
Integrating Multi-/Many-Cores in Avionics:
Open Issues and Future Concepts

Anika Christmann, Adam Kostrzewa, Rolf Ernst
Institute of Computer and Network Engineering

Technische Universität Braunschweig
surname@ida.ing.tu-bs.de

Alexander Peuker, Alexander Kuzolap,
Meiko Steen, Peter Hecker
Institute of Flight Guidance

Technische Universität Braunschweig
forename initial letter.surname@tu-braunschweig.de

Marius Rockschies, Martin Halle, Frank Thielecke
Institute of Aircraft Systems Engineering

Hamburg University of Technology
forename.surname@tuhh.de

Kai-Frederik Nessitt, Selma Saidi
Chair of Embedded Systems

TU Dortmund University
forename.surname@tu-dortmund.de

Abstract—The demand on on-board computing power in the
aerospace domain is increasing while multi-/many-core systems
promise an overall performance enhancement. One of the main
drivers is the accumulating set of functions in an avionic system,
for example in the cockpit, flight navigation/guidance domain
or image data processing. The upcoming obsolescence of single-
core processors being replaced by multi-/many-core processors is
addressed in recent research activities of the avionics community.
Despite intensive research, there is still a lack of system design
guidelines and experience how to transition existing applications
from single- to multi-/many-core. This paper gives an overview
on state-of-the-art methods, potential applications, and future
concepts how to assess new avionics platform designs in a
systematic way.

Index Terms—multi-/many-core, safety-critical, avionic sys-
tems

I. INTRODUCTION AND PROBLEM STATEMENT

New visual options for the pilot and new cockpit philoso-
phies will trend towards the single-pilot cockpit which requires
higher computing power to compensate for the first officer. For
flight navigation, new 3D databases and improved sensor fu-
sion algorithms are being developed. Future and novel systems
also require processing of image data for approach and auto
landing scenarios. Multi-/many-core processors can deliver
high processing throughput adequately and have been proven
to be cost-effective. Since the aviation industry in its current
form relies on single-core systems, computing resources and
cost-efficiency are not optimal. An ideal solution would be to
use commercial off-the-shelf (COTS) components.

In avionics, the use of multi-/many-core processors is
difficult due to the requirements of certification and safety
standards, e.g. DO-178C, DO-254, ARINC653. Simultaneous
execution of different applications results in a wide range of
interference that can occur due to accesses to shared resources.
Since multi-/many-core processors promise high performance,
there have been many research and development projects
addressing this challenge in the last decade, e.g., parMERASA,
PROXIMA, EMC2, PHYLOG. The first part of this paper

gives an overview of these and briefly summarizes the main
results in terms of methods, tools, and mechanisms to assure
functional safety in multi-/many-core architectures.

The second part consists of the systems perspective on
the required computing power, especially for mixed critical-
ity systems. Multi-/many-core processors would open new
possibilities for system applications to run computationally
intensive algorithms. For example, Receiver Autonomous In-
tegrity Monitoring algorithms that provide integrity through-
out the navigation system would benefit significantly from
the parallelization of their operations. In addition, increased
performance in arithmetic calculations such as matrix multi-
plication, which are common in filter structures, are expected.
Applications can also be found in less critical environments,
e.g., when different iterations of cost functions are executed
simultaneously, which are used in multi-criteria optimizations.
Independent of the number of cores, the same certification
rules apply. A solution must be found to ensure the same
probabilities for Design-Assurance-Levels (DAL) as well as
segregation and redundancy requirements which may limit the
utilization of multiple cores.

In the third part, future concepts will be proposed to provide
methods for designing a multi-/many-core avionics platform
for civil aircraft. Presented is a two step-approach: 1.) Bottom-
up with detailed analysis on processor level to achieve guar-
antees for the applications. This paper proposes a new method
to ensure functional safety with respect to multi-/many-
core COTS processors. 2.) A top-down approach addresses
the management of the process-, system- and certification-
requirements and supports understanding new design patterns
that arise from new avionics platform architectures.

II. STATE-OF-THE-ART

The set of system functions running on an avionics plat-
form is constantly growing in size and complexity. Today,
multi-/many-core processors are commonly foreseen as a key
enabling technology for managing this challenge. Through



integration of multiple functions on a single computing de-
vice, they allow to meet tight requirements on size, weight
and power consumption, as well as to increase the overall
computing power.

