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Multi-Processor Systems-on-Chips (MPSoCs) emerge as the predominant
platform in embedded real-time applications. A large variety of ubiquitous
services should be implemented by embedded systems in a cost- and power-
efficient way, yet providing a maximum degree of performance, usability and
dependability. By using a scalable Network-on-Chip (NoC) architecture which
replaces the traditional point-to-point and bus connections in conjunction with
performant IP cores it is possible to use the available performance to consoli-
date functionality on a single MPSoC platform. But especially when uncriti-
cal best-effort applications (e.g., entertainment) and critical applications (e.g.,
pedestrian detection, electronic stability control) are combined on the same ar-
chitecture (mixed-criticality), validation faces new challenges. Due to complex
resource sharing in MPSoCs the timing behavior becomes more complex and
requires new analysis methods. Additionally, applications that may exhibit
multiple behaviors corresponding to different operating modes (e.g., initial-
ization mode, fault-recovery mode) need to be also considered in the design of
mixed-critical MPSoCs. In this paper, challenges in the design of mixed-critical
systems are discussed and formal analysis solutions which consider shared re-
sources, NoC communication, multi-mode applications and their reliabilities
are proposed.

1. Introduction

Driven by power constraints and efficiency considerations, embedded system
designers are adopting the trend towards multi-processor systems-on-chips (MP-
SoC). MPSoCs integrate an increasing number of heterogeneous processing cores
ranging from general purpose processors of varying complexity to special purpose
accelerator IP. Individual IP cores, I/O and main memory are interconnected with
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each other via a Network-on-Chip (NoC), which offers a scalable communication
infrastructure. Figure 1 shows a generic MPSoC architecture.

MPSoCs are being or will be used in all embedded application domains like
telecommunication (e.g., smart phones), transportation (e.g., car electronics) and
industrial automation (e.g., process control). In all domains, it is appealing to
use the vast amount of available resources on MPSoC platforms for efficient
consolidation of functionalities. By using a powerful MPSoC platform, it be-
comes possible to integrate computationally intensive algorithms (e.g., camera
supported pedestrian detection) with control oriented applications (e.g., active
steering). These applications have mixed-critical requirements. Some applica-
tions may have hard real-time constraints or are safety-critical whereas others
are non-critical at all (e.g., best-effort entertainment). This requires special con-
siderations in the design of MPSoC platforms and deployment of applications.
Furthermore, increasing design costs will force MPSoC manufacturers to offer
more flexible solutions that can target a wider range of applications. This means
that the hardware support required by mixed-critical real-time applications must
be flexible to be adapted for different applications.

Many embedded systems combine functions of different relevance to the overall
system mission. For instance, integration of pedestrian detection and entertain-
ment applications on the same platform is already a mixed-critical system, as-

Fig. 1 Generic MPSoC architecture with different IP cores (e.g., processors, special-purpose
accelerators), I/O and main memory interconnected by a set of routers (R).
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92 Mastering MPSoCs for Mixed-critical Applications

Fig. 2 The two dimensions of criticality: safety and time.

suming that pedestrian detection is far more important than e.g., entertainment.
This property is called mixed criticality. Criticality can be broken down into two
orthogonal dimensions or aspects as depicted in Fig. 2.
• time criticality
• safety criticality
For time critical applications without safety requirements, the sole focus lies on

timeliness of computation or communication. Typical examples for this domain
are embedded mobile communication applications e.g., UMTS or LTE. Here,
guaranteed data integrity is not safety-relevant because transient or permanent
error conditions do not have catastrophic consequences. The methods and con-
cepts generally used to provide sufficient timing guarantees for timing critical
systems are especially focus of the hard-real time domain.

For purely safety defined systems it is crucial that integrity of computation
is preserved, even in presence of errors, e.g., traffic lights which are controlled
by a centralized control facility. However, it is not critical if traffic light phases
are of accurate timing, as long as the light signals are consistent. In case of
failures, pedestrians and car passengers can be injured or even killed, thus safety

demands are high. The taxonomy of safety is defined by safety standards and
focus of dependability research. A concise overview of dependability taxonomy
and terminology can be found in Ref. 5).

Highly safety and time critical functions with significant computation require-
ments are no longer limited to niche markets, such as military and avionics, but
have started to appear in high volume embedded system markets such as the auto-
motive domain. One reason among others for this development are new statutory
provisions for liability as for instance passed in the European Union 19),43).

