reasons
for a timing violation might be an unexpected network
overload as well as a software or hardware failure within
the cause–effect chain. The proper reaction to a timing
violation then depends on the use case. It may range from a
notification, over an emergency stop up to the switch over
to a redundant channel.

In addition to composability, SL LET is also platform-
independent in a way that mapping an SL LET interconnect
task to a different hardware platform does not alter the
data flow or timing behavior of the interconnect task,
as long as the new mapping can still meet the latency
constraint imposed by the LET. The reason for such a
mapping decision might be that the producer and/or the
consumer of the data has to be migrated to a different
processing resource or that the underlying communication
medium is modified (e.g., replacing a fieldbus with a TSN
network).

The component-based distinction between logical and
physical timing behavior in SL LET makes the complex
synthesis process manageable for the designer. This is
important when a CPS consists of a variety of different
functions from different development teams/vendors. SL
LET enables a component-based synthesis process here,
where each participant can have an in-depth knowledge
of its own synthesis results while abstracting foreign
components only by their timing specification (a type of
contracting). It further allows us to modify only parts
of a cause–effect chain without touching the remaining
implementation. As shown in Section VI-B, this can also
be used to provide an abstraction for a TSN network,
where the data flow is preserved although each modifi-
cation results in a new TDMA slot assignment. This is an
important aspect keeping in mind that network and appli-
cation design are two candidates likely being separated
into different development teams.

In summary, the main benefit of utilizing SL LET in
industrial CPSs is its versatility in different stages of
the design process. SL LET can act as a paradigm for
specification of timing requirements but also allows effi-
cient implementation and is applicable to existing commu-
nication and data versioning techniques like DDS and TSN.

B. SL LET Compared to Other Approaches

We have discussed SL LET and its applicability to distrib-
uted CPS for industrial automation. However, there exist
other RT programming paradigms as shown in Section III,
for which we will give a short comparison with SL LET.
The LET paradigm is well known and standardized in the
automotive domain [9], but it is restricted to periodic
tasks (time triggering) with implicit deadlines as well as
a register semantic [2]. Although this was sufficient to
adapt control applications from single to shared-memory
multicore platforms [31], SL LET has been developed to

18 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

extend the approach to larger NUMA architectures and dis-
tributed CPS. The main differences are that SL LET relaxes
synchronous scheduling to tightly couples LET “islands”
(time zones) with their own local schedule and allows
to incorporate event triggered parts in a cause–effect
chain, for example, for communication networks as well
as processing pipelines (see Section IV-C). In this article,
we have shown that SL LET is not only applicable to
register communication, but also allows us to implement
publisher subscriber systems with a more complex data
versioning (see Section V-B). We used DDS as one example
for a widely used RT middleware in robotics, but SL
LET should be applicable to any other middleware. The
advantages of combining data versioning with buffering,
however, will only be effective, if that middleware provides
data versioning or at least a history buffer. Efficient data
caching mechanisms would be very helpful.

As an alternative, synchronous systems are originally
based on event triggering and can be extended to periodic
activation. However, covering asynchronous networks in
distributed CPS is challenging though different approaches
have been proposed [20]–[25]. Also division of labor in
a synthesis process is hard to achieve. Implementing par-
allelism in distributed CPSs is still a complex task and a
couple of works exist for parallel execution of synchronous
programs [19]. SL LET allows us to explicitly incorporate
a bounded synchronization error between the distributed
CPS running in parallel. We believe that the SL LET para-
digm could also be applied in the extension of synchronous
systems.

The reactor concept is relatively new and focuses also on
event-driven systems, while time is considered in the form
of physical and logical timestamps [32]. It has in common
with SL LET that both provide data flow determinism,
composability, and platform independence. To achieve data
flow determinism, reactors make use of logical timestamps
for reordering and correlating events [12]. To our knowl-
edge, a general scheduling analysis for the reactor concept
has not been shown yet, while SL LET builds its time
predictability on top of existing scheduling analysis. SL
LET therefore can be implemented without timestamp
processing at the receiver, since the timing information is
implicitly given by an LET scheduler [8].

