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Abstract—Autonomous mobile systems combine high perfor-
mance requirements with safety criticality. High performance
hardware/software architectures, however, expose a far more
complex runtime behavior than traditional microcontroller ar-
chitectures. Such high-performance architectures challenge tra-
ditional worst-case design that assumes a formally analyzable or
at least deterministic worst-case response time (WCRT) that can
be reasonably bounded. However, such architectures expose rare
but substantial worst-case outliers, which are not only caused by
the application itself, but also by the many dynamic influences
of software architecture and platform control. Probabilistic
methods can capture such outliers, but are only effective, if
the outlier probability is sufficiently low and if the methods
cover dynamic platform timing. As a main contribution, this
paper exploits platform induced timing variety rather than trying
to mitigate it. Assuming the typical redundant dual modular
redundancy (DMR) implementation that is deployed in safety-
critical systems, it introduces the concept of Timing Diversity,
where rare outliers in one of the two channels are masked
by the other channel with a sufficiently high probability. The
paper uses a convolutional neural network (CNN) example in
different parameter settings running on Linux operated multi-
core platform with typical dynamic control to investigate the
proposed concept. The experiments demonstrate the potential of
Timing Diversity in leading to substantially higher reliability.
Alternatively, the approach permits a reduction of the system
WCRT at the same reliability level.

Index Terms—high-performance platform, execution time un-
certainties, convolutional neural network, dual modular redun-
dancy, Timing Diversity

I. INTRODUCTION

Current and emerging high-performance embedded real-
time platforms must keep up with the ever-increasing perfor-
mance demands of autonomous systems. Though commercial
off-the-shelf (COTS) multi- and many-core processors can
provide such performance, they exhibit much slower timing
in the worst case. This critical issue is caused by the multi-
level cache hierarchy, the stateful behavior of large memories,
especially DRAM, internal network congestion, or power
control, to just name few effects. Still, the worst-case execution
time (WCET) and worst-case response time can be upper-
bounded conservatively [1], but will likely exceed the given
performance capabilities, due to its pessimistic assumptions.
Invasive mechanisms to actively increase time predictability,
e.g. by memory access shaping (e.g. [2]) affect performance
and will hardly be accepted in performance demanding appli-
cations.

Additionally, the complexity and number of applications
running on an autonomous system platform is also increasing
and the industry is forced to deal with this. To master the com-
plexity, the industry is tempted to use Linux instead of a classic
real-time operating system (RTOS). The use of Linux comes
with many advantages. First, Linux enables high productivity
as required for the emerging agile processes that expect up-
datability after deployment. Secondly, many hardware devices
such as GPUs and software libraries can be used out-of-the-
box. Finally, Linux supports parallel programming on thread
and core level. However, the Linux software architecture with
its data management, call structure, signaling and scheduling
leads to many interleaving timing effects that are hard to
control and complicate the WCRT bound problem even further.
Though Linux certainly adds to the WCRT dynamics, it is
unlikely that an RTOS with the requested functionality running
on high-performance platforms will substantially reduce the
WCRT effects.

In consequence, there seems to be no other way than
either to accept the reduced performance or to derive the
WCRT of an application in a sufficiently long test sequence
to support the required level of deadline guarantees (e.g. the
maximum probability of misses). Given the reliability targets
of safety critical or high availability systems, this seems to be
a very costly and time-consuming solution that will hardly be
accepted in practice.

In this paper, we will propose another approach to the
WCRT challenge that resorts to an established technique
from fault-tolerant systems design, i.e. modular redundancy.
In systems with higher criticality, modularity is mandatory to
raise the reliability of a system above that of their components.
A typical example is automated driving, where DMR is used
to keep the system operational if one module fails (“fail
operational”). However, modular redundancy is only effective
if modules are sufficiently independent, such that a common
failure is highly unlikely. That is typically the case for properly
separated hardware modules, such that error calculation may
assume a single error model. But, how could that be the case
for execution timing if both modules run the same software
with the same input data on an identical execution platform?
That should almost be excluded under the usual assumption
that, if software execution is not predictable, then it is at least
repeatable.
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Contribution: The first contribution of this paper is to
demonstrate by measurement that the timing repeatability as-
sumption does not generally hold for COTS high performance
hardware/software architectures. Instead, response times may
vary in consecutive executions under the same input condi-
tions. The measurements for several examples show that the
variance particularly affects the positions of timing outliers.
The seemingly negative result on execution timing can be
exploited in a way that, to our knowledge, has never been
proposed before (the concept is outlined in paper [3] and
the WIP paper [4] written by the author of this paper). This
exploitation is the second contribution. Instead of trying to
improve predictability or mitigate the outliers at the cost of
performance, we exploit concurrent executions on identical
modules in such a way that they mask each other when
executed in modular redundancy. For a more formal treatment,
we extend the existing single independent error model of
DMR to single independent deadline violations and derive
the necessary check operations and their timing. We finally
provide experimental evidence that the resulting DMR setup
works in practice.