However, running multiple functions concurrently on differ-
ent processor cores does not prevent them from sharing other
resources such as cache, memory, buses and I/O peripherals.
The resulting interference may increase latency and jitter of
operations and thus violates safety and reliability requirements
if not handled properly. The same effects occur when a
function with highly parallelized code blocks is executed.
Therefore, the development of an avionics platform using
multi-/many-core processors is subject to strict regulations and
certification processes.

The certification requirements for hardware in avionics
are described in DO-254 [30] and for single-core software
development in DO-178C [31]. Both standards employ the
DALs to categorize critical (e.g. flight control) and non-critical
(e.g. passenger infotainment) functions. The benefits of multi-
/many-core processors as well as the upcoming obsolescence
of single-core processors led certification authorities to de-
velop supplements in the last years. As DO-178C focuses
solely on single-core processors, the certification authorities
software team published a position paper CAST-32A [36] to
address the impact of multi-/many-core processors on safety,
performance, and integrity. Furthermore, ARINC653 Avionics
Application Software Standard Interface Part 1 Supplement
5 adds service capabilities for multi-core processors since
2019 [4].

A. Multi-Core Architectures

In the following sections the challenges resulting from
multi-/many-core processors with respect to aforementioned
standards are described first. Next, dedicated mechanisms to
meet these requirements are presented.

1) High Performance Architectures: The majority of multi-
core COTS processors are designed to increase average-case
performance of all integrated functions. In most cases, COTS
processors consist of several processing cores with a hierar-
chy of private and shared caches. The processing cores are
connected via Network-on-Chip transporting interrupt, cache
coherency and memory messages. Other shared resources
include I/O devices and memory peripherals. Functionally in-
dependent software functions can be executed simultaneously
on different cores of COTS processors. However, accesses
to shared resources lead to a wide range of interference
effects [12] what makes the runtime behavior of individual
software functions difficult to predict. Safety-critical functions
are designed for the worst-case execution time (WCET) and
must meet strict temporal requirements (e.g. deadlines, arrival
jitter etc.). Exceeding the WCET can lead to a complete system
failure resulting in loss of life. To compute a safe upper bound
on execution time, it is necessary to identify all sources of
interference that could cause runtime variations resulting from
competing accesses from applications running on different
cores. Semiconductor manufacturers do not publish all infor-

mation about their products, such as the interconnect structure.
As proven in related research [8], measurement techniques
and stressing benchmarks to characterize the architecture are
complex and do not always detect all sources of interference
that cause runtime variation. Without this information, it is
hardly possible to assure the WCET. This leads frequently
to overestimation of WCET in order not to compromise
functional safety. This decreases utilization and performance
and squanders the majority of benefits of such architectures in
the avionics domain, e.g. [27] [32].

2) Architectures with dedicated Safety Features: To tackle
some of the previous mentioned challenges hardware manufac-
turers started to incorporate specific safety features in COTS
platforms. As of Revision ARMv8.4-A ARM-based processors
can be equipped with the Memory System Resource Parti-
tioning and Monitoring (MPAM) [29] extension. This allows
monitoring of memory traffic and observation of performance
for allocating system resources such as cache capacity and
memory bandwidth to different parts of the system, where
they are needed to improve interference effects.

A different safety approach is presented in [26] where
failure rates are reduced by incorporating Failure Mode Effect
and Diagnostic Analysis (FMEDA) into Electronic Design
Automation (EDA) tools. The system is divided into separate
hierarchical levels and Failure Modes (FMs) are defined.
The safety hierarchy is linked to the design hierarchy to
associate FMs to the corresponding part of the design. The
metric describing the probability of failure is evaluated and
calculated based on hardware failure rates. With heuristics
the FM distribution is evaluated and safety mechanisms are
inserted into the design to cover the FMs.

In other cases, manufacturers include hardware features for
specific tasks in a platform. For example, in the automotive
domain, the heterogeneous S32V processor from NXP [33]
is designed to comply to the safety requirement set dictated
by ISO 26262. Although this example is primarily based on
automotive use cases, these kinds of processors will likely
be more prevalent in the avionics domain and could play a
major role in the development for future avionic platforms
incorporating multi-/many-core.