Deployment in safety-critical domains makes a strongly safety oriented product
life-cycle necessary which qualifies a product for deployment in safety-critical
missions. This is not only crucial in order to minimize the risk of casualties in case
of system failure but also ensures product liability. To unify safety requirements,
safety standards such as the industrial-oriented IEC-61508 26) specify a safety
certification process. Domains with application-specific requirements either have
developed dedicated standards such as DO-178B 49) and DO-254 48) for aerospace,
or have derived new standards e.g., from IEC 61508, such as the automotive
domain specific standard ISO-26262 27) which inherited common concepts from
the IEC-61508.

Most functional safety standards follow a top-down approach which considers
the entire system for certification: For IEC 61508, safety-functions need to be
defined first. These are technical functions which are intended to achieve or
maintain a safe state of the system. Secondly, a risk assessment identifies the
safety integrity level (SIL) of each safety function. This SIL is a general starting
point for system design and defines guidelines for HW-architecture (e.g., fault
tolerance), testing and validation effort. If the system is certified according to
SIL guidelines then risks are reduced to a tolerable level.

Of special interest are domains with both safety and timing requirements. This
is also highlighted in Fig. 2. It is especially challenging because techniques from
real-time and dependability domains need to be combined.

1.1 Challenges in Mixed-critical MPSoC Design
Providing performance (e.g., timing) guarantees is one of the key aspects of

system architecture design and has been recognized as a major challenge when
designing time-critical architectures. Supporting real-time applications in clas-
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sical single-core and distributed systems is already challenging. Dependencies
of individual application components (tasks) using the same resource (e.g., pro-
cessor, bus, NoC, memory) must be considered to assure that individual timing
constraints (e.g., task response times, end-to-end deadlines) are met under the
available resource constraints (e.g., processing time, memory, buffer size).

The same applies also to MPSoCs, however with additional challenges caused by
accesses to shared resources such as Network-on-Chip , IP-cores or main memory.
The use of physically shared hardware (e.g., shared memory), or synchronization
via logical resources (i.e., semaphores) introduces a new level of inter-core depen-
dencies that are not observed in distributed systems. Tasks which are mapped
on different cores and share common memories or synchronize resource accesses
via locks administered according to lock-based arbitration policies 51), will delay
their core-local execution when waiting for the arrival of the requested data or
to access the required resource 39),56),61). The local execution of a task on a core
is now influenced by the local execution of other tasks on other cores, thus chal-
lenging the real-time behavior of the entire MPSoC and with this the expected
benefits of MPSoC setups 39),56). In order to employ such components in critical
real-time systems, care must be taken to consider the implications on the system
timing.

To guarantee the required timing, designers have two classes of solutions: iso-
lation and analysis. The former employs hardware and software mechanisms to
isolate individual applications (or tasks) from each other so that they can not
potentially interfere by design. This can be achieved by the orthogonalization of
system resources. As a hardware solution, conflicting tasks can be placed on sep-
arate processors. Alternatively, an isolating TDMA schedule (software) could be
employed. Busses and other shared resources may be assigned to different proces-
sors in alternation according to a time-driven schedule 2),8),31). Such mechanisms
guarantee an execution that is independent of the actual run-time behavior of
other applications. Each application component can then be verified in isolation.
While isolation simplifies the verification procedure, it also implies a conservative
design that is inflexible to application changes and in general with increased re-
source requirements. Furthermore, application which exhibit dynamic behavior,
such as varying bandwidth requirements, can only very inefficiently be mapped

to static schedules.
Formal analysis approaches, on the other hand, allow for dynamic system be-

havior and more flexible sharing of resources. By using mathematical analysis, it
is necessary to proof that the interference between tasks does not lead to timing
violations, even in the worst-case 56),68). For analysis approaches addressing the
use of shared resources, the amount of resource accesses per task activation needs
to be known, as well as the number of task activations. The latter however can
not trivially be bounded in event-driven applications where, for example, a task
activation is the result of a message produced on another processor. For logical
protection of shared resources, i.e., the execution of exclusive critical sections, a
number of high-level protocols have been proposed (e.g., Refs. 10), 51)). These
methods provide an arbitration scheme, possibly tailored towards a particular
task scheduler, and an analysis to calculate the upper bounds on the time before
a lock is granted. As opposed to single processor protocols (such as the priority
ceiling protocol 51)), the time a task is delayed due to stalled shared resource ac-
cesses (blocking time) in MPSoC setups usually depends on the pattern of task
activations. This dependency is a major hurdle in a general multiprocessor shared
resource analysis. Given event-driven task activations and dynamic scheduling,
the amount of interfering task activations is unknown without a system-level
analysis, which can only be done when every task’s resource usage is known, this
again leads to a cyclic dependency 56). Thus, the problem can not be generally
solved with classical methods.