The remainder of the paper begins with an overview of
established methods and related work. We then present our
approach in detail and describe a machine learning use case
inspired from the avionics industry exploiting existing DMR.
At last, we evaluate the results obtained from the use case and
finish with a conclusion.

II. RELATED WORK

Handling multi-core processor uncertainties is a challenge
in itself without even considering the entire platform. In
this section, we take avionics as an example, because of
the strict requirements and related methods that are found
in this domain giving good insight in the problem space.
Similar challenges arise in other safety-related domains, such
as automotive and industrial electronics. We have recognized
the trend in industry to integrate highly parallelized functions
in autonomous systems. Therefore, we focus on: (1) using
highly parallelized applications such as neural networks, (2)
which fully exploit the performance capabilities of a COTS
multi-core processor. We first give a brief overview of the
many different approaches and then check whether they are
suitable for our requirements. We conclude with a discussion
with respect to platform uncertainties.

1) Architecture and Mechanism: Several lines of research
focus on approaches and mechanisms to ensure safety and tim-
ing guarantees on multi-core architectures. As an example, [5]
identifies interference and its impact on determinism through
benchmarking to ensure safety guarantees. By integrating
mixed-criticality applications on a multi-core platform that
perform multiple memory accesses in parallel, the authors
aimed to stress the interconnect, system level caches and
main memory. In [6] an interference-sensitive WCRT was
introduced which extend modern timing analysis techniques.
It takes into account the capturing of resource utilization and
the calculation of interference delays. Furthermore, it was

extended by runtime monitoring and shaping to enforce timing
guarantees. This approach focuses on integrating mixed critical
applications. Reducing dependencies between them might be
at least possible if only the critical application is running. In
our case, we dedicate the platform to a single challenging
application. Consequently, performance guarantees at the cost
of less critical applications is not possible.

2) Deterministic Execution Model: In [7] a scheduler is
implemented to define rules to constrain the unpredictable
behavior of multi-cores. Since the scheduler is intended to
lead to deterministic timing behavior, this branch of research
is commonly referred to as deterministic execution model.
In [7] propose a slice execution model. There, the scheduler
distinguishes between two types of slices: execution slice
and communication slices, and only in a communication
slice access to shared resources is allowed. A performance-
driven application is slowed down if it gets only access to
shared resources in a certain phase or slice. Our performance
requirements are therefore not met.

3) Memory Access Control: Since memory access causes
interference, a different approach is proposed, namely memory
access control. In [2] a software-based memory throttling
mechanism is introduced. Except of the so-called critical core,
all memory access of the cores is controlled. While the timing
requirements of a safety-critical task are met, the overall
performance of the system suffers [8]. Therefore, the work is
extended by a fine-grained memory bandwidth system called
MemGuard [8]. It is based on a static memory bandwidth
throttling. The main challenge for such core centric approaches
is the very complex and stateful behavior of current memories,
such as DDR4, leading to strong variations in timing [9]
and large worst-case outliers [10]. Follow-up work, e.g. [11],
therefore, addresses stateful memory control, including the use
of COTS IP cores and memory functionality, but again for
integration in mixed-critical applications.

4) Real-Time Capable Design: The research projects
MERASA [12] and parMERASA [13] focus on simplifying
the WCET analysis of high performance architecture by de-
veloping a deterministic multi-core architecture. MERASA’s
hardware architecture includes an interference-aware bus ar-
biter, a dynamically partitioned cache and an analyzable real-
time memory controller. It also isolates tasks at core level
to minimize inter-task interference. Due to shared resources
such as shared memory and bus-based techniques, the design is
limited to four to eight cores. This approach provides isolation
and determinism for the applications rather than focusing on
maximum performance and minimum latency. Therefore, it
violates our performance requirements. Moreover, the high
initial cost of developing new hardware, the probably low
quantities and the performance drawbacks make it unlikely
that such custom hardware will be manufactured, except for
research purposes.

