
Efficient Run-Time Environments for System-Level
LET Programming

Kai-Björn Gemlau, Leonie Köhler, Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig

Braunschweig, Germany
{gemlau, koehler, ernst}@ida.ing.tu-bs.de

Abstract—Growing requirements of large industrial and auto-
motive software systems have initiated an ongoing move from
monolithic and tightly integrated run-time environments (RTE)
to virtual platforms implemented on fewer domain computers
with heterogeneous physical architectures. This trend has given
rise to new programming paradigms to enable specification,
implementation and supervision of software systems that are
predictable and robust under interference and change. One of
those paradigms, the Logical Execution Time (LET), is now
part of the automotive software standard, AUTOSAR. While
originally applied to single shared-memory multicore processors,
System-level LET (SL LET) extends this approach to virtual and
distributed platforms providing a powerful paradigm for CPS in
future industrial systems. This contribution explains and demon-
strates the resulting challenges to the RTE and the opportunities
to improve its efficiency, in particular the communication stack.

Index Terms—Run-time environments, System-Level Logical
Execution Time (SL LET), network stack

I. INTRODUCTION

Upcoming Cyber-Physical System (CPS) architectures for
industrial and automotive applications are heterogeneous, com-
bining high performance multicore architectures with accel-
erators such as for graphics or machine learning, and larger
memory systems for data-centric applications. High-resolution
sensors including cameras and LiDARs demand high data
rates, applying pressure on real-time communication. CPS
programming is getting closer to high-performance computer
programming, differing mainly in their large interdependent ap-
plication function networks, real-time and safety-requirements.
The resulting system complexity is a major challenge to runtime
environments (RTEs), software architecture and network stacks.

The automotive industry has recently introduced the Log-
ical Execution Time (LET) paradigm to master synchroniza-
tion in an increasingly complex timing behavior of parallel
architectures [1], [2]. It has helped to efficiently program-
ming multicore architectures with lock-free communication.
There are further advantages, such as reduced jitter in cause-
effect chains. Applying LET to larger systems, however, is
constrained by its requirements to tight synchronization and
implicit narrow deadlines. An extension of LET to the system
level overcoming these limitations has been proposed [3], [4]. A
core concept of this extension, System-Level Logical Execution
Time (SL LET), is the interconnect task that bridges the local

The research was partly funded by the German DFG under ER 168/30-2 and
by the German BMBF under 16EM00285.

LET domains. As part of this concept, the interconnect tasks
monitor data life times and support data synchronization.

While providing a concept for scalability, it is not obvious
that SL LET can efficiently be applied to high-performance
architectures with high data rates. For that purpose, it must
efficiently support the transport of large data objects with
bounded latency. That is a consequence of LET, which requires
setting communication timing under worst-case conditions. Tra-
ditional UDP and TCP network stacks, as needed in upcoming
architectures, expose complex activation structures with wide
worst case-bounds. The large data objects to be communicated
add to the challenge, stressing the buffer mechanisms with
hundreds of frames, each. It is not possible to just simplify
the stack, because practical CPS systems include a substantial
amount of non-LET traffic leading to a mixed-criticality setting
that needs a complete IP/TCP/UDP stack.

With this consideration, we can formulate the following
research challenge:

1) SL LET needs a network stack with a worst-case inter-
connect task latency at or below the average latency of
a traditional stack, such that the potential overhead is
mitigated. The traditional reference stack must not lose
data for a valid comparison. The target are large data
objects.

2) The communication timing of all non-LET traffic should
not be seriously affected.

3) An increased overall load is permitted. The stack function
available to SL LET communication can be limited to
predefined links providing only the UDP service needed
for SL LET interconnect tasks.

In earlier work, we have proposed to approach the challenge
with a filter stack that works on preselecting the SL LET traffic
[5]. This paper describes a proof-of-concept implementation
and provides experimental data on the improvement compared
to a popular light-weight IP stack [6]. As an important run-time
environment for data synchronization, we use the concepts of
Data Distribution Service (DDS) that is employed in Robot
Operating System 2 (ROS 2) and in AUTOSAR. It is a data-
centric publisher-subscriber (DCPS) model [7].

