
Industry-track: System-Level Logical Execution
Time for Automotive Software Development

Kai-Björn Gemlau
TU Braunschweig

Braunschweig, Germany
gemlau@ida.ing.tu-bs.de

Hermann v. Hasseln
Mercedes-Benz AG

Sindelfingen, Germany
hermann.v.hasseln@mercedes-benz.com

Rolf Ernst
TU Braunschweig

Braunschweig, Germany
ernst@ida.ing.tu-bs.de

Abstract—The way how automotive software is developed
has rapidly evolved with the introduction of heterogeneous
hardware/software architectures. Nevertheless, the requirement
for deterministic behavior of safety-critical cause-effect chains
persists unchanged. As a side effect of the shared platform,
complex dependencies between critical and non-critical func-
tions arise, demanding a model-based approach to handle time
determinism throughout the design process. Limited to the
scope of a single component, the Logical Execution Time (LET)
paradigm provides such an abstraction of the runtime behavior.
It has been successfully introduced in AUTOSAR to mitigate
the design complexity, ensure a deterministic timing behavior
and facilitate a lock-free communication. This paper discusses
how the scope of LET can be extended to the system level,
enabling an efficient design of distributed AUTOSAR software,
where robustness towards platform changes plays a key role.
System-Level Logical Execution Time (SL-LET) is currently in
the process of AUTOSAR standardization, supported by a joint
group of industry and academic partners.

Index Terms—AUTOSAR, System-Level LET, data-flow deter-
minism

I. CHALLENGES IN AUTOMOTIVE SOFTWARE
DEVELOPMENT

Modern cars have continuously evolved into data-centric
software systems that are implemented on top of heteroge-
neous and distributed hardware architectures. While the num-
ber of electronic control units (ECUs) in a car has increased
over the last decades, such a fully distributed architecture
has reached its limits in terms of maintainability, energy
efficiency and interconnect complexity. Consequently, there is
the trend towards centralized and zonal architectures, where
a few high performance ECUs provide a shared platform for
all different kinds of automotive software, each bringing its
own requirements in terms of performance, data exchange
and safety. Moreover, automotive software can not be seen
as a static system, but frequent release cycles and partial
software updates become the rule rather than the exception [1].
This poses a great integration challenge on original equipment
manufacturers (OEMs).

To handle the design complexity in a model driven develop-
ment (MDD) process, AUTOSAR has developed two types of
platforms in the past, namely the AUTOSAR Classic and the
AUTOSAR Adaptive platform. The Classic platform addresses

Thanks to the AUTOSAR SL-LET working group for the valuable discus-
sions.

the needs of traditional control functions with high safety
demands, such for example powertrain and break control.
It typically builds on top of a real-time operating system
(RTOS) with static configuration. The Adaptive platform on
the other hand provides a service-oriented architecture for
great flexibility on top of a POSIX compliant operating system.

Although the platform has evolved, fundamental safety
requirements remain the same. The developer of a complex
vehicle function has to deal with three major challenges. First,
the functional model shall be platform agnostic and a high
degree of platform independence shall be retained throughout
the development process. This is important, since function
shall be applicable to a large number of product variants,
which itself poses great challenges in the development [2].
Second, safety requirements are posed on the whole function
and need to be decomposed in timing requirements for the
resulting cause-effect chain. This chain ranges from the pe-
riodic sampling and fusion of sensor data for environment
perception over the planning stage to the control and actuation
of a car. The data-flow as well as the timing within this cause-
effect chain has to be kept consistent between the specification
and the implementation. Last but not least, the function chain
shares the distributed platform with many other functions,
each introducing its own requirements and dynamic behavior.
Such a mixed-criticality system as well as the involved high-
performance architectures lead to timing interference and
timing uncertainty.

In the remainder of this paper, we discuss what kind
of specification method can aid the function developer and
the integrator to design complex distributed systems, without
foreseeing or unintentionally restricting the design space of
the implementation. With the LET paradigm [3], a promising
concept has already been established and widely adopted for
the development of non-distributed functions. This is described
in Section II. Section III discusses what new requirements
arise when the LET approach shall be extended to the system
level and finally Section IV describes the resulting SL-LET
paradigm and its current status in AUTOSAR standardization.

II. GAINING DETERMINISM: LOGICAL EXECUTION TIME

The LET paradigm conceptually separates computation
from communication. Without LET, a periodic task reads its
input at the beginning and writes the output at the end of



Task 1
20ms

Task 2
5ms

Hyperperiod

t

Update of a foreign task

Interference
C

o
re

 0
C

o
re

 1

Task executed Task preempted Data flow

Fig. 1. Missing data-flow determinism without LET

its execution. This has been the prevalent model for real-time
tasks. As a result, jitter in the execution time may affect the
data-flow between tasks such as given in Figure 1. The colors
green, blue and red denote the data-flow between the 20ms
task and the 5ms task. While the third job of the 5ms task
in the first two hyperperiods reads fresh data (from the same
hyperperiod), it reads older data (the blue sample) in the last
hyperperiod. This non-deterministic data flow is caused by
an update of a foreign task, which induces interference on the
20ms task. While this is already problematic in a single imple-
mentation, it becomes urgent in case of dynamic architectures.
An update or modification in a completely different function
may, due to the shared platform, cause timing interference and
affect the execution time jitter of the task.