B. Avionic Research Projects

Over the last decade, there have been many research and de-
velopment projects that have addressed the challenge of multi-
core use in avionic systems. The following is a brief summary
of some of the research projects and their approaches.

Real-Time Capable Designs: Safe and tight WCET esti-
mation is difficult on multi-core COTS processors. There-
fore, MERASA, parMERASA and PREDATOR focused on
developing a multi-core hardware architecture that enables
simplified WCET analysis. In order to minimize intertask
interference, the MERASA architecture isolates the tasks at
core level and introduces an interference-aware bus arbiter,
a dynamically partitioned cache and an analyzable real-time
memory controller [37]. However, shared memory and bus-
based techniques limit the design to about four to eight cores.



In the successor project parMERASA, the objective was to
increase the performance up to 64 cores. The focus was on
parallelization for hard real-time applications and the usage
of a scalable, timing analyzable interconnect instead of an
interference-aware bus. Similar to MERASA, the PREDATOR
architecture approach is based on analyzable caches, compiler-
controlled memory management and simple cores with analyz-
able behavior [15].

Probabilistic Timing Analysis: Probabilistic timing analysis
(PTA) requires that execution times of an application on multi-
core processors can be modeled with independent and identi-
cally distributed random variables. In the PROARTIS project,
the central hypothesis is that multi-core and software features
enable a truly randomized timing behavior [23]. Under this
assumption, the PTA can be used to verify that the probability
of execution time outliers is negligible. For example, cache re-
placement policies do not meet the PTA requirements. There-
fore, a random placement policy was proposed in PROARTIS
[20]. The successor project PROXIMA also considers PTA
implemented on FPGA based COTS technologies including
disruptive effects at their non-PTA compliant periphery [11].

Architecture and Mechanism: Several projects focused on
ensuring safety guarantees in Multiprocessor System-on-a-
Chip through extensions that enable interference mitigation. In
the RECOMP project partners analyzed the impact of sharing
on-chip resources in a COTS architecture and the resulting
interference that affects determinism, e.g. [21]. The results
suggested possible approaches to mitigate the undesirable
effects or limit their temporal impact. However, RECOMP
demonstrated that there is no unified approach to address
all of the problems outlined. This work continued in the
ARAMIS I & II projects where partners focused on introduc-
ing additional phases into modern timing analysis techniques
to capture resource utilization and calculate an interference
delay, e.g. [28]. Subsequently, this was complemented by run-
time monitoring and shaping to enforce timing guarantees. The
results showed a reduction in multi-core WCET of up to 53%
by limiting interference scenarios. However, the performance
degradation was still significant. Therefore, as a step towards
certification, Airbus identified in EMC2 the need for solutions
that maintain the ARINC653 single-core application while
scheduling additional safety-critical partitions on the other
cores, e.g. [2]. It has also been shown that the static throttling
of memory bandwidth can cause such partitions to slow down
or leave little bandwidth available to other cores.

Certification: Avionic platforms must comply with multiple
safety standards (DO-178C, DO-254, ARINC653, ...) which is
one of the greatest challenges for certifying computing devices
with multi-/many-core processors within these platforms. Mul-
tiple research efforts tried to find solutions for some of the
biggest certification hurdles, e.g. the request for freedom of
interference and timing predictability. Two prominent projects
in this regard are CERTAINTY [14] and PHYLOG [10].

CERTAINTY focuses on temporal isolation and presents the
Acquisition Execution Restitution (AER) programming model.
Each task runs on a separate core to maximize performance

but communication is done sequentially. This mitigates in-
terference since buses and shared resources will not be used
simultaneously. By using PikeOS as an operating system and
the Kalray MPPA-256 processor, higher predictability was
obtained by replacing cache hierarchies by non-standard DMA
based memory transfer.

PHYLOG describes a model-based approach by identifying
interference within a given system by modeling and bench-
marking the hard- and software components with the Phylog
Modeling Language (PML). These models are analyzed in
terms of overlapping communication paths which hint at
possible interference. The resulting information is used for
constructing argumentative structures to fulfill certification
requirements defined in the CAST-32A papers.

Currently no complete method for certifying avionics plat-
forms using multi-/many-core processors capable to run mixed
criticality system functions exists.

C. Industrial Efforts
Besides academic work, industrial actions are fundamental

for progress in this domain. In the following two recent
advancements in industrial research are highlighted.