We use the predictability and simplicity of SL LET inter-
connect tasks to define a light-weight filter stack that speeds
up SL LET communication and controls buffer size, yet can
be combined with a standard IP stack. It is small enough to be
implemented on a light-weight companion core that is found



ECU 1

Obj. 1
80kB

ECU 2

Obj. 1
80kB

Obj. 2
10kB

Obj. 2
10kB

Sensor Data
T=10ms

W1 R1

R2 W2

Processing 
T=5ms

Planning
T=5ms

DR1

DW2

DW1

DR2

DR3

DW/DR Data Writer/Reader W/R Writer/Reader

History CacheDDS Elements: Service

Fig. 1. Case study with processing service on a remote ECU

on many high-performance architectures for CPS, such as an
ARM Cortex-R/M found on, e.g. the Renesas R-Car1 or NXP
S322 platform.

The paper is organized as follows: We clarify the problem
statement with measurements based on a use-case in Section II.
Section III gives a brief review on related work in the context of
SL LET, middleware design and traffic filtering. We highlight
the key concepts of our improved software architecture in
Section IV and evaluate the proof-of-concept implementation
in Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

In the following we provide a use-case related to the Au-
toware.Auto [8] benchmark and show how this can be imple-
mented with a DDS-like middleware. We take measurements
to demonstrate the negative effects of interfering background
traffic with an unmodified lightweight IP (lwIP) network stack.

A. Case Study

The case study is related to the processing of LiDAR
frames in the Autoware.Auto benchmark [8] and comprises
three services, communicating through a DDS middleware. For
trajectory planning, a classifier service identifies each element
in the LiDAR point cloud as either ground- or non-ground
point. Non-ground points may represent obstacles like cars,
trees or buildings and are therefore sent to an object detection
and tracking service. This is a processing intensive task and
a candidate for outsourcing on a dedicated electronic control
unit (ECU). The results are passed back to ECU 1, where the
planning service combines ground-points and detected objects.
At this point, the two cause-effect chains join and the quality
of the planning depends on the deviation of the data ages of
both, the local and the remote input.

Figure 1 shows the three services as well as the key el-
ements of the DDS middleware. The objects are stored in
history caches of configurable size, allowing to access different
samples of the same object. The middleware itself is logically
split in two layers, namely the DCPS communication and
the underlying DDS Interoperability Wire Protocol (DDSI), as
shown in Figure 2. Readers and writers are part of DDSI and

1https://www.renesas.com/us/en/solutions/automotive/soc/r-car-h3.html
2https://www.nxp.com/products/processors-and-microcontrollers/arm-

processors/s32-automotive-platform:S32

utilize UDP sockets provided by the underlying network stack
to synchronize samples between distributed history caches. The
services use data readers and data writers to access the samples.
To compensate the latency of the remote cause-effect chain, the
size of the history cache of object 1 on ECU 1 has to be chosen
large enough such that the planning service is able to combine
processed data (object 2) with raw data (object 1) of the same
data age.

Apart from the data transport, the middleware can handle the
service abstraction to ensure that only services with matching
interfaces can be connected (data type representation), manage
automatic service discovery to reduce the configuration effort
and monitor if the services and the network fulfill their specified
behavior.

However, there are also important use-cases for TCP like
over-the-air software updates, which might be handled by a
dedicated background task. We implemented such a background
task on each ECU, communicating with a Linux host to
demonstrate the effects of possible interference.

B. Interference Measurements in the Classic Stack

In the following we illustrate the possible interference that
non-critical background traffic (TCP) may impose on the la-
tency critical DDS traffic (UDP) that is required to transfer
samples between history caches. We have implemented the case
study from Figure 1 on two Xilinx Zynq Ultrascale+3 boards
(each equipped with a XCZU9EG multiprocessor system-on-
chip (MPSoC)), which are connected to an Ethernet network.
On each board, a setup as described in Figure 2 runs on an
ARM Cortex-A53 performance core. As the basic software, we
use the µC/OS-II 4 real-time operating system (RTOS) as well
as the open-source lwIP TCP/IP stack [6], both already highly
configurable to meet resource constraints in various embedded
platforms. On top of that, we implemented a DDS-like demo
middleware that features data-readers and writers (the interface
between services and the history caches) as well as readers
and writers, which use UDP sockets to synchronize data-sets
between the two boards. The three services are activated peri-
odically, synchronized in a hyper period. A writer is triggered
as soon as the service has produced new data.