C. Implementation and Runtime Overhead
of SL LET

Given the host of CPS HW/SW platforms, SL LET over-
head evaluation can only cover the core functions and
their impact compared to existing implementations. The
comparison must be general enough to be valid for a wide
range of applications rather than for a single use case. For
this reason, we decided to consider the implementation
overhead induced by SL LET and its basis, LET, in general
terms, and refer to overhead data from the literature
wherever available.

Furthermore, for an impartial evaluation, SL LET is com-
pared to an arbitrary approach that correctly implements a

specified application function with deterministic data flow
on a distributed platform. Any such approach must mask
the effect of communication jitter on data flow. We further
assume that this application is an RT problem, that is,
the application has an end-to-end deadline. Any approach
must guarantee that the worst case end-to-end latency
(i.e., the response time) is shorter than the respective
deadline. Such a guarantee requires some form of time pre-
dictability as explained in Section II. We do not require the
remaining items of the problem description, composability,
and platform independence. This is a contribution of SL
LET.

We include three key overhead metrics in our compari-
son which are as follows:

1) memory overhead;
2) workload overhead;
3) worst case end-to-end latency overhead.

The first overhead metric, memory overhead, can
be further classified as additional memory for manage-
ment/configuration data, for buffering as well as for pro-
gram code. We will discuss all three classes.

The overhead for LET management and configuration
data as well as program code has been investigated before.
In [4] and [57], a control application running on a popular
AURIX multicore platform with an ERIKA OS caused a total
additional program and configuration data requirement
of ca. 1 kByte, mainly for interrupt service routines han-
dling the data context switch at LET labels. A prototype
implementation of SL LET [58] shows that the actual
overhead is comparable to the overhead of a LET imple-
mentation. The main extension to LET is that SL LET uses
the existing communication stack to communicate with
other time zones. This stack is needed irrespective of the
programming paradigm and is not counted as overhead.

With this negligible overhead, data buffering represents
the more important part of memory consumption and
can be subdivided into three different parts, the buffer
memory induced by LET, by an application, and by SL
LET. Again, we start with the LET induced overhead as
part 1. In its abstract model, LET assumes ideal zero-time
communication, where a sample is produced instanta-
neously and can be consumed at the same moment in
time. This was originally one of the most important moti-
vations that paved the way for LET, as it was exploited for
lock-free communication between processor cores. In the
implementation, writes and reads go to different entries of
a double buffer, and only the buffer switch is executed as
an effectively atomic instruction [4]. So, the double buffer
storing LET variables twice is the main LET memory cost
factor. That cost could be substantial for applications with
large data objects, such as the pHRI use case where camera
data are processed. There are ways to mitigate this mem-
ory overhead, reducing object size by communicating data
in smaller chunks, and optimizing the schedule such that
read and write accesses are mapped to different execution
phases, as elaborated in [31]. Such schedule optimization,

PROCEEDINGS OF THE IEEE 19



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

however, is not for free. While preserving data flow deter-
minism, adapting the schedule deviates from the original
zero delay communication model, such that changes inside
an LET scheduled domain require resynthesizing the whole
schedule. That resynthesis, however, only affects a single
LET scheduled domain, that is, an SL LET time zone, while
all other domains are unaffected due to the interconnect
task mechanism. So, even with LET schedule optimization,
SL LET composability is preserved.

Part 2 is the buffer memory required by an application.
It depends on the use of past data samples and imposed
requirements on data-age and data-age dispersion. The
history is needed in any implementation and can, there-
fore, not to be attributed to SL LET.