Analysis aproaches require precise knowledge of the temporal behavior of each
application, such as activation pattern and task execution times, to derive ac-
curate timing bounds. If this information is not available, e.g., for non-critical
best-effort applications, a safe overestimation must be done, which can also lead
to inefficient solutions. In case no safe overestimation is feasible, the adherence to
a timing model must be enforced during runtime (e.g., through traffic shaping).

Hence, for systems executing both real-time and best-effort applications concur-
rently, isolation and analysis approaches must be combined. Isolation techniques
are used to avoid interference between different application classes (such as real-
time and best-effort) at places where the interference from unknown best-effort
tasks can not be reasonably bound. Analysis can then be employed among the
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94 Mastering MPSoCs for Mixed-critical Applications

real-time applications.
The safe design becomes even more complicated when systems have to accom-

modate multi-mode real-time applications. Some applications, for example in
safety-critical avionic and automotive control systems, exhibit multiple behav-
iors corresponding to different operating modes (e.g., initialization mode, fault-
recovery mode). At runtime, in order to adapt their behavior to system internal
and external changing conditions, multi-mode systems will switch between dif-
ferent operational modes. This means, the systems will experience transitions
from an old mode characterized by a set of functionalities (i.e., a set of tasks) to
a new mode characterized by a different set of functionalities.

To control the transition between operational modes, designers can opt for
synchronous or asynchronous mode change protocols 52). The first type of proto-
cols ensures isolation between the execution of mode specific functionalities, i.e.,
tasks corresponding to a new operational mode will not be started before all the
tasks of the old mode have completed their execution. Synchronous protocols
do not require specific schedulability analysis for the transition phase, however
delaying the start of the new mode applications is not always suitable as this
could counter the timing of new mode actions that must be performed as soon as
possible (e.g., when switching to an emergency mode). Asynchronous protocols
overcome this limitation and allow functionalities of the new mode to be started
simultaneously to the old mode functions. However, the execution of functionali-
ties of both modes generates an increased workload during the transition and can
potentially lead to timing violations. Therefore, asynchronous protocols require
specific schedulability analysis.

In order to facilitate a structured design process that leads to a reliable system
it is important to provide solutions to bound the system transition latency and to
guarantee that timing constraints are not violated at any moment of the system’s
execution, neither in the individual operational modes nor during the transition
phases.

As already discussed, safety regulations dictate a minimal level of dependability
for safety critical functions. In order to obtain the required reliability, it is
necessary to introduce a certain degree of redundancy to detect and either correct
errors or switch to a safe state which in turn can be considered as a switch between

Fig. 3 Example for a typical DMR implementation, leading to 100% overhead.

operational modes.
Traditionally, methods such as replication 41), for instance dual modular redun-

dancy (DMR) and triple modular redundancy (TMR) are used for this. This is
generally referred to as spatial redundancy. For the automotive domain, spatial
redundancy trade-offs have been identified in Ref. 6).

A simple example for a DMR version of an MPSoC is shown in Fig. 3. In
this example, the architecture is entirely replicated, hence it consumes at least
100% more resources compared to the non fault-tolerant case and is capable of
detecting errors in all functional units with very good coverage.

Contrary to this concept, redundancy can also be implemented in time, by
reevaluating computation multiple times which is called temporal redundancy.
Obviously spatial and temporal redundancy can be combined in various ways to
gain the desired trade-off. For traditional single critical applications, in which all
of the functionality requires a high safety standard, the mentioned over provision-
ing is inevitable, simply because there is no alternative. But for mixed-critical
applications the inherent problem of coarse granular concepts is that redundancy
is potentially introduced in places where this is not even needed or the required
overhead (space, power) is so high, that coarse grained methods are not feasible
at all.