Depending on the priority assignment and scheduler, the
network stack may suffer from interference by other applica-
tions running on higher priorities, e.g. when scheduled with
the widely used rate-monotonic scheduling (RMS) (e.g. AU-
TOSAR) or with earliest deadline first (EDF) scheduling. On
the other hand, it may itself affect applications running on
lower priorities. To take this into account, we added a high
priority task with a period of 1ms, causing around 35% load
and stressing the level-1 caches. At the level of a background
priority, we implement a task that communicates via TCP to
simulate a functionality like a software update which is not time
critical. It passes a 1MB data block in a logical ring between
both Zynq boards and a connected Linux computer.

3https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
4https://www.micrium.com/rtos/kernels/



Hardware

Basic Software

DDS
Middleware

Application

Ethernet

Writer

DataWriter

Critical LET Task

NW-Stack

Ring
Buffer

MW Fragment

ETH-DMA

IP MW Fragment

MW FragmentNW

UDP 
Socket

NW-Stack

ETH-DMA

MW FragmentNW

Reader

DataReader

Critical LET Task

MW Fragment

UDP 
Socket

History Caches:
Sample
Fragment

Background APP Background APP

TC
P

 S
o

ck
et

TC
P

 S
o

ck
et

P
ri
vi
le
ge
s

lo
w

h
ig
h

Fig. 2. Software stack for a CPS including DDS middleware

Unfortunately, monolithic TCP/IP stack designs such as the
lwIP are not able to bound interference between different
protocols. First, the lwIP core thread processes all requests in
single FIFO queue regardless of priorities and secondly, the
stateful behavior of protocols such as TCP leads to a strong,
unpredictable variation of the stack execution time.

One example is the TCP socket application programming
interface (API) that allows to send or receive an arbitrary
amount of data. It enables the background task using TCP
to issue a send or receive request for a large data block,
effectively handing over control to the high priority TCP/IP
stack. The stack starts processing the TCP protocol until the
data block is transferred, leading to a priority inversion, as
the critical service as well as the middleware is starved by
the running TCP/IP stack. Figure 3 shows the transmission
latency for 5000 samples of object 1 from ECU 1 to ECU 2
with and without TCP and application interference. The used
TCP window is annotated as “WND” and represents the upper
bound of unacknowledged TCP segments at the sender side,
affecting the impact of TCP packet bursts on the receiver’s input
buffer. Figure 3 shows the effect of different window sizes on
the transmission latency of critical samples of object 1. In all
cases, the average latency is close to the best case and only
affected by the application load. Hence, architecture and stack
implementation fit well for general-purpose computing. Worst-
case timing gives a completely different picture, and even in
the unrealistic case of a completely unaffected network stack,
the critical UDP response times grow by a factor of 4. With
35% interfering application load, the unpredictability of the
TCP processing in the classic stack considerably affects the
critical traffic and makes a dependable worst-case assumption
impossible. This is not acceptable for safety-critical CPS, where
dependable timing behavior is essential such as automated
driving or industrial automation [8] [3].

Moreover, the TCP traffic stresses the buffering in the

2ms 3ms 4ms 5ms 6ms 7ms 8ms
Latency of critical object transmission

noTCP
TCP, WND12

noTCP
TCP, WND4
TCP, WND8

TCP, WND12

No interf. appl. load

35% interf. appl. load

Fig. 3. Transmission latency of a critical 80kB object from ECU 1 to ECU 2
(UDP) with interference due to non-critical TCP traffic on the classic stack

lwIP stack, which may result in lost fragments due to buffer
overflows. Each sample is split in fragments resp. UDP packets
and a missing fragment would violate the data integrity of the
entire sample. In general, a low packet error rate might be
handled by a retransmission protocol, ensuring the integrity
of the entire sample, but any kind of retransmission protocol
would also be affected by the interference.

In summary, the problem is that for the safety-critical com-
munication in the case study, this interference has to be taken
into account. Even without packet loss, any correct middleware
implementation must consider the transmission latency as well
as its jitter, to ensure that the planning service combining
object 1 and object 2 is still provided with two samples
of the same data age. Up to a certain point, this might be
accomplished by increasing the size of the history caches and
identifying corresponding samples with their timestamps or
sequence numbers [3]. However, this approach is limited by
(1) constraints on memory consumption due to limited platform
resources and (2) latency constraints which must be satisfied
to ensure a timely reaction to moving objects.