However, history buffering can be combined with SL
LET buffering for early arriving data as shown above for
the case of DDS. The required memory size for the early
arriving data is part 3 of the buffer memory and depends
on the difference of earliest and latest arrival times of
data, that is, on the computation and communication jitter.
Any approach that guarantees data flow determinism and
availability of the respective data at their deadline must
be able to provide the respective buffer space, including
systems with event-based activation. A SL LET implemen-
tation does not add to this requirement. So, there is no
overhead in part 3.

In summary, the memory overhead includes the small
overhead for LET and SL LET management and configura-
tion plus the larger LET buffer overhead that, however, can
be mitigated by established optimization methods.

The second metric in our comparison is the workload
overhead of an application. It represents the percentage
of time that a platform spends on the execution of an
application. RT applications rarely run alone but share
the platform with non-RT tasks (diagnosis, housekeep-
ing, etc.). The RT application load determines how much
resource time is available for such non-RT tasks. In partic-
ular, non-workload-preserving scheduling strategies, such
as TDMA (see TTA [59]) incur load overhead by construc-
tion. We evaluate if, instead, workload overhead can be
mitigated when implementing LET and SL LET.

In general, SL LET builds on top of two approaches.
On the one hand, an existing LET system, and, on the other
hand, a communication backend. As discussed, the latter
one includes functionality such as the middleware and
a network stack and is required for any distributed CPS
independent of SL LET. Therefore, the workload over-
head of SL LET only depends on how the LET paradigm
is implemented. Beckert and Ernst [4] have proposed a
workload-preserving implementation for LET that is based
on an SPP scheduler with table-driven activations. They
have shown that it can be implemented with a timing and
workload overhead of less than 1% for an AURIX multicore
processor with ERIKA OS RTE. This figure refers only to
the LET workload (otherwise it would even be lower).
This is accomplished by using hardware timers to generate
events for buffer handling and task activation based on a
predefined schedule table. The low overhead is the more

important as, at the same time, much of the workload
increasing spin-locking overhead for task synchronization
can be removed. This is a result of the lock-free communi-
cation explaining the increasing popularity in automotive
software development.

Since the interconnect task behaves as an LET task in the
sender and the receiver time zones, the solution from [4]
can be reused, for example, to trigger the transmission
of samples in the case of SL LET. As discussed above,
the received sample can be inserted in a buffer efficiently
with a modulo operation. (SL)-LET neither requires a
time-driven network nor a local TDMA schedule. As a
result, also SL LET can be realized with a negligible
workload overhead of around 1%. This aspect is of major
relevance, as the original LET implementation in the Giotto
system [26], [60] resorted to a nonworkload preserving
time-triggered scheduling strategy.

In summary, the workload overhead of SL LET is dom-
inated by the LET mechanism that is as small as about
1% of a typical workload, not even counting the beneficial
reduction in spin-locking cost.

The third metric in our comparison is the system
response time, here the worst case end-to-end latency. This
is a crucial metric for any complex CPS, because it defines
the dead time in a feedback loop, such as in our pHRI
use case. To protect the feedback application, end-to-end
deadlines are defined to delimit the acceptable dead time.
We assume a hard deadline, which is certainly the case
for our motivating use case. Because only implementations
with a worst case end-to end latency shorter than the
deadline are permitted, the worst case end-to-end latency
overhead is a key metric for schedulability.

We will, again, separate the latency overhead in LET
induced timing overhead and SL LET-induced overhead.
This is possible because the response times of the time
zones and their interconnect add up to the end-to-end
latency. We start again with LET timing before we discuss
the impact of SL LET. Here, we can directly go back to
the LET workload discussion above. The extra workload is
caused by the buffer and task activation management that
is included in any cause–effect chain. So, the 1% timing
overhead also applies to the LET part of the end-to-end
latency, again not considering the potential reduction due
to avoided spin-locking.