5) Probabilistic Timing Analysis: Another field of research
is the probabilistic timing analysis (PTA). In contrast to the
traditional timing analysis, repeated executions are analyzed
and a probability distribution is derived instead of a scalar
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value [14]. The PTA can be classified into five main fields
[14]. One of them is the measurement-based probabilistic
timing analysis (MBPTA). The idea of MBPTA is using
extreme value theory to estimate a probabilistic worst-case
response time (pWCRT) based on observed executions. The
methods of PTA were used within the PROARTIS project
[15]. The central hypothesis of the project is that multi-core
processors and software features enable a truly randomized
timing behavior. Based on this assumption, it can be verified
that the probability of response time outliers is negligible. In
the successor project PROXIMA, the objective was to provide
a complete toolchain enabling PTA methods on multi-core and
many-core processors [16].

Similar to the MBPTA, we measured the response times
of our application. But MBPTA computes an exceedance
function, which they use to specify a likelihood beyond which
timing outliers are negligible. Similar to the other approaches,
they focus on calculating a pWCRT that is unlikely to be
exceeded.

6) Real-time based Artificial Intelligence (AI): With respect
to AI application, the work of [17] is very instructive. It is
inspired by an automotive industry case study and focused
on CNN applications in computer vision for autonomous
vehicles. By using a state-of-the-art automotive platform, the
authors aim to demonstrate that pipelining a CNN for multiple
camera frames on a combination of a multi-core CPU and
two GPUs can significantly increase the maximum frame rate.
The approach focuses on system throughput and omits 5%
longest observed response times when calculating latency. The
authors argue that Linux produces such timing outliers that
should not be considered. However, a frame drop rate of 5%
corresponds to at least several missed frames per second (even
higher if bursts are possible), which is a high level for vision
applications and could possibly lead to late or incorrect object
detection and motion estimation.

Another approach is the work of [18]. The author focus on
analyzing and minimizing end-to-end delay of real-time object
detection for autonomous driving. Right at the beginning,
they investigate the end-to-end delays as well as the cycle
time of different deep neural networks running on differ-
ent GPUs, respectively. They observe that the performance
varies significantly depending on the deep neural network and
hardware combination. In addition, they note that there is an
imbalance between the cycle time and the delay, which is
sometimes 6 times greater. One of the reasons for the time
lags is the fact that the GPU and CPU run simultaneously and
thus compete for the shared memory bandwidth. To minimize
memory bandwidth contention between GPU and CPU, the
authors applied synchronized executions between GPU and
CPU. This leads to a temporal isolation and the loss rate can
be reduced to 1%.

7) Discussion: The concurrent execution of multiple ap-
plications on different cores can lead to accesses to shared
resources that can negatively impact the runtime behavior of
a single application. All related works agree that this behavior
is undesirable for safety-critical applications. Therefore, they

aim to guarantee the timing of such applications by intro-
ducing mechanisms or novel hardware designs to determine
tight upper bounds on WCRT. Additionally, most approaches
aimed to integrate mixed-criticality application on a single
hardware platform. With different restrictions it is possible to
guarantee timing behavior of safety-critical applications. But
this is usually achieved with performance drawbacks of the
entire system. However, we only have one highly parallelized
function that also uses the entire performance of the multi-
core. Our application have no performance reserves that we
can use and there are also no non-critical applications that can
be turned off.

In contrast, the MBPTA approach assumes that the random
behavior of hardware platforms enables the extreme value
theory to estimate the exceedance function of the pWCET
distribution. Finally, this approach also aims to obtain tight
upper bounds on the WCRT but takes into account the likeli-
hood of large response times. In turn the WCRT (independent
whether it is estimated or formally calculated) does highly
dependent on input data, execution path, and the internal
state of the hardware. Consequently, only considering the
underlying hardware is insufficient, instead the entire platform
must also be taken into account.

With respect to the use of AI in real-time critical systems,
the focus is on the short latency of detection pipeline. Both
[17] work and [18] work assume loss rates of 5% and 1%,
respectively, which results in the exceedance of deadline.
Deadline misses are, in our opinion, intolerable, as they
make it difficult to certify such systems. To the best of your
knowledge, no proposed work meets our stringent deadline in
AI-based object detection and recognition Therefore, the focus
on meeting deadlines seems to be an open problem.