Quantifying Interference Empirically: Similar to [27],
Rapita Systems [38] developed a test methodology to measure
interference empirically. At first, a Platform Characterization
is conducted by running generic known applications (called
RapiDaemons) in a scenario alone, followed by a stressing
scenario, where the remaining cores intensively access the
same shared resource. A comparison of the execution times
of the two scenarios reveals how prone to interference the
computing device is on this/these particular shared resource(s).
This way it is possible to argue, that certain shared resources,
on which no effect is seen, will not cause interference with
other real applications. Secondly, a Software Characterization
is conducted, in which the application of interest will be
investigated. In a finger printing stage it will be determined
which shared resources the application uses. Afterwards the
application will be executed while other cores, using the Rap-
iDaemons again, stress the target system application on exactly
those resources. The idea is that such a setup constitutes the
worst case of possible interference and thus justifies an upper
bound on the WCET.

Progress in Multi-Core Real Time Operating Systems: The
operating system has the key role of distributing resources
to applications, while mitigating interference on shared re-
sources. INTEGRITY-178 tuMP is one of interest because
it has proven to mitigate interference sufficiently, since it
successfully managed to receive certification in a multi-core
module in regards to all CAST-32A objectives [17]. The inter-
ference mitigation approach chosen is a bandwidth allocation
and monitoring functionality. This is a fine-grained control of
shared resources like the chip-level interconnect and enforces
a fixed bandwidth utilization of applications [34].

III. UPCOMING DEMANDS

In the following, two selected use-cases show the potential
and hurdles for running system applications on multi-/many-



core processors.
1) Use-Case 1: In the field of flight-guidance, satellite

navigation has become one of the major players over the last
decade. This is mainly based on global availability and the
benefits of maintaining less ground infrastructure. However, as
operations expand, safety issues that arise from the increased
number of satellites available must be addressed.
Typically, safety is achieved by providing an adequate integrity
estimation called Receiver Autonomous Integrity Monitoring
(RAIM). RAIM can be implemented as different types of
algorithms that operate in either the residual or position
domain of a navigation solution.
A common strategy is to assume that one of the received satel-
lites is sending hazardously misleading information (HMI),
caused by an undetected failure. The task is to identify the
faulty satellite and exclude it from the navigation solution.
This can be accomplished by calculating different sub-position
solutions, each of which discards a different satellite from the
calculation. By comparing all sub-position solutions, one of
them can be identified as fault free, since the faulty satellite
was discarded.
A disadvantage of this algorithm is the high demand for
computing power, which increases linearly with the number of
satellites, as an additional position solution has to be calculated
for each satellite. In addition, a high number of satellites
is depleting the available integrity budget, assigned by the
safety standards. The budget refers to the maximum allowed
probability, that HMI occurs undetected.
The overall probability of HMI caused by a single satellite
failure can be determined using equation (1), where n is the
number of satellites and k the number of faulty satellites.

p(HMI)apriori =

(
n

k

)
· pksat · (1− psat)

n−k (1)

Depending on the chosen a priori failure probability of a
satellite (psat ≈ 1− 5× 10−5) [16], the overall probability is
compared with the required continuity probability 2 × 10−4

assigned by the ICAO [18]. Alternatively, a comparison can
be made against the missed detection probability 2−8×10−4

[24].
As the overall probability is strongly related to the number
of satellites, it can be seen that the integrity budget is de-
pleted within 20 satellites. In contrast, new multi-constellation
concepts will feature up to 40 satellites in view, assuming
approximately 10 satellites per constellation. It is therefore
necessary to check for a multiple satellite failure (Nfailure)
rather than a single one to allow for an additional margin of
integrity [9, 40].
This opens up a large number of permutations on the sub-
positions solutions (Nsub) to be calculated and increases
the required computing power exponentially as seen from
equation (2).

Nsub =

Nfailure∑
k=1

(
n

k

)
(2)

For example, in a multi-constellation scenario with 20
satellites, up to 210 sub-solutions must be computed to satisfy
the two-failure assumption, which is driven by the additional
integrity margin. In comparison, the single failure assumption
currently used only requires 20 sub-solutions. Therefore, it is
expected that the required computing power will increase by
a factor of 10 to 20 compared with the current demand.
Fortunately, the computation of the sub-solutions can be com-
pletely parallelized as they do not depend on each other. This
opens up the opportunity of using multi-/many-core- instead of
single-core processors, especially for applications in real-time
environments.