LET provides a logical wrapper for the execution of a real-
time task [3]. Instead of communicating at the borders of
the physical execution, the task now communicates at two
distinct points in time. Those events delimit the logical LET
interval. The physical execution must then take place anywhere
within the LET interval. This abstraction has multiple benefits.
First, it provides a deterministic data flow, as long as the
implementation can guarantee that the execution fits in the
LET interval [3], [4]. At the same time, it is a very simple
specification mechanism that is agnostic of any platform
dependent effects such as execution time jitter. It provides the
function developer with a handy tool to specify the data flow in
a cause-effect chain, while providing a large degree of freedom
for implementation. Thereby LET allows an explicit notion of
robustness against a modified runtime behavior [5], which aids
a design with a higher degree of platform independence. De-
pending on the application requirements, dimensioning of the
LET interval can be done based on analytical or experimental
worst-case estimations, but in both cases a run-time monitoring
can be established with low overhead [6]. Especially important
for modern data-centric systems is the ability to design lock-
free communication, which has successfully been exploited
in multicore ECU design [7], e.g., integrated in the electric
vehicle family EQ of Mercedes-Benz AG. Although LET is a
form of timed programming, it must not be mistaken with time
driven scheduling like time-division multiple access (TDMA).
LET does not enforce a specific scheduling strategy, wherefore
work-conserving scheduling can be applied [8], [9]. Due to
those benefits, LET has been introduced in the AUTOSAR
timing extensions [10].

ECU 1 ECU 2 ECU 3

Ethernet
CAN

SL-LET 

Task 1

SL-LET 

Task 2

SL-LET 

Task 3

SL-LET 

Task 4

Z1 Z2 Z3

Clock Deviation ±ε

Interconnect 

Task 1
Interconnect 

Task 2

SWC1 SWC2 SWC3 Adaptive Platform

Service

PPP

PPP

PPP
PPP

SL-LET Task

Following the
„permitted
pipelining
property“

LET Zone

SL-LET Model 
Elements

Fig. 2. SL-LET model of a distributed system

III. LET ON SYSTEM LEVEL: NEW REQUIREMENTS

The ability to use LET throughout the whole development
process is promising, although LET comes with some fun-
damental limitations. First, the length of the LET interval is
conceptually bounded by its period. An LET interval larger
than its period would imply, that there may be multiple jobs of
this task executing in parallel. Without further constraints, this
is like re-executing a finite state machine before it has created
its output, which may produce non-deterministic results. To be
applicable to a functional model or distributed communication,
where the latency likely exceeds the period, exactly such
large LET intervals have to be taken into account. Second,
LET does not comprise the notion of distributed clocks. For
any distributed platform, perfect clock synchronization is not
implementable, but the different clocks may have a bounded
synchronization accuracy.

Due to those limitations, LET has been restricted to the
ECU’s scope. Besides overcoming those two constraints, a
system-level extension of LET shall (A) be applicable to all
stages of the model-driven development process, (B) provide
a logical abstraction of significant communication latencies
(comparable to the abstraction of computation in LET) and
(C) evolve existing LET benefits, particularly the lock-free
communication, to the system level.

IV. SYSTEM-LEVEL LOGICAL EXECUTION TIME

SL-LET [11] is the consistent further development of the
LET idea for the system level. The concept comprises three
main elements, which are shown in Figure 2: (A) The Per-
mitted Pipelining Property (PPP) allows to capture systems,
where the SL-LET interval is larger than its period. It explicitly
states that a pipelined execution of the related task is permitted,
which holds if no data from an unfinished preceding execution
is accessed. This includes the important class of concurrent
execution of stateless tasks, e.g., on parallel hardware. This
optional property can be assigned already to coarse-grained
blocks in the functional model and inherited in further de-
velopment phases. If pipelined execution is not explicitly
permitted, SL-LET intervals larger than the period have to be
decomposed during the development steps until the resulting
intervals are smaller than their period. This ensures that there
is no inconsistency during later integration. (B) LET zones



support the meaning of SL-LET events in a distributed system,
by providing a common understanding of time respectively
clocks and their synchronization accuracy. A LET zone models
a subsystem with a local time base that has a bounded clock
deviation to other LET zones. Any time instant within one
LET zone can therefore be translated in a time interval (twice
the size of the synchronization accuracy) in another LET
zone. (C) Based on this common understanding of time, SL-
LET intervals are delimited by two SL-LET events, each
associated with a LET zone and therefore a specific time base.
Interconnect tasks generalize over LET tasks by allowing that
the two labels may be in different LET zones. This allows
to extend the LET idea for a distributed system. For larger
time deviations, interconnect tasks must have PPP, which
naturally holds for many message-passing interconnects like
busses/networks (inter-ECU) as well as message-queues (intra-
ECU).