III. USE CASE

In industry, the trend is toward integrating highly paral-
lelized functions in autonomous systems. This trend results
in the following requirements for our use case: (1) it must
be a highly parallelized application, (2) which fully exploits
the performance of a COTS multi-core processor. In addition,
(3) the application must be data-independent and have a (4)
sufficiently long execution time to be able to exclude short-
time effects.

We have been inspired by an important area for high perfor-
mance architectures, namely avionic AI applications. Recently,
the European Union Aviation Safety Agency (EASA) have
published several documents addressing the deployment of
avionic AI application [19] [20] [21] [22] and they expect
the first certification of pilot assistance systems in 2025 [20,
p. 12]. This corresponds to a highly parallelized application
utilizing the entire performance abilities of modern multi-
and many-core processors, and therefore the requirements of
EASA for future avionics systems are very similar to ours. A
representative example that benefits from neural networks is
the visual landing guidance [19, Chapter 4].

Instead of visual landing guidance, our application detects
objects in input images and classifies each object found into
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one of a thousand predefined classes. For this purpose, the
input image is received over a small network using UDP/IP
in combination with multicast. Afterwards, the image frame is
preprocessed according to the needs of the underlying neural
network. This includes resizing and cropping the input frame
as well as subtracting the mean value. Subsequently, the neural
network is executed and its output vector is post-processed.
Afterwards, the program iterates over each entry in the output
vector, resolves the objects class ID into a class name and puts
a bounding box, together with the corresponding class name
on the image. An entry might be skipped, if the confidence
value is not sufficiently high. In summary, our safety-critical
application can be divided into three stages: 1) preprocessing,
2) neural network execution and 3) post-processing.

We examined different neural networks, which are all based
on the single shot multibox detection (SSD) technique devel-
oped by [23]. Though, some neural networks offer a more
accurate detection than SSD, these are unfeasible for embed-
ded systems, since they require high-end hardware acceleration
[23]. Namely, we studied MobileNets [24] in the version V2,
V3 small and V3 large [25]. These networks are designed
for perception tasks and especially for embedded and mobile
devices. Therefore, lower computational costs are required. As
to achieve that, the author of MobileNets enhanced the SSD
technique by their so called SSDLite approach. This reduces
the computational costs, while improving accuracy slightly,
too [24]. Models of the pretrained neural networks are freely
available. We deployed these by using the deep neural network
module provided by OpenCV (in version 4.5.5). This allows
the application to be written in C/C++, purely.

We decided to focus on CPUs, as a first step. This decision
is motivated by the fact that even in a system with hardware
acceleration, still multi-core processor and Linux are deployed,
as well [17], [18]. So, the problem statement remains relevant
under that circumstances. Finally, the class of neural network
applications is predestined for our use case, since the execution
path remains nearly constant despite varying input data. Hence,
we executed all stages of our sample application on a multi-
core CPU and used resource-friendly neural networks and low-
resolution images.

IV. INITIAL EXPERIMENT: IMPACT OF PLATFORM
DYNAMICS

Let’s take a look at how platform dynamics caused by
COTS multi- and many-core processors combined with Linux
affects our use case. For this purpose, we executed our AI
use case 50,000 times, each time with the same input data,
and measured the response time of our application. We then
repeated the measurement a second time on the same hardware
and with the same input data.

In Fig. 1 the result of the two measurement series is shown.
We denoted those two measurement series as dataset 1 (blue)
and 2 (green), respectively. The y-axis shows the response
time for a corresponding execution on the x-axis. In regard
to the response time behavior, it can be seen that dataset 1
and dataset 2 are very similar on average, but not identical.

Both oscillate between 460 ms and 510 ms. In total, there
are six timing outliers: two in dataset 1 and four in dataset 2.
Analyzing the timing outliers in the respective dataset, it can
be seen that the height of the outliers differs significantly. For
example, the response times of the first two outliers in dataset
2 are greater than 700 ms, while the third (run 27,000) takes
only 560 ms. Comparing the timing outliers among the two
datasets, it is also obvious that the position is different.