Another opportunity for using multi-/many-core systems
lies within the flight control domain. More computing power
would enable using new methods in control technology, which
allows better system performance [35], robustness [39], fault-
tolerance [22] of nonlinear systems, possibilities for online
system identification up to adaptive control or Model Predic-
tive Control (MPC)[1].

MPC uses discrete dynamic models of the plant to calculate
the future dynamic behavior of the vehicles input signals.
This enables the calculation of the optimal input depending
on a chosen quality function and therefore an optimal output
results. While the vehicles behavior is predictable within a
certain time frame, usually only the input is used for the
next time step and then the optimization is repeated. This
requires considerable computing power, which is why MPC
controllers are preferred in process engineering processes
whose dynamics are slow enough to perform an optimization
in each sampling step. Various parallel computing approaches
using different technologies have been proposed to speed up
the execution of MPC. An overview of this topic is provided
by [1], in which the parallelization of the MPC calculation
using multi-core processors (CPUs) and many-core processors
(GPUs) is presented.

2) Use-Case 2: The aircraft’s air conditioning system
(ACS) as part of the Environmental Control System (ECS)
is being examined as a further application with regard to
multi-/many-core processors, whereby the ACS is not only
responsible for temperature control and passengers comfort,
but also for the pressurization and ventilation of the cabin.
The following explanations are taken from [13, 3].

As the ACS ensures structural fuselage integrity by con-
trolling the required pressure according to a pressurization
flight profile, it can be assigned to the safety-critical systems.
Since the flight profile is altitude-dependent and the number
of passengers is required as an input value for the control, the
ACS controller must communicate with the flight management
system (FMS).

Although the aircraft types vary, the essential principles
of an ACS are comparable for all aircraft and are briefly
explained here with regard to the control. The system mixes
hot and cold air to achieve the desired temperature which is
set via a manual knob by the pilot and serves as a reference
variable for the controller. The hot air is provided via the
bleed air of the engines and the cold air is provided by



two Air Conditioning Packs. Inside each pack the bleed air
is cooled by Ram-air through one heat exchanger and an
Air Cycle Machine (ACM) to deliver the coldest required
temperature, which is controlled accordingly by adjusting
valves. In addition, parts of the air from the cabin, cockpit
and cargo is recycled and mixed with fresh air from the
packs inside the mixer. Finally, hot bleed air is mixed with
the cold air from the mixer for the individual zones in the
aircraft via the trim air system. While the temperature is only
achieved by mixing hot and cold air, the cabin pressurization
is accomplished by controlling the amount of air that flows out
of the cabin. This is done by using e.g. the outflow valve and
the bleed air valve, which regulates the amount of air entering
the system detected via the flow and pressure sensors.

The temperature is controlled by adjusting different valves
inside various subsystems within the ACS. For example, the
Temperature Control Valve is responsible for the temperature
control inside the pack. In order to implement the temperature
control, various state variables must be measured by sensors
inside the system and compared with the reference values
given by the controller forming the control loop.

There are several types of states that need to be controlled.
One of the types are logic states used primarily in emergency
systems for fault isolation, which are not used during regular
operation. These are mostly controlled via logic manipulated
variables that are rarely used and for this reason require low
computing power, e.g. packing valves. Packing valves close
automatically if there is insufficient pressure upstream or if
the fire button of the associated engine is pressed and the
corresponding cross-bleed valve is closed. The other type
are continuous manipulated variables, which are determined
by a controller. Controllers of aircraft critical systems are
typically kept as simple as possible due to certification efforts.
For this reason, Proportional-Integral (PI) controllers are used
whenever possible. PI feedback- and feed-forward-controllers
do not require high computing power. This and the fact that
many feedback sensors and actuators across the aircraft need
to be connected which results in a significant additional cable-
weight if all applications are centralized. Therefore, ECS
was deliberately chosen as an example to show that not all
applications benefit from multi-/many-core processors yet.