The SL LET-induced overhead can, again, be divided
into communication timing and synchronization error
impact. SL LET can be implemented with minimal commu-
nication overhead by utilizing a ring buffer at the receiver
side as explained above leading to a negligible buffer
control overhead of a few clock cycles. The communication
backend itself (e.g., a middleware and a network stack)
is independent of SL LET and, therefore, does not add
to the communication overhead. The implicit notion of
time, based on the time-driven scheduler, is a key enabler
for such a low communication overhead as otherwise
explicit timestamps for each sample have to be processed
to rearrange the samples in the receive buffer. Secondly,
the LET of the interconnect task must be larger than the

20 PROCEEDINGS OF THE IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

WCRT of the interconnect task plus the synchronization
error [8]. This error (and therefore the overhead) can
be minimized to the range of 20–100 ns with PTP clock
synchronization [36]. This is usually negligible. It should,
however, be noted that the synchronization error must be
compensated at every time zone transition. Large clock
deviations will, therefore, have an unmitigated multiple
impacts on end-to-end timing. Fortunately, SL LET allows
us to handle synchronization errors between time zones
individually. That fits well with the hierarchy of industrial
systems where the lowest hierarchy levels provide the
best synchronization accuracy to support short end-to-end
deadlines.

There is one aspect missing so far, that is slack in
the LET timing (see above). The slack adds to the end-
to-end latency at every corresponding LET task along
a cause–effect chain. It is not induced by SL LET and
therefore is not counted as SL LET overhead, because
it could be set to 0. However, slack is important as a
designer-controlled parameter to reach robustness against
changes. So, the designer must balance between slack
against worst case end-to-end latencies. Again, this will be
necessary for any implementation of data flow determinis-
tic cause–effect chains.

In summary, the basic impact of LET and SL LET
on worst case end-to-end response times and, hence,
achievable deadlines is very small, but is influenced by two
major factors, accuracy of clock synchronization and slack
that is inserted to increase robustness.

VIII. C O N C L U S I O N
To cope with growing computing performance
requirements, CPS architectures are moving toward het-
erogeneous high-performance computer architectures and

networks. Such architectures integrate a growing number
of complex functions under RT and safety constraints.
This development challenges the established incremental
design style with reuse and frequent updates.

Using an industrial pHRI use case as motivational exam-
ple, we argued that this development asks for a robust and
predictable RT programming paradigm. For such a para-
digm, we formulated four requirements of time predictabil-
ity, data flow determinism, composability, and platform
independence. After a review of related work on RT pro-
gramming paradigms, we introduced SL LET, an extension
of the LET paradigm that has successfully been exploited
for lock-free multicore programming in automotive series
designs. We demonstrated how SL LET overcomes the LET
limitations by two core concepts, time zones and intercon-
nect tasks, thereby preserving the main benefits of LET.

We showed how to apply SL LET to support pro-
gramming of two important developments in industrial
design, DDS robotics middleware, and TSN networking.
We, finally, evaluated the SL LET programming paradigm
against the required properties, as well as the induced
memory and timing overhead. While the workload over-
head that indicates performance loss is negligible and the
memory overhead can be widely mitigated by established
methods for LET, there is a dependence between available
slack and end-to-end latencies that can be used to balance
short system response times versus flexibility in composi-
tion and change. Importantly, this balance can be safely
exploited in design without incurring negative side effects,
such as the emergence of race conditions or increased
workload. This result was already known for LET. With
SL LET, it becomes available for heterogeneous industrial
systems integration on a wide range of cyber–physical
platforms.

R E F E R E N C E S
[1] E. A. Lee, “Cyber physical systems: Design

challenges,” in Proc. 11th IEEE Int. Symp. Object
Component-Oriented Real-Time Distrib. Comput.
(ISORC), May 2008, pp. 363–369.

[2] C. M. Kirsch, “Principles of real-time
programming,” in Embedded Software,
A. Sangiovanni-Vincentelli and J. Sifakis, Eds.
Berlin, Germany: Springer, 2002, pp. 61–75.