Though we used the same input data in each iteration and
tried to conduct the measurements as identical as possible,
the response times within a single dataset differed signifi-
cantly. This means that the response times vary in consecutive
executions under the same input conditions and therefore,
the response time behavior cannot be repeated. With this
experiment we have thus shown, that the timing repeatability
assumption does not generally hold for COTS high perfor-
mance hardware/software architectures. As a consequence,
there seems to be no other way than either to accept the
reduced performance or to derive the WCRT of the application
in a sufficiently long test sequence to support the required level
of deadline guarantees.

V. TIMING DIVERSITY

The lack of repeatability can be exploited, to tackle the
challenge of meeting deadlines. Instead of predicting or lim-
iting response time outliers with complex techniques, we
handle these by simple means of redundancy. To use modular
redundancy, it is necessary that the modules are sufficiently in-
dependent, such that a common failure is highly unlikely. The
measurements from Fig. 1 indicates exactly such a sufficiently
independent behavior due to the unrepeatable response times
of timing outliers. This observation enables us to use modular
redundancy for COTS multi- and many-core processors.

By applying modular redundancy, at least two redundant
units are in operation, usually referred to as dual modu-
lar redundancy. This technique is commonly used to detect
hardware (HW) errors and software (SW) errors, additionally
we extend it to mask timing outliers. The concept of mask-
ing timing outliers in a system with existing redundancy is
shown in Fig. 2. Two redundant channels (Ch A and Ch B),
synonymous with module, execute equivalent software on
equivalent hardware under identical deadline constraints. At
the end of processing, the evaluation of the redundant results
is performed by a hardware or software Comparator (Comp)
releasing the correct result or reporting errors [26, Chapter
4.3.1 and Chapter 7].

The detection of HW errors, SW errors or timing errors
underlies the single-error model, as is common in DMR. Fig. 2
represents the case when on Ch A a HW or SW error has
occurred. According to the single-error model, Ch B has no
error, and Ch B returns the correct result before the deadline.
Three cases are possible for the result on Ch A: (a) a correct
result i.e. the error is not effective, (b) an incorrect result
or (c) there is no result at all (deadline miss). In case of a
correct or incorrect result, the result of either Ch A or Ch B
can be taken (see Fig. 2 (a)/(b) take any). If the subsequent
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Fig. 1: Response times of two series of measurements
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Fig. 2: Extension of the DMR function to mask timing outliers

comparison process detects an incorrect result, the safety layer
is entered, otherwise the processing continues. In case of no
result (Fig. 2 (c)) DMR mechanisms cannot determine whether
the deadline miss is due to an irrecoverable HW/SW error or
a recoverable timing error.

This requires an extension of the DMR function. Instead
of canceling Ch A’s task at the (missed) deadline, it continues
to execute until its single channel WCRT (see Fig. 2 shaded
area). Since Ch B provides the result in time, the available is
taken (Fig. 2 (c)). Ch A will provide a correct, an incorrect
or no results at single channel WCRT. In case of a correct
result, Ch A had a recoverable timing error and possibly a non-
effective HW or SW error. It is possible to proceed without
further action. In case of an incorrect or no result, the deadline
miss was due to a HW or SW error or an ”excessive” timing
error. The comparison process detects that and enters the
existing safety layer.

If only a timing error occurs on Ch A and no HW or SW
error, the single-error model still holds that Ch B provides the
result before the deadline. The result on Ch A could be correct,
but not in time. This means at deadline, Ch A provides no
result and it must be waited until the single channel WCRT
(as shown in Fig. 2) to obtain information about the cause of
failure.

The bottom line is, applying the single-error model, at least
one result is available at the specified deadline. Determining

whether a deadline miss is caused by recoverable a timing or
an irrecoverable HW or SW error, is only possible at single
channel WCRT. We call this approach Timing Diversity.

VI. HARDWARE SETUP

As hardware for our experimental evaluation we deployed
three single board computers (SBCs) with 2GB of RAM. Two
executes our AI application, the other one transmits video
frames via UDP/IP to the other two, periodically. All SBCs are
based on a quad-core processor featuring four ARM Cortex-
A72 cores. Since, we are not able to give any hardware design
assurance, we decided to use a multi-core design with a lot of
in-service experience. This core was first launched in 2016 and
was designed as the new high-end processor core replacing
the ARM Cortex-A57. As such, it is widely distributed and
is used in chips from many manufactures like Broadcom,
HiSilicon, MediaTek, NXP, Marvell, Rockchip, Qualcomm,
Texas Instruments and Xilinx.

