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1 Introduction

This erratum relates to Ahrendts et al. [2018], a conference paper at ECRTS
in 2018 with the title ”Verifying Weakly-Hard Real-Time Properties of Traffic
Streams in Switched Networks”. The central contribution of the paper is the
computation of (m,k)-guarantees for traffic streams in switched networks. An
(m,k)-guarantee states that no more than m out k consecutive frame trans-
missions may violate the end-to-end deadline of a traffic stream. The authors
discovered that the computed (m,k)-guarantees in their paper are in fact only
valid under restrictive assumptions.

This introduction recalls the most important definitions of the paper by
Ahrendts et al. [2018] and points out which parts of the computation of (m,k)-
guarantees for traffic streams have been identified as faulty in the sense that
they only apply under restrictive assumptions. In the subsequent sections of this
erratum, the two erroneous theorems from Ahrendts et al. [2018] are discussed
in detail. The conclusion of this erratum examines the impact of the discovered
faults and points to corrected results in Köhler [2022].

A traffic stream si is modeled by an event-triggered task chain (τi,1, τi,2, . . .).
The first task in the stream si, is activated by an external event source, while
all successor tasks are activated by the termination events of their respective
predecessor task in the chain. The event arrival of each task is described by an
event flow ei,j(t). All possible event flows for a task are bounded from above
by an event model η+i,j(∆t).

Definition 1 (Event flow). An event flow ei,j(t) is a function which returns
the number of events which activate task τi,j within the time interval [0, t) in a
given execution run.

Definition 2 (Event model). The maximum event model η+i,j(∆t) indicates an
upper bound on the number of activation events for task τi,j in any time interval
[t, t+∆t). Any event flow ei,j(t) of task τi,j is therefore constrained by

∀t1, t2 : t1 ≤ t2 : ei,j(t2)− ei,j(t1) ≤ η+i,j(t2 − t1).
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Ahrendts et al. [2018] deduce an (m,k)-guarantee for a task chain on the
basis of the (m,k)-guarantees of each task in the task chain. An (m,k)-guarantee
for an individual task is derived by applying principles of Typical Worst-Case
Analysis as presented in Xu et al. [2015].

Typical Worst-Case Analysis introduces two event classes: typical events
and overload events. If only typical events occur, the system is guaranteed to
be schedulable. Overload events are the cause for potential deadline misses. A
central element of the paper by Ahrendts et al. [2018] is therefore

1. to find a valid decomposition of a given event flow ei,j(t) into a typical

event flow e
(t)
i,j (t) and an overload event flow e

(o)
i,j (t),

2. to find a typical event model η
+,(t)
i,j (∆t) which bounds from above all possible

typical event flows ei,j(t), and

3. to find an overload event model η
+,(o)
i,j (∆t) which bounds from above all

possible overload event flows e
(o)
i,j (t).

The solutions for points 1+3 presented in the paper Ahrendts et al. [2018]
are faulty. In fact, the related Theorems 22-23 are only valid under restrictive
assumptions as will be discussed in Sections 3 and 4. Generic solutions can be
found in Köhler [2022].

2 Notation

For better readability, this erratum will use reduced notations: The task index
will suppressed, the superscripts and arguments are simplified. This is leads to
the following expressions:

notation of the ECRTS 2018 paper notation of this erratum
ei,j(t) e(t)

e
(t)
i,j (t) et(t)

e
(o)
i,j (t) eo(t)

η+i,j(∆t) η+(∆)

η
+,(t)
i,j (∆t) η+,t(∆)

η
+,(o)
i,j (∆t) η+,o(∆)

2



3 Decomposing an Event Flow

The problem is to decompose an event flow e(t) satisfying η+ into a typical
event flow et and an overload event flow eo(t) such that

1. each event in the event flow e(t) satisfying η+ must be identified as either
typical or overload, and

2. the resulting typical event flow et, which counts the typical events in each
time interval [0, t), satisfies a given η+,(t).

For the resulting overload event flow eo(t), a maximum event model can be
derived. This follow-up problem will be considered in Section 4.

Proposed Solution in Ahrendts et al. [2018] We will recall here the
proposed decomposition in Ahrendts et al. [2018]. It is based on the notion of
the sliding window function.

A sliding window function takes as input an event flow e(t) defined up to
time T and returns a maximum event model η+e,T (∆t) stating how many events
are at most contained in any interval of length 0 ≤ ∆t ≤ T within the trace.

Definition 3 (Sliding window function). A sliding window function fslw takes a
specific event flow e(t) defined on 0 ≤ t ≤ T as an input, and returns a maximum
event model for e(t), denoted as η+e,T (∆t) for any interval size 0 ≤ ∆t ≤ T . This

maximum event model η+e,T (∆t) is derived by passing a window of size ∆t over
the event flow e(t) of length T and noting down the maximum number events
contained in any position of the window ∆t such that

η+e,T (∆t) = max
t1,t2 : 0≤t1≤t2≤T∧t2−t1=∆t

{e(t2)− e(t1)} .

Theorem 22 from Ahrendts et al. [2018] describes the decomposition of an
event flow as follows:

Theorem 22 (Decomposition of an event flow). Let e(t) be an arbitrary event
flow of length T . Known bounds are η+e,t(∆t) for all (sub)lengths of the event

flow with 0 ≤ t ≤ T and the maximum typical event model η+,(t)(∆t). A valid
decomposition of e(t) in a typical and overload event flow is given by

e(o)(t) = max
0≤∆t≤t

{
0, η+e, t(∆t)− η+,(t)(∆t)

}
e(t)(t) = e(t)− e(o)(t).