[3] A. Biondi and M. Di Natale, “Achieving predictable
multicore execution of automotive applications
using the LET paradigm,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp. (RTAS), Apr. 2018,
pp. 240–250.

[4] M. Beckert and R. Ernst, “The ida let machine—An
efficient and streamlined open source
implementation of the logical execution time
paradigm,” in Proc. Int. Workshop New Platforms
Future Cars (NPCar at DATE), Mar. 2018. [Online].
Available: https://www.date-conference.com/
date18/conference/workshop-w03

[5] N. Mansfeld, M. Hamad, M. Becker, A. G. Marin,
and S. Haddadin, “Safety map: A unified
representation for biomechanics impact data and
robot instantaneous dynamic properties,” IEEE
Robot. Autom. Lett., vol. 3, no. 3, pp. 1880–1887,
Jul. 2018.

[6] E. Molina et al., “The autoware framework and
requirements for the cognitive digital automation,”
in Proc. Work. Conf. Virtual Enterprises. Cham,
Switzerland: Springer, 2017, pp. 107–117.

[7] V. Vyatkin, “The IEC 61499 standard and its
semantics,” IEEE Ind. Electron. Mag., vol. 3, no. 4,

pp. 40–48, Dec. 2009.
[8] K.-B. Gemlau, L. Köhler, R. Ernst, and S. Quinton,

“System-level logical execution time: Augmenting
the logical execution time paradigm for distributed
real-time automotive software,” ACM Trans.
Cyber-Phys. Syst., to be published,
doi: 10.1145/3381847.

[9] AUTOSAR Consortium. (2018).
Autosar_RS_Timingextensions, Specification of
Timing Extensions. [Online]. Available: https://
www.autosar.org/fileadmin/Releases_TEMP/
Classic_Platform_4.4.0/MethodologyAndTemplates.
zip

[10] C. M. Kirsch and R. Sengupta, The Evolution of
Real-Time Programming (Computer and
Information Science Series), 1st ed. Boca Raton,
FL, USA: CRC Press, 2007, pp. 11.1–11.23.

[11] C. M. Kirsch and A. Sokolova, “The logical
execution time paradigm,” in Advances in Real-Time
Systems. Berlin, Germany: Springer, 2012,
pp. 103–120, doi: 10.1007/978-3-642-24349-3_5.

[12] M. Lohstroh et al., “Reactors: A deterministic model
for composable reactive systems,” in Proc.
Model-Based Design Cyber Phys. Syst. (CyPhy),
2019, pp. 59–85.

[13] N. Halbwachs, “Delay analysis in synchronous
programs,” in Computer Aided Verification,
C. Courcoubetis, Ed. Berlin, Germany: Springer,
1993, pp. 333–346.

[14] G. Berry and G. Gonthier, “The esterel synchronous
programming language: Design, semantics,
implementation,” Sci. Comput. Program., vol. 19,

no. 2, pp. 87–152, Nov. 1992.
[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud,

“The synchronous data flow programming
language LUSTRE,” Proc. IEEE, vol. 79, no. 9,
pp. 1305–1320, 1991.

[16] T. Gautier, P. Le Guernic, and L. Besnard, “Signal: A
declarative language for synchronous programming
of real-time systems,” in Functional Programming
Languages and Computer Architecture, G. Kahn, Ed.
Berlin, Germany: Springer, 1987, pp. 257–277.

[17] S. Winkler and J. von Pilgrim, “A survey of
traceability in requirements engineering and
model-driven development,” Softw. Syst. Model.,
vol. 9, no. 4, pp. 529–565, Sep. 2010.

[18] N. Halbwachs, Synchronous Programming of
Reactive Systems (Springer International Series in
Engineering and Computer Science), vol. 215.
Boston, MA, USA: Springer, 1993.