On top of our SBCs Linux runs as an operating system
(in kernel version 5.10.63). In contrast to RTOS, Linux is
optimized on average performance and throughput, instead
of determinism and upper bounding the response time. In
combination with the best-effort scheduling of Linux back-
ground tasks might impact safety-critical applications, eventu-
ally, if not otherwise configured. Therefore, a safety-critical
application suffers from interference introduced directly by
the underlying multi-core hardware and interference caused
by the operating system. With Timing Diversity, we offer
a mechanism to deal with platform uncertainties regardless
whether caused by hardware or software. Furthermore, Timing
Diversity is not restricted to Linux and can be used with any
other general-purpose or real-time operating system.

VII. RESULTS AND EVALUATION

In this section, we evaluate the benefits of Timing Diversity
through experiments. For this purpose, we executed our safety-
critical application deploying different versions of MobileNet
a 100,000 times each, simultaneously on both platforms and
measured the overall response times. In this context, the
total response time starts after the frame has been received,
with the beginning of the preprocessing, and ends when
the post-processing finished. Note that network transmission
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Fig. 3: Deadline-distribution showing overall response times of MobileNet V3 large at 600MHz clock speed.

jitter may lead to small shifts in the beginning of execution
between platforms. Also, the neural network runs once with a
completely black image as input before the first measurement
begins to avoid the measurement of cache warm-up.

First, we take up the observation from Section IV. In order
to use DMR and thus Timing Diversity, the timing outliers
must be sufficiently independent. Therefore, we measured
the deadline-distribution, which is shown in Fig. 3. There,
an arbitrary deadline is assumed and those executions are
counted, which missed the specified deadline. The number
of samples exceeding the deadline is plotted on the y-axis.
The x-axis offers a wide range of deadlines starting with the
best case and ending with the worst-case response time. The
colors of the different curves correspond to the first and second
platform as well as to the Timing Diversity approach and are
equal to those used in the previous figure. Additionally, the
dotted, black line indicates the number of timing overshoots
per deadline under the assumption of statistical independence.
I.e., the measured probabilities of timing overshoots of both
channels are multiplied for each deadline and converted into
absolute values. Furthermore, the dashed, vertical lines marks
the observed WCRT of each curve according to their specific
color. Moreover, two diagonal lines indicate a break of scaling
of the x-axis.

Fig. 3 allows estimating the difference between Timing
Diversity and an ideal system with modular redundancy under
the assumption of statistical independence of both channels.
The solid, red curve and the dotted, black line are well
aligned for wide ranges of the x-axis, showing that the use
of redundancy in Timing Diversity is almost ideal, at least for
the investigated use cases.

Because, Platform 2 is usually faster in the average case
than the other platform, the whole system fails if Platform 2
fails. But for redundancy to work, it requires both redundant
units to have a chance of correcting the other. Otherwise, the
redundant unit has no use. This points out the importance of
equally fast platforms and explains the overlapping curves of
Timing Diversity and Platform 2 in the beginning. Though,
for deadlines above 470 ms the situation changes and both

platforms become about the same speed.
An alternative representation of the deadline-distribution

is the violin plot in Fig. 4, which shows the response time
distribution in three columns. Fig. 4 is based on the same data
as the violin plot (Fig. 3). The left and middle column referring
to Platform 1 and 2, while the right displays the distribution
with Timing Diversity. Here, for every execution the lower
response time of both platforms is considered, since only one
result needs to be available in time. The y-axis is shared among
all columns and describes the response time in milliseconds.
Each column consists of a vertical bar indicating the range
of response time data. At both ends a horizontal line marks
the minimal and maximal value. The colored shade around
the bar is called density plot and reports the frequency of the
corresponding response time value on the y-axis.
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Fig. 4: Violin plot showing the response times of MobileNet
V3 large at 600MHz clock speed.