III. RELATED WORK

Variations in computation and communication latency are
a crucial aspect in safety critical CPS, as they lead to non-
determinism in the data flow. Especially at the point where
inputs from different cause-effect chains are read, the deviation
of their data ages adds to the system complexity.

The Logical Execution Time (LET) addresses this issue for
local ECUs, as it abstracts from the physical execution time
by specifying explicit time instances when data is read and
written [9]. Communication is assumed to be instantaneous,
which can be realized e.g. by shared memory [1]. LET allows
to implement lock-free multicore communication, one reason
why it has successfully become a part of the AUTOSAR timing
extensions [10].

SL LET extends the LET approach to distributed systems
by abstracting inter-ECU communication with the SL LET
interconnect task [11]. When combining input values from
different cause-effect chains, SL LET provides a deterministic
relation of their data ages. Moreover SL LET can be seamlessly
combined with DCPS middlewares such as DDS, where the
history cache already provides a form of data versioning [3].
With SL LET, each sample in a history cache is tagged with
an explicit data age, allowing to specify the required size of
the history caches and the access by the data-readers during



design time. Nevertheless, the complex structure of existing
UDP/TCP/IP stacks, as well as the possible timing variations
of high performance processing hardware, extend the required
timing specification of the SL LET interconnect tasks due to
their significant worst-case latency (cp. Figure 3).

Reducing the complexity of the underlying software archi-
tecture is a consequent step. MicroROS, a lightweight version
of ROS 2, uses DDS for eXtremely Resource Constrained
Environments (DDS-XRCE) to minimize the middleware com-
plexity [12], targeting low power applications such as wireless
sensor networks. The limited feature-set, like no multicast
communication, also minimizes the requirements to the network
stack. This is supported by embedded network stacks like the
lwIP stack, which are highly configurable, e.g. allowing to
exclude functionality already during design time. It is only
applicable due to the low requirements made by the correspond-
ing control applications while time predictable microcontrollers
allow timing determinism of the overall system.

On the other hand, upcoming CPS applications demand
high performance hardware and software architectures for
applications such as image processing and machine learning.
This introduces a large set of possible interference such as
shared caches, virtual memory management and 3rd party
libraries, effectively limiting time determinism. The network
stacks deployed e.g. in Linux or AUTOSAR provide a large
feature set, far more complex than the investigated lwIP stack.

Pre-filtering traffic in the network stack is a concept available
for different use-cases. Linux provides the eXpress Data Path
(XDP) as the lowest layer in the network stack, typically used
for firewall applications (e.g. packet inspections or denial of
service detection) [13]. In earlier work, we have proposed a
filter stack that aims to combine the predictability and low
latency with the option to process non-critical traffic in a full-
featured background stack [5].

IV. SOFTWARE ARCHITECTURE

As discussed, three major aspects affect the timing behavior
of a state-of-the-art RTE: (1) The interference due to resource
sharing between services, middleware and basic software. (2)
The limited timing determinism due to feature complexity in
the RTE. (3) The trade-off between hardware performance and
predictability.

In this section we present a novel RTE communication ar-
chitecture, addressing those issues by strictly separating critical
from non-critical features as well as exploiting the properties of
SL LET to achieve deterministic and low latencies for critical
middleware traffic.

SL LET enables a deterministic data-version management,
since each sample in a history cache has a pre-defined data-age.
The SL LET paradigm can be implemented by using any local
LET scheduler on each ECU, e.g. the table based scheduler
in [14], with some global synchronization with bounded error
(e.g. Precision Time Protocol (PTP)). Access to the history
caches is performed by utilizing sequence numbers, mapping
each access to the correct history cache, which removes the
need for comparing time-stamps [3].

Figure 4 shows the architecture of the communication RTE,
combining a filter stack with a DDS like middleware where
communication is specified with SL LET. In the following we
outline the relevant parts as denoted in the figure.