[19] A. Girault, “A survey of automatic distribution
method for synchronous programs,” in Proc. Int.
Workshop Synchronous Lang., Appl. Programs
(SLAP), vol. 5, 2005. [Online]. Available:
http://www-sop.inria.fr/cma/slap/slap2005.html

[20] A. Benveniste, P. Caspi, S. A. Edwards,
N. Halbwachs, P. Le Guernic, and R. de Simone,
“The synchronous languages 12 years later,” Proc.
IEEE, vol. 91, no. 1, pp. 64–83, Jan. 2003.

[21] J. Ouy, “A survey of desynchronization in a
polychronous model of computation,” Electron.
Notes Theor. Comput. Sci., vol. 146, no. 2,
pp. 151–167, Jan. 2006.

[22] A. Gamatié and T. Gautier, “The signal synchronous

PROCEEDINGS OF THE IEEE 21

http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1007/978-3-642-24349-3_5


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Gemlau et al.: Platform Programming Paradigm for Heterogeneous Systems Integration

multiclock approach to the design of distributed
embedded systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 21, no. 5, pp. 641–657, May 2010.

[23] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand,
J. P. Talpin, and S. Tripakis, “A protocol for loosely
time-triggered architectures,” in Embedded
Software, A. Sangiovanni-Vincentelli and J. Sifakis,
Eds. Berlin, Germany: Springer, 2002, pp. 252–265.

[24] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi,
and A. L. Sangiovanni-Vincentelli, “Heterogeneous
reactive systems modeling: Capturing causality and
the correctness of loosely time-triggered
architectures (LTTA),” in Proc. 4th ACM Int. Conf.
Embedded Softw., 2004, pp. 220–229.

[25] A. Benveniste, “Loosely time-triggered architectures
for cyber-physical systems,” in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2010, pp. 3–8.

[26] T. A. Henzinger, B. Horowitz, and C. M. Kirsch,
“Giotto: A time-triggered language for embedded
programming,” Proc. IEEE, vol. 91, no. 1,
pp. 84–99, Jan. 2003.

[27] T. A. Henzinger, C. M. Kirsch, E. R. B. Marques, and
A. Sokolova, “Distributed, modular HTL,” in Proc.
30th IEEE Real-Time Syst. Symp., Dec. 2009,
pp. 171–180.

[28] W. Pree and J. Templ, “Modeling with the timing
definition language (TDL),” in Model-Driven
Development of Reliable Automotive Services,
M. Broy, I. H. Krüger, and M. Meisinger, Eds. Berlin,
Germany: Springer, 2008, pp. 133–144.

[29] T. A. Henzinger and C. M. Kirsch, “The embedded
machine: Predictable, portable real-time code,”
ACM Trans. Program. Lang. Syst., vol. 29, no. 6,
p. 33, 2007.

[30] S. Resmerita, A. Naderlinger, and S. Lukesch,
“Efficient realization of logical execution times in
legacy embedded software,” in Proc. 15th
ACM-IEEE Int. Conf. Formal Methods Models Syst.
Design, Sep. 2017, pp. 36–45.

[31] J. Hennig, H. von Hasseln, H. Mohammad,
S. Resmerita, S. Lukesch, and A. Naderlinger,
“Towards parallelizing legacy embedded control
software using the let programming paradigm,” in
Proc. IEEE Real-Time Embedded Technol. Appl. Symp.
(RTAS), Apr. 2016, p. 51.

[32] M. Lohstroh and E. A. Lee, “Deterministic actors,”
in Proc. Forum Specification Design Lang. (FDL),
Sep. 2019, pp. 1–8.

[33] E. Farcas, C. Farcas, W. Pree, and J. Templ,
“Transparent distribution of real-time
components based on logical execution time,”
ACM SIGPLAN Notices, vol. 40, no. 7, pp. 31–39,
Jul. 2005.