One solution to this problem is to replicate only critical tasks. In this approach
the inherently redundant architecture of today’s MPSoCs is leveraged. The timing
behavior can be influenced by errors, especially if methods such as checkpoint-
ing and rollback are used. It is especially challenging to analyse these effects
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and include this in a reliability analysis which incorporates these timing effects.
Thus, the consideration of mixed-critical applications introduces new challenges
in platform design. The dramatic safety consequences have been highlighted in
Ref. 7). Here the important aspect of certification requirements on mixed critical
applications has been recognized. Most safety standards explicitly require guar-
antees of sufficient isolation between applications of different criticality. Without
new analysis methodologies these guarantees cannot be provided.

This paper addresses the challenges outlined above from different angles. As a
foundation, in Section 2 we first introduce a general system model and we give
an overview of existing analysis techniques that can be applied for the design of
heterogeneous MPSoCs. This system model is then specialized for the individual
aspects in the following sections. In Section 3 we highlight the impact of the
shared resource usage on the MPSoC’s timing and present a dedicated formal
analysis approach. The interference in the on-chip communication infrastructure
is resolved via hardware quality-of-service mechanisms and a corresponding anal-
ysis in Section 4. Section 5 discusses the effects of mode changes and how they
can be considered in the system design. The reliability and redundancy aspects of
MPSoCs are covered in Section 6. Based on these aspects, we outline in Section 7
how a system-wide analysis of timing and reliability can be performed. Finally,
we conclude in Section 8 where we also provide an outlook of open challenges.

2. System Model and Analysis Concepts

2.1 MPSoC System Model
The analyses which will be introduced in the following sections are based upon

a common MPSoC system model. This is composed of a set of heterogeneous
applications consisting of computation and communication tasks τ = {τ1, . . . τn}.
Tasks are assumed to be statically mapped on a set of processing (CPUs) and
communication (Buses) resources and executed according to scheduling policies
(e.g., round-robin, static-priority preemptive, etc.), see Fig. 4.

Each instance of a task, called a job, is activated by an event, which can be
either external (such as interrupts), or the result of another task or bus commu-
nication being finished.

Fig. 4 MPSoC system model – illustrative example.

Fig. 5 Event stream representations.

We express task activation patterns with event streams (see Fig. 5) using
the upper event arrival function η+

i (Δt), and the lower event arrival function
η−i (Δt) 53). These specify the maximum and the minimum number of events that
occur in the event stream during any time interval of length Δt. Inversely, event
streams can be specified using the functions δ+i (n) and δ−i (n) that represent the
largest and smallest time window in which n events can be observed in the stream.
The functions η and δ are pseudo-inverse to each other.

Each job of a task τi has an execution time with a known lower and upper bound
[C−

i , C
+
i ], referred to as best-case execution time and the worst-case execution

time. For hard real-time jobs, the response time Ri (i.e., the time between job
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release and job completion) must be smaller than a given (relative) deadline Di.
This deadline may be smaller, equal or larger than the distance to the successive
activation.

If the worst-case response time, which is the largest response time under con-
servative conditions, of a task is larger than δ−i (2), it is possible that another
instance of this task may be activated before the previous one has completed. In
this case, we assume that new jobs may not actually start to execute before the
previous job is complete, and this queueing delay will be considered as part of
the job’s response time.

A chain of communicating tasks is called a path. For paths, a worst-case end-
to-end latency can be defined, which denotes the maximum time span from the
occurrence of an event at the first task of the chain until the event is produced
by the last task of the chain. Intuitively, the summation the tasks’ worst-case
response times along the path give an upper bound for the end-to-end latency,
but more efficient analysis methods exist 58).

In addition, as depicted in Fig. 4, tasks mapped on different CPUs may arbi-
trarily access shared resources (such as logical semaphores, physical coprocessors
or shared memories) during execution. Shared resources in the system are objects
that require serialized access. Accesses to the shared resources can be arbitrated
according to lock-based arbitration policies which can be performed either with
suspending, as done by the multiprocessor priority ceiling protocol MPCP 51)

(when a task suspends, the processor will become available for other work) or
with spinning 13) (tasks perform a busy-wait until the lock of the required re-
source is released; in this time the processor and potentially the interconnect
cannot be used by other tasks). A mixture of suspension-based and spinning-
based resource arbitration can also be used as proposed e.g., in the automotive
standard AUTOSAR 4). The load imposed by tasks on the shared resources is
denoted with the functions η̃. This is expressed using the event model concept,
which is used to model task activations, as proposed in Refs. 38), 56).