A. Horizontal Separation

Apart from the vertical layers, which are known from any
software stack, we apply an additional horizontal separation.
Instead of reducing the functionality, a filter stack identifies
each packet as either time critical or non-critical. This allows to
split feature-rich elements like the network stack or middleware
in time critical and non-critical parts, a kind of horizontal
separation. As a direct consequence of SL LET, all features
required for the implementation of the SL LET interconnect
task can be identified as time critical. This includes the UDP/IP
part of the network stack as well as serialization, data trans-
port and monitoring in the middleware. Non-critical parts are
potentially complex and impose requirements on correctness,
but without stringent timing requirements. That way they can
be run on background priorities. Examples are stateful protocols
in the network stack like TCP or DHCP, as well as middleware
features like service representation and discovery.

As a second step, this separation also promotes the use
of a companion core in a modern MPSoC architecture such
as the Xilinx Ultrascale+, Renesas R-Car H3 or NXP S32.
While the high performance ARM Cortex-A cores and graphics
accelerators are well suited for service implementation (e.g.
image processing), those heterogeneous architectures provide
lightweight but predictable Cortex-R or Cortex-M cores that
are adequate for processing the critical traffic with minimal
latency. The specification with SL LET further enables a lock-
free implementation of the DDS history caches in a shared
memory between both cores.

B. Efficient Handling of Priorities

Due to the substantial amount of non-LET traffic in a CPS,
a filter stack as proposed in [5] has to provide a form of
arbitration between critical and non-critical traffic. In contrast
to the unmodified lwIP stack which only processes one FIFO
queue, the filter stack provides priority arbitration at all layers.
It supports up to 8 priority levels as known, e.g., for instance
from IEEE 802.1Q [15]. Moreover, the interrupt load on a
real-time core can be reduced by implementing the interface
to the classic stack via polling, periodically fetching data
from the classic stack. Besides providing determinism of the
transmission time it is also fully configurable and can be
reconfigured during runtime e.g. for network management.

C. Zero-Copy Operations with Scatter-Gather DMA

A central aspect for the efficient transport of large data
objects is the memory organization. A fragment of a data
sample has to be supplemented with a middleware header as
well as a network header to form a network packet. Due to the
lock-free behavior of SL LET, a sample in the history cache is
guaranteed to be invariable during transmission. Therefore it is
possible to make use of the scatter-gather direct memory access
(DMA) in the network driver hardware. This does not conflict



High Priority

Background Priority

Hardware

RTE =
DDS Wire
Protocol

+
Basic 

Software

Ethernet

Writer

Filter
Stack

MW

ETH-DMA

IP MW

NW

UDP 
Socket

Filter-Stack

ETH-DMA

MW FragmentNW

Reader

DataReader

Critical LET Task

MW

UDP 
Socket

P Background APP

Classic Stack

Cortex-A53
Application Processor

Cortex-R5
Realtime Processor

Cortex-R5
Realtime Processor

High Priority

Background Priority

DataWriter

Critical LET Task

Background APP

Classic Stack

Cortex-A53
Application Processor

NW

Fragment

A

B

C

D
E

Fig. 4. Architecture of an optimized RTE with vertical and horizontal separation

with security considerations, since the memory for the history
buffer is owned by the producing service and each lower layer
already has higher privileges. As a result, copy operations in
the middleware and network stack can be avoided, massively
reducing overhead for timing as well as buffer memory.

D. Input Filtering

At the receiver side, the SL LET traffic has to be separated
from non-critical traffic. The filter-stack as proposed in [5] is
able to accomplish this by focusing on UDP packets for the
ports used by the middleware. Due to the reduced complexity
in the filter stack it is possible to make this distinction with
minimal latency. The classic stack is in charge of providing
buffers where non-critical packets can be stored in. Since the
memory used for the DMA contains critical as well as non-
critical packets, it is owned by the filter stack, and non-critical
data has to be copied to the buffers owned by the classic stack.
This can be implemented as a background task in the filter
stack. Depending on hardware capabilities, the distinction can
already be done by the network hardware, using different DMA
queues for each traffic type. This would further improve the
performance of the filter stack.

E. Improved Socket-API

The reception path can not directly make use of a zero-
copy approach, since the middleware-header must be processed
to identify the target memory for the fragment. Normal UDP
sockets are assumed to be datagram oriented, discarding the
remaining datagram if it has not been read at once. This induces
a significant copy operation as the middleware has to read
the entire packet in an internal buffer, process the middleware
header and then copy the fragment from the buffer to the
corresponding history cache. The situation gets even worse as
the fragment in the network packet likely does not have the
same memory alignment as the target memory in the history
cache, prohibiting efficient copy operations.