The violin plot in Fig. 4 shows that the best case response
time is about 458 ms for all columns. The observed average
case response time is at 467 ms for Platform 1, 466 ms
for the redundant platform and 464 ms in combination with
Timing Diversity. Additionally, a local maximum with respect
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to frequency is shown in the density plot around 503 ms
for the first platform or 502 ms for the second, respectively.
Although the impression might be that Platform 2 is slightly
faster on average than the first, in the worst case it is the
other way around. Platform 2 needs 735 ms, while Platform
1 finishes after 727 ms, at worst. These variations are in
the magnitude of a single percentage, usually less, and can
be dismissed as a coincidence. Both platforms feature a tail
distribution, whereas the rarely observed WCRT is noticeably
larger than the average response time. Some authors even
measured slowdowns about a factor of about 5 [5] [27].
Although, we observed a WCRT of only about 55% larger
than the average case, it displays the problem of multi-core
processors, clearly: very large, but rare response time outliers
restrict the real-time performance.

Fig. 4 shows that applying Timing Diversity reduces the
observed WCRT to 507 ms. This corresponds to a reduction
of 31% in comparison with Platform 2. This shows that if
deadline misses occur sufficiently rare, Timing Diversity can
be exploited to reduce the deadline.

As a best practice means, a relative safety margin would
be put on top of the observed WCRT according to [28]. For
example, consider 25% as our safety margin, then Platform 2
would result in 919 ms and Timing Diversity in 634 ms. Since
we calculated with a relative margin, the reduction remains by
31%. In summary, Timing Diversity does not change or limit
the applicability of additional safety means and in systems
with existing redundancy, Timing Diversity comes without
additional costs.
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Fig. 5: Bar plot displaying the observed WCRT of different
neural networks using 100,000 measurements each.

Additional to MobileNet V3 large, we repeated the measure-
ments for MobileNet V2 and V3 small, using different clock
frequency. The response time distributions of each are similar
to the one of V3 large presented in Fig. 4 and are omitted for
clarity. Instead, the observed WCRT of each neural network
and frequency is shown in Fig. 5. The achieved reduction of
the observed WCRT depends on multiple factors and varies

from 26.6% up to 42.8%. Though, a general statement about
the reduction is difficult, it should be noted that the WCRT
of Timing Diversity is always smaller than of the faster single
platform alone.

We conclude with an outlook on how the result of this paper
can be applied in different verification methods:

1) Method Test: The first approach is to use the measure-
ments as a system test for timing errors. In this case, we
observe no deadline violation (Fig. 1) in the interval of 50000
executions corresponding to 7h of execution time. Such a test
will be sufficient for lower criticalities, but a result for the
limited time interval cannot easily be extended to conclusions
concerning millions of hours of operation, as requested for
higher criticalities.

2) Method Exploiting Test Statistics: This method uses the
same measurements, but applies standard methods to support
the assumption of statistical independence of both channels. If
the independence can be supported, the compound probability
of deadlines misses is taken. To compute a compound proba-
bility, the method requires violation probabilities greater than
0 on the individual channels, as in the case of the red deadline.
While the method provides results for significantly higher
reliability levels than method 1, application to the highest
criticalities requires extremely long measurements.

3) Method Exploiting MBPTA: This method uses the
MBPTA as proposed in the literature [14, Section 2.3]. It
does not require deadline misses, such that we can evaluate
reliability for longer deadlines, such as the purple deadline in
Fig. 1. In this case, the entire redundant system is considered
as a single system. Using the approach proposed in the
literature, the MBPTA based method can be used for any level
of criticality.

VIII. CONCLUSION

We started from the observation that in high-performance
embedded platforms the positions of rare response time out-
liers between consecutive series of measurements vary and
are generally not repeatable. While this is a hard challenge
for worst-case design and analysis, we proposed to exploit
this seemingly unfavorable result to establish Timing Diversity
in modular redundancy architectures. Modular redundancy is
already available in platforms for critical functions, where
it provides fault tolerance for fail-operational behavior. We
investigated Timing Diversity for several machine learning
algorithms on a physical dual-modular redundant (DMR)
platform and showed that, in all cases, the individual rare
timing outliers were masked by diversity, supporting the
assumption of a single-error model. Such masking leads to
substantially shorter worst-case system response times or to
far higher system reliability than the individual model. Finally,
we proposed three methods for verification of systems with
Timing Diversity, which differ in result quality and required
independence properties. They can be applied to different
levels of required reliability. At the current stage, the approach
assumes sufficient recovery time between task activations, such
that timing outliers do not delay subsequent activations. As
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future work, we plan to investigate Timing Diversity under
periodic activations shorter than outlier response times to
extend timing diversity to higher data rates and pipelined
systems.
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