[34] C. Farcas and W. Pree, “A deterministic
infrastructure for real-time distributed systems,” in
Proc. Workshop Oper. Syst. Platforms Embedded
Real-Time Appl., 2007, pp. 49–57.

[35] A. Naderlinger, J. Pletzer, W. Pree, and J. Templ,
“Model-driven development of FlexRay-based
systems with the timing definition language
(TDL),” in Proc. 4th Int. Workshop Softw. Eng.
Automot. Syst. (SEAS), May 2007, p. 6.

[36] Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and
Control Systems, IEEE Standard 1588-2008,
Jul. 2008.

[37] M. Di Natale and A. L. Sangiovanni-Vincentelli,
“Moving from federated to integrated architectures
in automotive: The role of standards, methods and
tools,” Proc. IEEE, vol. 98, no. 4, pp. 603–620,
Apr. 2010.

[38] S. Vitturi, C. Zunino, and T. Sauter, “Industrial
communication systems and their future
challenges: Next-generation Ethernet, IIoT, and
5G,” Proc. IEEE, vol. 107, no. 6, pp. 944–961,
Jun. 2019.

[39] P. Liggesmeyer and M. Trapp, “Trends in embedded
software engineering,” IEEE Softw., vol. 26, no. 3,
pp. 19–25, May 2009.

[40] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic,
“A synchronous approach for IEC 61499 function
block implementation,” IEEE Trans. Comput.,
vol. 58, no. 12, pp. 1599–1614, Dec. 2009.

[41] Object Management Group. (2019). Who is Using
DDS? [Online]. Available: https://www.dds-
foundation.org/who-is-using-dds-2/

[42] Data Distribution Service Object Management Group
(OMG), document OMG Formal/15-04-10, 2015.
[Online]. Available: http://www.omg.org/
spec/DDS/1.4/PDF

[43] DDS Interoperability Wire Protocol, document OMG
Formal/2019-04-03, Object Management Group
(OMG), 2019. [Online]. Available:
http://www.omg.org/spec/DDSI-RTPS/2.3/PDF

[44] A. Corsaro and D. C. Schmidt, “The data
distribution service—The communication
middleware fabric for scalable and extensible
systems-of-systems,” in System of Systems,
A. V. Gheorghe, Ed. Rijeka, Croatia: IntechOpen,
2012, ch. 2, doi: 10.5772/30322.

[45] H. P. Tijero and J. J. Gutiérrez, “On the
schedulability of a data-centric real-time
distribution middleware,” Comput. Standards
Interfaces, vol. 34, no. 1, pp. 203–211, Jan. 2012.

[46] H. Pérez and J. J. Gutiérrez, “Modeling the QoS
parameters of DDS for event-driven real-time

applications,” J. Syst. Softw., vol. 104, pp. 126–140,
Jun. 2015.

[47] Time-Sensitive Networking Task Group. Accessed:
Jun. 1, 2020. [Online]. Available:
http://www.ieee802.org/1/pages/tsn.html

[48] Industrial Communication Networks—Fieldbus
Specifications—Part 1: Overview and Guidance,
Standard IEC 61158 and IEC 61784 2.0, Apr. 2019.

[49] W. Zimmermann and R. Schmidgall, Bussysteme in
der Fahrzeugtechnik: Protokolle, Standards und
Softwarearchitektur. Wiesbaden, Germany:
Springer Fachmedien Wiesbaden, 2014.

[50] EtherCAT Technology Group. Accessed:
Jan. 15, 2020. [Online]. Available:
https://www.ethercat.org/

[51] PROFINET—The Leading Industrial Ethernet
Standard. Accessed: Jan. 15, 2020. [Online].
Available: https://www.profibus.com/
technology/profinet/

[52] IEEE Standard for Local and Metropolitan Area
Networks—Bridges and Bridged Networks, Standard
IEEE 802.1Q-2018, Jul. 2018.