Since the middleware is in fact a stream-oriented application
(it is aware of what is expected to be received), we propose a
simple modification to the socket API here, allowing to partially
read from UDP sockets. That enables the middleware to receive

a network packet in two steps. The first API call only receives
the small middleware header to identify the target memory. The
second call can directly target the memory in the history cache,
avoiding an additional copy operation.

V. EVALUATION

We have implemented the case study from Section II-A with
the improved RTE architecture presented in Section IV. In
the following, we provide measurements targeting our research
challenge stated in Section I. All measurements are done on the
same hardware setup as described in Section II-B and based
on off-chip traces generated with Lauterbach PowerTrace-II5

hardware. The proof-of-concept implementation and the results
are available at [16].

Figure 5 is an equivalent to Figure 3 and shows the trans-
mission latency of 80kB sized critical samples from ECU 1 to
ECU 2 with SL LET and our optimized software stack (about
880k critical and non-critical Ethernet packets). The maximum
worst-case latency of the filtered critical traffic is about 25%
smaller than the average latency of the classic stack thus meet-
ing research challenge 1) thereby exploiting the assumptions
in 3). Moreover, the TCP traffic interference is small causing a
timing overhead of at most about 6%. This interference can
be attributed to the parsing of additional Ethernet traffic in
the Cortex-R5 processor. The maximum difference between
average and worst case timing is a few percent, as well, which
can be attributed to the simpler filter stack and execution
model of the Cortex-R5 (in-order pipeline, no cache related
interference) with no outliers in the measurements. This way,
there is high confidence in the observed worst case, different
from the classical stack on the Cortex-A53 with its many
outliers. With the simple Cortex-R5 processor structure and
the bounded interference, even formal WCET analysis seems
feasible, meaning that the critical traffic timing could likely be
proven if required.

Next is research challenge 2). We measured the aggregated
input and output throughput of one board by extracting both
data streams with a Datacom network tap6 and gathering

5https://www.lauterbach.com
6https://www.datacomsystems.com/products/network-taps.html



2ms 2.04ms 2.08ms 2.12ms 2.16ms
Latency of critical object transmission

noTCP
noTCP

TCP, WND4
TCP, WND8

TCP, WND12

No interf. appl. load
35% interf. appl. load

Fig. 5. Transmission latency of a critical 80kB object from ECU 1 to
ECU 2 (UDP) with interference due to non-critical TCP traffic on the filter
stack, showing improvement in absolute latencies and reduction in variance of
latencies.

Non-Critical Critical Compared to WND4
Throughput Latency Throughput Latency

C
la

ss
ic WND4 83,0 MBit/s 3,80 ms — —

WND8 103,9 MBit/s 4,90 ms 25,1 % 28,9 %
WND12 113,1 MBit/s 8,00 ms 36,2 % 110,5 %

Fi
lte

r WND4 24,1 MBit/s 2,13 ms — —
WND8 37,7 MBit/s 2,14 ms 56,4 % 0,5 %
WND12 46,3 MBit/s 2,18 ms 92,1 % 2,3 %

TABLE I
TCP (NON-CRITICAL) AVERAGE THROUGHPUT AND OBSERVED

WORST-CASE UDP (CRITICAL) LATENCY DURING TEST RUN WITH
DIFFERENT TCP WINDOWS

data with Wireshark7. Table I compares the non-critical TCP
throughput as well as the observed worst-case latency of the
critical traffic for the classic and the improved stack with dif-
ferent window sizes. The maximum sustained TCP throughput
drops to less than 30%. This might be acceptable in mixed
criticality applications, but is a substantial price for critical
traffic predictability. The obvious reason is the comparably low
average performance of the Cortex-R5 (ca. 20% of the Cortex-
A53) that limits throughput. Hardware accelerated packet pars-
ing could help but is beyond this work.

The experiments show that a deterministic transport of
objects with low latency is possible due to the information
gained by the SL LET specification. It enables a more efficient
software architecture with a horizontal separation between crit-
ical and non-critical parts, effectively reducing the complexity
on the critical path. Due to the lock-free communication, it
is possible to optimize the cooperation between filter stack
and DDS middleware. This allows to reduce the transmission
latency of a 10kB sample by 75%, by avoiding unnecessary
copy operations and ensuring memory alignment whenever
data needs to be copied. The resulting software stack can also
make efficient use of a real-time companion core, although
the Cortex-R5 core in our experiments has only about 20%
of the single-thread performance compared to the Cortex-A53
performance core. In addition, the reduced complexity also
means a reduced code base in the critical path (about 60% less
code in the network stack) as well a no need for a complex
state machine. Consequently, this facilitates formal verification
and certification in safety critical CPS as well as enables the
implementation of the filter functionality in hardware.