2.2 Formal Performance Analysis
Two classes of approaches for performance analysis of heterogeneous distributed

systems and MPSoCs can be found in literature: the holistic 42),45),67) and the
compositional approach 16),24),53),54).

Fig. 6 Compositional system level performance analysis loop.

The holistic approaches systematically extend the classical single-processor
scheduling theory to distributed systems. The global view on the system al-
lows to take global dependencies into account, thus providing tightly calculated
analysis bounds. However, because of the very large number of dependencies,
the complexity of the analysis grows with system size and heterogeneity. There-
fore, holistic approaches are difficult to be used for arbitrary systems and are, in
practice, limited to deterministic system configurations such as TDMA networks.

The basic idea of compositional approaches as illustrated in Fig. 6, is to break
down the analysis complexity of complete systems into separate local component
analyses and to integrate local performance analysis techniques, e.g., uniproces-
sor scheduling analysis known from real-time research, into system-level analyses.
First, the external activation patterns are derived from the environment (e.g., sen-
sor sampling rates, maximum engine rpm, minimum human response time). The
behaviors of the individual tasks are investigated in detail to gather all relevant
data such as the best-case and worst-case execution times. This can be derived
with formal methods such as in Ref. 70), but extensive simulation is also common
in practice. This information is then used to derive the behavior within individ-
ual components (such as a processor or a bus), accounting for local scheduling
interference. The composition is achieved by connecting the component’s inputs
and outputs by stream representations of their communication behavior using
event models 16),23),53). Based on the results of the individual components, tasks’
output event models are determined. These are then propagated to the inputs of
the connected components, where they are used as activating event models for
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the subsequent iteration. System performance analysis can then be performed by
iteratively alternating local (i.e., component) analysis, and event stream prop-
agation between components. In each iteration, with knowledge of the tasks’
activation pattern and of the components’ scheduling strategy, local component
analyses systematically derive worst-case (best-case) scenarios to calculate worst-
case (best-case) task behavior.

Response time analyses are available from real-time research for a large variety
of different scheduling policies, which can be directly applied. For example,
when computing the worst-case response time of a task τi on a single-resource
(i.e., processor or bus) under static priority preemptive scheduling, one can rely
on the busy window technique 35),68). The busy window of a task τi is defined as
the maximal time interval for which a resource executes only tasks of priority
greater than or equal to the priority of task τi and during which the resource is
never idle 68). The maximum response time of task τi can then be derived from
the busy window 68).

This iterative analysis — alternating local analyses based on current event mod-
els and the derivation of updated output event models as in Fig. 6 — represents a
fixed-point problem. For systems containing cyclic dependencies between two or
more components, initial event models are required to begin the local analysis.
A solution for the so-called starting point generation is proposed in Ref. 24). The
starting-point is generated by propagating all output event models along all paths
until an initial activating event model is available for each task. After each local
analysis iteration, all output event models can only become more generic 29),54),65),
meaning that each iteration contains the previous models. Thus, the complete
procedure is monotonic. The global analysis is repeated until the event models in
two consecutive iterations remain unchanged (i.e., a fixed-point is found) or if an
abort condition (e.g., violation of a timing constraint) is reached. If a fixed-point
is found, it is conservative, meaning that all observable response times in the real
implementation are less than or equal to the computed one 29),54),65).

Traditional scheduling analysis only considers independent resources (e.g.,
busses or processors with different tasks). However, multi-core systems include
also tasks which require access to other shared resources (e.g., memory controller
in a multiprocessor or a mutex variable) during their execution. Recently, ex-

tensions for multi-core system analysis have been proposed 38). For every shared
resource, an arbitration protocol must be specified that resolves concurrent ac-
cesses to the shared resource similar to the scheduling protocol of the processing
resources. In the global analysis procedure, the local analysis can be extended
(see Fig. 6) to account for additional resources, e.g., by extra blocking from tasks
which potentially contend for a shared resource 56).

The advantage of the compositional performance analyses is their great flexibil-
ity and scalability, thus they allow considering arbitrarily complex architectures
and overcome the restrictions of the holistic approaches.