[53] IEEE 802.1AS-Rev—Timing and Synchronization for
Time-Sensitive Applications, IEEE
Standard 802.1AS, Draft 8.3, Oct. 2019.

[54] L. Lo Bello and W. Steiner, “A perspective on IEEE
time-sensitive networking for industrial
communication and automation systems,” Proc.
IEEE, vol. 107, no. 6, pp. 1094–1120, Jun. 2019.

[55] S. S. Craciunas, R. S. Oliver, M. Chmelík, and
W. Steiner, “Scheduling real-time communication in
ieee 802.1 qbv time sensitive networks,” in Proc.
24th Int. Conf. Real-Time Netw. Syst., 2016,
pp. 183–192.

[56] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and
T. Nolte, “End-to-end timing analysis of cause-effect
chains in automotive embedded systems,” J. Syst.
Archit., vol. 80, pp. 104–113, Oct. 2017.

[57] M. Beckert, “Scheduling mechanisms for efficient
and safe automotive systems integration,” Ph.D.
dissertation, Dept. Elect. Eng., Inf. Technol., Phys.,
TU Braunschweig, Braunschweig, Germany,
Oct. 2020.

[58] SL-LET Prototype Implementation Download, V1.1.
Accessed: Nov. 12, 2019. [Online]. Available:
https://www.ida.ing.tu-bs.de/~artifacts

[59] H. Kopetz and G. Bauer, “The time-triggered
architecture,” Proc. IEEE, vol. 91, no. 1,
pp. 112–126, Jan. 2003.

[60] T. A. Henzinger, B. Horowitz, and C. M. Kirsch,
“Embedded control systems development with
Giotto,” in Proc. ACM SIGPLAN Workshop Lang.,
Compil. Tools for Embedded Syst., 2001, pp. 64–72.

A B O U T T H E A U T H O R S

Kai-Björn Gemlau received the B.S. and
M.S. degrees in computer and communi-
cation systems engineering from the Tech-
nische Universität Braunschweig, Braun-
schweig, Germany, in 2014 and 2016,
respectively, where he is currently working
toward the Ph.D. degree.
He is also a Researcher with the Institute

of Computer and Network Engineering (IDA),
Technische Universität Braunschweig, under the supervision of
Prof. R. Ernst, and also a member of the UNICARagil Project. His
research interest includes real-time communication for distributed
cyber–physical systems, including time-sensitive networking (TSN)
networks and network stacks.

Leonie Köhler (née Ahrendts) received
the master’s degree in electrical engineer-
ing from the Technische Universität Braun-
schweig, Braunschweig, Germany, in 2015,
where she is currently working toward the
Ph.D. degree at the Institute of Computer
and Network Engineering.
Her research interests include the design

and analysis of real-time systems with an
emphasis on weakly hard real-time systems, fault-tolerant comput-
ing systems, and communication networks.

Rolf Ernst (Fellow, IEEE) received the
Diploma degree in computer science and
the Dr.Ing. degree in electrical engineering
from the University of Erlangen–Nuremberg,
Erlangen, Germany, in 1981 and 1987,
respectively.
After two years at Bell Laboratories,

Allentown, PA, USA, he joined the Technische
Universität Braunschweig, Braunschweig,
Germany, as a Professor of electrical engineering. He chairs the
Institute of Computer and Network Engineering (IDA), Technische
Universität Braunschweig, covering embedded systems research
from computer architecture and real-time systems theory to chal-
lenging automotive, aerospace, or smart building applications.
Dr. Ernst is a Fellow of Design, Automation and Test in Europe

Conference (DATE). He served as a member of the German
Academy of Science and Engineering (acatech). He received the
2014 Achievement Award from the European Design and Automa-
tion Association (EDAA). He also served as an Association for Com-
puting Machinery’s Special Interest Group on Design Automation
(ACM SIGDA) Distinguished Lecturer.

22 PROCEEDINGS OF THE IEEE

http://dx.doi.org/10.5772/30322