7https://www.wireshark.org/

VI. CONCLUSION

In this paper we have shown how SL LET can be used to
improve the RTE communication architecture with a filter stack
and a DCPS middleware. The results of our proof-of-concept
implementation show that the predictability of SL LET induced
communication permits significantly faster communication than
the standard stack supporting the hypothesis that SL LET
programming rather reduces than extends latencies.

Despite these performance gains, the filter has a minor
impact on other IP traffic in the overall stack and does not
impose a limitation on non-critical functionality.

REFERENCES

[1] J. Hennig, H. von Hasseln, H. Mohammad, S. Resmerita, S. Lukesch,
and A. Naderlinger, “Towards parallelizing legacy embedded control
software using the let programming paradigm,” in 2016 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE
Computer Soc., 2016, p. 51.

[2] M. Beckert, “Scheduling mechanisms for efficient and safe automotive
systems integration,” Ph.D. dissertation, TU Braunschweig, Oct. 2020.

[3] K. B. Gemlau, L. Köhler, and R. Ernst, “A platform programming
paradigm for heterogeneous systems integration,” Proceedings of the
IEEE, pp. 1–22, 2020.

[4] R. Ernst, L. Ahrendts, and K.-B. Gemlau, “System Level LET: Mastering
cause-effect chains in distributed systems,” in IECON 2018-44th Annual
Conference of the IEEE Industrial Electronics Society. IEEE, 2018, pp.
4084–4089.

[5] K.-B. Gemlau, J. Peeck, N. Sperling, P. Hertha, and R. Ernst, “A new
design for data-centric ethernet communication with tight synchronization
requirements for automated vehicles,” in IECON 2019 - 45th Annual
Conference of the IEEE Industrial Electronics Society, vol. 1. IEEE,
2019, pp. 4489–4494.

[6] A. Dunkels and L. Woestenberg, “lwIP - A Lightweight TCP/IP stack ,”
https://savannah.nongnu.org/projects/lwip/, accessed: 2020-10-27.

[7] G. Pardo-Castellote, “OMG data-distribution service: Architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE, 2003, pp. 200–206.

[8] “Autoware.Auto benchmark,” https://www.autoware.auto/, accessed:
2020-10-19.

[9] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”
in Advances in Real-Time Systems. Springer, 2012, pp. 103–120.

[10] “Specification of timing extensions,” AUTOSAR Consortium, AUTOSAR
Standard R19-11 (CP), Document ID 411, Nov. 2019.

[11] K.-B. Gemlau, L. Köhler, R. Ernst, and S. Quinton, “System-level logical
execution time: Augmenting the logical execution time paradigm for
distributed real-time automotive software,” ACM Transactions on Cyber-
Physical Systems, 2020, doi:10.1145/3381847.

[12] “micro-ROS - ROS 2 for microcontrollers,” https://micro-ros.github.io/,
accessed: 2020-10-27.

[13] M. A. Vieira, M. S. Castanho, R. D. Pacı́fico, E. R. Santos, E. P. C. Júnior,
and L. F. Vieira, “Fast packet processing with ebpf and xdp: Concepts,
code, challenges, and applications,” ACM Computing Surveys (CSUR),
vol. 53, no. 1, pp. 1–36, 2020.

[14] M. Beckert and R. Ernst, “The ida let machine - an efficient and
streamlined open source implementation of the logical execution time
paradigm,” in International Workshop on New Platforms for Future
Cars (NPCar at DATE 2018), March 2018. [Online]. Available:
https://www.date-conference.com/date18/conference/workshop-w03

[15] “IEEE 802.1Q-2018 - IEEE Standard for Local and Metropolitan Area
Networks - Bridges and Bridged Networks,” IEEE, Standard, Jul. 2018.

[16] “Proof-Of-Concept Implementation Download,” https://www.ida.ing.tu-
bs.de/en/artifacts.