In other words, Theorem 22 proposes the following algorithm to decompose
an event flow e(t) up to time instant t:

� Find the largest number of events in any time interval of size ∆t with
0 ≤ ∆t ≤ t, denoted as η+e, t(∆t).
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� Check if in any interval of size ∆t with 0 ≤ ∆t ≤ t the maximum number
of events exceeds η+,(t)(∆t) and select the largest positive deviation:

max
0≤∆t≤t

{
0, η+e, t(∆t)− η+,(t)(∆t)

}
� This largest deviation corresponds to the number of overload events in the
e(t) up to time instant t.

� All other events are typical events: e(t)(t) = e(t)− e(o)(t).

Error in the proposed decomposition: limited applicability The
proposed decomposition algorithm is not universally valid for all possible event
flows e(t) as stated in the theorem. Indeed, the decomposition algorithm is
only applicable to very specific types of event flows. This restriction is closely
related to how overload events are detected in Theorem 22. Multiple occurrences
of overload events at different points in time are not properly considered, so that
Theorem 22 covers event flows for which an overload event is known to occur
only once:

Theorem (Decomposition of event flows with a single disturbance). Let an
event flow e(t) satisfy η+,(t), if one of the events in the flow is removed. Other-
wise, the event flow e(t) satisfies η+ but not η+,(t). If this situation applies, we
say that the event flow e(t) has a single disturbance and that the decomposition
described in Theorem 22 is valid.

Proof. If the event flow e(t) has a single disturbance, then by definition it must
violate η+,(t) at least in one time interval of size ∆t. To identify a violation
of η+,(t), we must check whether more than η+,(t) events occur in some time
interval of length ∆t in the event flow. This is done by the decomposition
algorithm described in Theorem 22. The maximum deviation between the event
flow and the typical event model η+,(t)

max
0≤∆t≤t

{
0, η+e, t(∆t)− η+,(t)(∆t)

}
can by definition of an event flow with a single disturbance not be larger than 1
and thus the decomposition correctly identifies one overload event in an event
flow with a single disturbance.

Figure 1 shows an exemplary event flow with a single disturbance, where the
typical event model η+,(t) = ⌈∆/P ⌉ is fully periodic and the worst-case event
model η+ = ⌈(∆t+ J)/P ⌉ is periodic with jitter. The event flow satisfies η+,(t)

if the 4th event is removed. The decomposition algorithm recognizes that an
overload event occurs in the event flow for t ≥ 3P because for different values
of ∆t the typical event model η+,(t)(∆t) is exceeded by 1, e.g., for ∆t = P .

Note that in Köhler [2022], a generic and efficient decomposition of event
flows is proposed.
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Figure 1: Event flow with a single disturbance

4 Finding an Overload Event Model

The follow-up problem is to find a maximum event model for the occurrence of
overload events in a decomposed event flow.

Proposed Solution in Ahrendts et al. [2018] We will recall here the
proposed solution in Ahrendts et al. [2018] which was formulated in Theorem 23:

Theorem 23 (Obtaining an overload event model). A maximum overload event
model is

ηo(∆t) = fslw

(
max

0≤∆t∗≤∆t

{
η+(∆t∗)− η+,(t)(∆t∗)

})
where fslw is a sliding window function.

Error in the proposed overload event model: limited applicability
Similar to the case of event flow decomposition, Theorem 23 delivers only a
correct bound for event flows with a single disturbance. Again multiple occur-
rences of overload events at different points in time are not properly considered
in Theorem 23.

Theorem (Overload event models for event flows with a single disturbance).
The overload event model

η+,(o)(∆t) = fslw

(
max

0≤∆t∗≤∆t

{
η+(∆t∗)− η+,(t)(∆t∗)

})
is safe for event flows with a single disturbance.

Proof. Event flows with a single disturbance have one overload event and thus
a safe overload event model is simply η+,(o)(∆t) = 1. The formulation

η+,(o)(∆t) = fslw

(
max

0≤∆t∗≤∆t

{
η+(∆t∗)− η+,(t)(∆t∗)

})
is complicated but safe and tight since there is (by definition of an event flow
with a single disturbance) at least one time interval ∆t∗ for which η+(∆t∗) −
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η+,(t)(∆t∗) = 1 and none with η+(∆t∗) − η+,(t)(∆t∗) > 1. By applying the
sliding window function, it is assured that η+,(o) is a monotonically increasing
function.

Note that Köhler [2022] describes an efficient way to find maximum overload
event models in case of sporadic overload event arrival. A less efficient but
generic way to find overload event models is also proposed which relies on mixed-
integer linear programming.

5 Conclusion

We proposed in Ahrendts et al. [2018] (1) a decomposition of event flows into
typical events and overload events, and (2) an overload event model which
bounds the occurrence of overload events in event flows. These result were
erroneously supposed to be applicable to any event flow e(t), but they are in
fact not and apply only to specific cases – in particular to event flows with a
single disturbance. This limits considerably the relevance of the results for prac-
tical problems and also invalidates the experiments in Ahrendts et al. [2018].
Note that the results of Ahrendts et al. [2018] have been reused in Köhler and
Ernst [2019].

The reader may refer to Köhler [2022] which provides generic solutions for
the issues raised in this erratum and discusses a new set of experiments.

References

Leonie Ahrendts, Sophie Quinton, Thomas Boroske, and Rolf Ernst. Verifying
weakly-hard real-time properties of traffic streams in switched networks. In
ECRTS 2018-30th Euromicro Conference on Real-Time Systems, pages 1–22,
2018.
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