IV. FUTURE CONCEPTS

The concept of Integrated Modular Avionics (IMA) already
allows to run several system functions of different DAL on
the same single-core computing device. But with respect to
the number of processing cores, another degree of freedom
on the computing device is added that must be managed.
System functions depend on sensors and actuators that must be
connected physically to the computing device and functions of
different complexity running at various rates. Considering the
spatial distribution of sensors and actuators of systems across
the aircraft, moving functions from multiple single-cores to
probably centralized multi-/many-core computing devices is
challenging. There is no experience with platform architec-
tures and how computing devices and functions are optimally

allocated considering all these side-effects, e.g. constraints
like requiring some functions being implemented on dissimilar
hardware.

This problem is addressed within the Many-Core Avion-
ics Design, Architecture, Modeling and Simulation (MC-
ADAMS)1 project. To approach the design problem, a de-
tailed view on the computing device is conducted to ensure
guarantees for the system design (bottom-up). Furthermore,
system demands, especially from segregation/redundancy re-
quirements, will define constraints that must be considered
when allocating functions on the multi-/many-core platform
(top-down). Design patterns that require multiple single-core
computing devices due to safety, may also require multiple
computing devices when using multi-/many-core processors.

In the following, the topic will be approached in two ways:
Bottom-up and top-down which is explained in the following
paragraphs.

A. Bottom-Up Approach
A detailed analysis of the behavior of applications on

computing device level is carried out to achieve guarantees
at the system level. This corresponds to most of the ap-
proaches discussed in section II. The basic procedure is to start
with a detailed hardware analysis and provisionally determine
potential roots of non-determinism. It is common to distin-
guish, for example, between the three phases of interference-
identification, -analysis and -mitigation [19]. However, there
are innovative and less restrictive ideas of ensuring guarantees
of determinism and bounds on WCET. The idea of Timing
Diversity is one currently being investigated in the scope of
the MC-ADAMS project [25].

Hardware mechanisms for contemporary multi-core pro-
cessors such as caching, pipelining and speculative execu-
tion were introduced to reduce the average execution time.
However, the same mechanisms may have a negative impact
on the worst-case behavior of the system. For instance, al-
though cache memory improves an average execution time
the sporadic cache misses may significantly increase execution
times of certain code sections and endanger system safety.
Timing diversity is an approach based on modular redundancy
that mitigates this challenge. It executes the same function
on multiple units with different hardware architectures. As
timing errors should be sporadic (safety critical functions are
usually well specified and tested due to certification), it may
be assumed a timing error does not occur on two hardware
platforms simultaneously if one can demonstrate statistical
independence. In this case, one can set up a single-timing-error
model, which means that one of two implementations always
returns the result in time. The timing diversity approach is
similar to the dual modular redundancy (DMR) for hardware
errors, used e.g. in AFDX [7].

The setup considered in MC-ADAMS project is presented
in Fig. 1. It consists of a commercial single-core ARINC653
front-end processor connected to two high-performance com-
puting platforms at the back-end. The functions are forwarded

1MC-ADAMS website: https://tinyurl.com/mcadamsproject



to the back-end via the ARINC653 front-end and executed
redundantly.

Fig. 1. MC-ADAMS setup consists of a commercial ARINC653 front-end
connected to two high performance computing platforms HPC1 and HPC2
via an internal communication network back-end

B. Top-Down Approach
The top-down approach addresses the avionic platform

design and related management of the process-, system- and
certification-requirements. In order to maximize the usage of
multi-/many-core for avionic platforms, the platform should
consist of an optimal set of computing devices for the various
system functions. An optimal set minimizes costs or weight of
certain required resources. The design of single-core avionic
platforms is already a complex process due to the sheer num-
ber of applications and their relations in terms of constraints
to each other. Therefore, model-based methods have been
developed in the past to capture architecture requirements and
design avionic platforms using domain specific models [6].
A promising domain specific model focusing on the mapping
of e.g. tasks to devices and devices to installation locations
as well as mapping of signals and I/O is the Open Avionics
Architecture Model [5]. It does not support modeling multi-
cores out of the box. Therefore, the underlying model shall be
enhanced to support abstractions for cores as an own sub-
device, resulting in a more fine grained description of the
avionic architecture.

In order to design such an avionic architecture, character-
istics from cores and operating system have to be collected.
Those include assumptions on the reliability, provided comput-
ing power and other provided resources like I/O. The provided
characteristics, the system requirements and the certification
requirements for CS-25 aircraft enforce specific designs and
architectures with necessary redundancy.