Working with SL-LET closely follows the approach of
repeating composition and decomposition, which is already
known in the remaining development process. Like a vehicle
function is decomposed to a function chain and later on
translated to software components, SL-LET follows the same
decomposition for the timing model. It thereby allows to
decompose the timing requirements while preserving the data
flow. On the other hand, existing non-distributed software,
which was originally described with LET, can be encapsulated
in a SL-LET wrapper and re-used seamlessly.

Functional 
Model

SL-LET
Timing Model

LET Zone 
Model

Hardware 
Model

LET Zone 
decomposition

Robustness &
Consistency

Check

Function
decomposition

Refinement
Violation detected

Specification Platform Mapping Integration

Robustness &
Consistency

Check

Fig. 3. Development process with SL-LET

Figure 3 provides an overview on how SL-LET can be
utilized in the development process. The key strength of SL-
LET is the robustness, which can automatically be checked
throughout the process. The initial functional model remains
platform agnostic and the corresponding SL-LET specification
may assume a perfect clock synchronization. Nevertheless, it
already contains an inherent robustness towards a worst-case
clock synchronization accuracy. This becomes apparent by
analyzing which synchronization accuracy would violate the
intended data flow, analogue to [4]. Combined with a specific
hardware model, LET zones can be decomposed and the adher-
ence to the robustness can be checked. This decomposition and
model checking can be continued during integration. A model
refinement and therefore a potential costly design iteration is
not needed until a robustness (either latency or synchronization
accuracy) is exhausted. During the whole process, a clear
tracing between implementation properties and the specified

safety/timing requirements is possible, supporting the MDD
idea [6].

The benefits of SL-LET in the development of automotive
software clearly justify its introduction in AUTOSAR. The
simplicity of SL-LET allows to cover both, the AUTOSAR
Classic as well as the AUTOSAR Adaptive platform and the
standardization is currently in progress, supported by a joint
working from both, industry and academic partners.

V. CONCLUSION

In this paper, we have shown the need for an easy-to-
use time programming paradigm, which can be efficiently
applied throughout the different stages of automotive software
development. We think that SL-LET is able to provide such
a unified view on timing, as it allows to incorporate commu-
nication as well as the notion of deviating time bases in a
distributed system. Thereby it enables an efficient and lock-
free implementation of communication. SL-LET follows the
approach of repeating composition and decomposition, which
make it easy to integrate in the remaining software devel-
opment process. Although the specification itself is simple,
it allows for an efficient monitoring of robustness against
platform changes, both, at design time and at runtime. This
underlines its relevance for future automotive systems, where
updates become the rule rather than the exception.

REFERENCES

[1] D. Claraz, R. Mader, H. von Hasseln, and M.-J. Friese, “A dynamic
Reference Architecture to achieve planned Determinism for Automotive
Applications,” in ERTS 2022, Toulouse, France, Jun. 2022.

[2] D. Strüber, M. Mukelabai, J. Krüger, S. Fischer, L. Linsbauer, J. Mar-
tinez, and T. Berger, “Facing the Truth: Benchmarking the Techniques
for the Evolution of Variant-Rich Systems,” in Proceedings of the 23rd
International Systems and Software Product Line Conference - Volume
A, ser. SPLC ’19. New York, NY, USA: Association for Computing
Machinery, Sep. 2019, pp. 177–188.

[3] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”
in Advances in Real-Time Systems. Springer, 2012, pp. 103–120.

[4] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “End-
to-end timing analysis of cause-effect chains in automotive embedded
systems,” Journal of Systems Architecture, vol. 80, pp. 104–113, 2017.

[5] Institute of Computer and Network Engineering, TU Braunschweig,
“TORO (Analysis TOol to evaluate the latencies and RObustness of
cause-effect chains),” https://github.com/IDA-TUBS/TORO, 2022.

[6] M. Möstl, “On Timing in Technical Safety Requirements for Mixed-
Critical Designs,” Ph.D. dissertation, TU Braunschweig, 2021.

[7] J. Hennig, H. von Hasseln, H. Mohammad, S. Resmerita, S. Lukesch,
and A. Naderlinger, “Towards parallelizing legacy embedded control
software using the LET programming paradigm,” in 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE Computer Soc., 2016, pp. 1–1.

[8] A. Biondi, P. Pazzaglia, A. Balsini, and M. Di Natale, “Logical execution
time implementation and memory optimization issues in autosar appli-
cations for multicores,” in Proc. of the 8th International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS 2017), 2017.

[9] M. Beckert and R. Ernst, “The IDA LET machine—An efficient and
streamlined open source implementation of the logical execution time
paradigm,” in International Workshop on New Platforms for Future Cars
(NPCar at DATE 2018), 2018.

[10] AUTOSAR - Specification of Timing Extensions, R21-11 ed., AUTOSAR
GbR, Nov. 2021.

[11] K.-B. Gemlau, L. Köhler, R. Ernst, and S. Quinton, “System-level Logi-
cal Execution Time: Augmenting the Logical Execution Time Paradigm
for Distributed Real-time Automotive Software,” ACM Transactions on
Cyber-Physical Systems, vol. 5, no. 2, pp. 14:1–14:27, Jan. 2021.