One example is the task assignment. On classic architectures
using single-cores, tasks are assigned to devices. But when
using multi-core devices, tasks will be assigned to cores.
If enough resources are available, the application can be
allocated to a device/core. This is a combinatorial optimiza-
tion (bin packing) problem with additions of constraints for
functional safety. These functional safety constraints can be
for example: application A1 and A2 need to be on different
computing devices. This might have a significant impact on
the design process and will potentially limit the utilization of
many-core systems in certain cases.

Another constraint is the thermal management. A higher
core number dissipates more heat at the same clock frequency
and may require cooling systems. In nowadays aircraft, cooling
capacities are typically only available in the avionics bay.

Other design factors regard the number and type of used
components. Nowadays, an avionics platform consists of com-
puting devices and remote data concentrators that connect
field buses to an aircraft data communication network. As the
amount and length of connected wires contributes to weight,
wires influence the topology and weight of the overall architec-
ture significantly. This leads to the question: Do multi-/many-
cores tend toward centralized or distributed architectures? Are
new installation locations required that provide active cooling,
for example in the center or back of an aircraft?

Fig. 2 points out the transition to architecture design with
multi-/many-core hardware and underlines the density of ap-
plications usually being ARINC653 partitions.

Fig. 2. Transition to architecture design with multi-/many-core hardware

C. Use Case and Assessment Approach

To investigate feasible multi-/many-core platform designs,
MC-ADAMS starts with the architecture of an existing long-
range aircraft with an IMA platform as reference. This will
setup the number and location of sensors and actuators for the
systems. On modern aircraft around 1000 system functions are
running on IMA and this number will likely increase.

To avoid the need of detailed system functions, the MC-
ADAMS project proposes a template system application based
assessment approach. In a first step system applications are
analyzed and grouped according to similar resource demands
and algorithm complexity. Examples are: Matrix operations,
controller types, logical operations or signal-processing. Each
group will be represented by a template system application.

This approach enables generation and assessment of a
realistic set of applications for the evaluation of novel multi-
/many-core IMA architectures. Moreover, the approach is le-
gitimate, since it captures and maintains typical characteristics
of nowadays system applications on IMA architectures.

Therefore, it can be assumed that the template system appli-
cations with different characteristics like criticality, computing
demand or type and number of required I/Os, well represent
real applications. Furthermore, it can be assumed that design
patterns (simplex, duplex, triplex, con-mon-voter...) can be
expressed in a statistical manner based on known current



system applications on IMA. The given component hardware
topology defines application assignments and signal paths.
This will relate template system applications and define logical
and physical communication paths across the aircraft. The next
step is to express the type and number of hardware items
required for an avionics platform where these templates can
be instantiated on. Signal flows and paths are also considered
to obtain a realistic virtual avionics platform model.

To assess parameters like WCET on different n-core com-
puting devices, the template applications will be investigated
on a processor simulation to validate the design. Thus, it
shall be possible to statistically examine the effect of different
design options like computing device types (i.e. core count),
number of applications, ratio between applications of different
criticality, centralized vs. distributed, use of data concentrators
etc. This will result in different design points that can be
compared based on the architecture model derived and with
respect to different cost functions, like size, weight, number
of devices etc.

V. SUMMARY AND OUTLOOK

In the process of integrating multi-/many-core computing
devices into an avionics platform, various issues arise, with the
biggest hurdle being the assurance of determinism. The state-
of-the-art methods briefly summarized in section II highlight
several approaches like probabilistic timing analysis, none
of which are used in the avionics industry. The application
specific demands for avionic systems like Satellite Navigation
or Environmental Control System were explained in section
III and show varying potentials with respect to the utilization
of the technology. Based on the given situation, there is not
yet a design method to integrate multi/many-core into avionics
platforms, especially for IMA platforms.

Within the MC-ADAMS project, new concepts for a holis-
tic integration approach of multi-/many-cores in the avionic
domain will be explored. This incorporates all arising issues
from the high level platform application and communication
down to the individual processors and on-chip communication.
The next step will be to evaluate the practical limit of
the core number, respecting current certification and safety
requirements. Therefore different device types will used and
examined as well as the impact on the aircraft data network.
That will be done using the template approach described in
section IV.

Considering that information, new design methods applica-
ble to multi-/many-core avionic systems will be developed.
These will be based on an assessment of different design
strategies using simulation models. In order to compensate
for a realistic number of applications, further real system
applications based on the experience of the project partners
are collected and elaborated.
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[6] Björn Annighöfer. “Model-based Architecting and Op-
timization of Distributed Integrated Modular Avionics”.
Dissertation. Hamburg University of Technology, Mar.
2015. 312 pp. ISBN: 978-3-8440-3420-2.

[7] ARINC Specification 664: Aircraft Data Network, Part
7. 1. September 2009.

[8] Jingyi Bin et al. “Studying co-running avionic real-
time applications on multi-core COTS architectures”.
In: ERTS 2014. 2014.

[9] Juan Blanch et al. “Advanced RAIM user algorithm
description: integrity support message processing, fault
detection, exclusion, and protection level calculation”.
In: Proceedings of the 25th International Technical
Meeting of The Satellite Division of the Institute of
Navigation (ION GNSS 2012). 2012, pp. 2828–2849.

[10] Frédéric Boniol et al. “PHYLOG certification method-
ology: A sane way to embed multi-core processors”.
In: 10th European Congress on Embedded Real Time
Software and Systems (ERTS 2020). Toulouse, France,
Jan. 2020.

[11] Concepts — proxima Public Website. May 06, 2021.
URL: http://proxima-project.eu/concepts.



[12] Dakshina Dasari et al. “Identifying the sources of unpre-
dictability in COTS-based multicore systems”. In: 8th
IEEE International Symposium on Industrial Embedded
Systems (SIES). Piscataway, NJ: IEEE, 2013. ISBN:
9781479906581.

[13] M. Dechow and C.A.H. Nurcombe. Aircraft Environ-
mental Control Systems. Ed. by Martin Hocking. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005. ISBN:
978-3-540-31491-2.

[14] Guy Durrieu et al. “Predictable Flight Management
System Implementation on a Multicore Processor”. In:
7th Conference on Embedded Real Time Software and
Systems (ERTS). 2014.

[15] Alexander A. Evstyugov-Babaev. Reconciling Ef-
ficiency with Predictability: the PREDATOR Ap-
proach. May 06, 2021. URL: https://www.predator-
project.eu/approach.htm. 26.01.2011.

[16] Global Positioning System Standard Positioning Service
Performance Standard. Tech. rep. Department of De-
fense, 2020.

[17] Green Hills Software. Press Release: World’s First
Multicore Avionics Certification to CAST-32A Uses the
INTEGRITY-178 tuMP Multicore RTOS. Danske Bank.
Mar. 17, 2021. URL: https : / / www. ghs . com / news /
20210316 CAST32A certification integrity.html.

[18] ICAO. “Annex 10 to Convention on International Civil
Aviation, Aeronautical Telecommunications”. In: Vol-
ume I, Radio Navigation Aids, Seventh Edition, ICAO
Montreal (2018).

[19] Xavier Jean, Laurence Mutuel, and Vincent Brindejonc.
“Assurance methods for COTS multi-cores in avionics”.
In: 2016 IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC). IEEE. 2016, pp. 1–7.

[20] Leonidas Kosmidis et al. “Efficient Cache Designs
for Probabilistically Analysable Real-Time Systems”.
In: IEEE Transactions on Computers 63.12 (2014),
pp. 2998–3011. ISSN: 0018-9340.

[21] O. Kotaba et al. “Multicore in Real-Time Systems
– Temporal Isolation Challenges due to Shared Re-
sources”. In: DATE 2013. 2013.

[22] Peng Lu et al. “Aircraft Fault-Tolerant Trajectory Con-
trol Using Incremental Nonlinear Dynamic Inversion”.
In: Control Engineering Practice 57 (Sept. 2016).

[23] Main Objectives — PROARTIS Public Website. May
06, 2021. URL: http://www.proartis-project.eu/main-
objectives.

[24] Anais Martineau, Christophe Macabiau, and Mikael
Mabilleau. “GNSS RAIM assumptions for vertically
guided approaches”. In: Proceedings of the 22nd In-
ternational Technical Meeting of the Satellite Division
of The Institute of Navigation (ION GNSS 2009). 2009,
pp. 2791–2803.
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