3. Considering Shared Resources in MPSoCs

3.1 Timing Implications of Shared Resources in MPSoCs
To illustrate the timing implications of shared resources in MPSoCs, consider

the system model in Fig. 4. Assume that tasks τ1, τ2 on CPU1 and τ5 on CPU2,
which are scheduled on their CPUs according to the static priority preemptive
scheduling, share a common memory that can only serve one request at a time.
Furthermore, assume that a core is stalled whenever a task performs a memory
access until that request has been served (“busy waiting”).

A possible schedule is depicted in Fig. 7. In the case where only tasks τ1, τ2
execute from the same memory (Scenario 7 a) the low priority task τ2 is kept from

Fig. 7 a) Tasks on a single processor accessing a remote memory. b) Conflicting accesses
from tasks mapped on different processors.
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executing by three invocations of the high priority task τ1. The completion time
of the lower priority task is delayed due to itself fetching data from the memory,
and due to the prolonged preemptions by the higher priority task (as its requests
will also stall the processor). Scenario 7b shows the case where the memory is
also used by task τ5 on CPU2, in this case periodically. Whenever the memory
is also used by a task on CPU2, CPU1 is stalled for longer time, which increases
the task response times. In addition, the response time of the low priority task τ2
has grown so much that it suffers a fourth preemption by the high priority task.
These effects challenge the safety of the task’s deadlines. Additionally, the busy
wait adds to the execution time of a task and, hence, increases the processor load.
As a result, not only response time grows but the overall system may become
unschedulable. This example shows that the tasks’ response times are influenced
by the delay caused by the use of shared resources.

In this way the local execution of a task on a core is now infuenced by the
local execution of other tasks on other cores, a fact that challenges the real-time
behavior of the entire MPSoC.

This behavior challenges also the analysis methodology. In the general case,
the duration of the delay that tasks experience when accessing shared resources
depends on the amount of traffic imposed on the shared resources by e.g., other
processors in the MPSoC setup. The respective local analysis of the other pro-
cessors however also requires the shared resource delay which closes a cycle: The
timing interference in the system translates into a mutual dependency between
the local analyses of the different cores. To provide a reliable upper bound on the
tasks’ timing which is required in real-time systems, additional measures must
be taken. Formal performance analysis methods which have been successfully
applied for single-core distributed systems need to be extended in order to allow
the timing analysis of the more complex MPSoC architectures.

3.2 MPSoC Analysis in Presence of Shared Resources
The previous section has highlighted the complex dependencies that arise in

MPSoC setups through the common use of shared resources. Contrary to tra-
ditional system verification, a subcomponent, such as a task or a processor, can
not be verified in isolation, because elementary properties are broken when the
components are integrated.

A methodology that allows to capture the inter-core timing dependencies and
calculate bounds on the tasks’ response times even in the presence of dynamic
scheduling and shared resources has been proposed in Refs. 38), 56). The main
idea is to separate the timing analysis procedure into three disjoint steps:
( 1 ) First, the load imposed by tasks on shared resources η̃ has to be deter-

mined. By considering the pattern of task activations η and the distance
between requests issued by each task, the overall load imposed on the shared
resource can be derived for each task and all tasks on a processor 1),60). De-
pending on the accuracy of the request model, the analysis of the shared
resource delay can vary significantly, because if larger request distances can
be formally guaranteed, many conflicts can potentially be ruled out. An
accurate model of the shared resource load is therefore fundamental for
obtaining tight performance analysis results. A new and precise method
for the derivation of shared resource load was proposed in Ref. 57).

( 2 ) Second, the information about the load imposed on the shared resources has
to be used to derive the maximum delay that a task may experience when
accessing shared resources. On the shared resource, coinciding requests
will be arbitrated according to a specific policy, which leads to specific
delays for each request. The aggregate delay that is experienced by the
requests of a specific task can be conservatively bounded by considering
the competing requests from all tasks in the system. An efficient solution
has been proposed in Ref. 56), by focusing on the aggregate busy time of
all requests. In Ref. 38) the blocking time under MPCP 51) was derived.

( 3 ) Third, the obtained delays need to be integrated in the worst-case response
time. As shown in Refs. 56), 59), for priority-based schedulers it is an
accurate and conservative method to accumulate both the local execution
and the remote delays.

In event-driven multiprocessor systems, this analysis procedure has various
mutual dependencies (between the task activating event models η, the shared
resource delays η̃, and the task response times). To deal with these cyclic depen-
dencies, the proposed solution is to integrate the shared resource analysis into
the iterative analysis flow of the compositional analysis procedure introduced in
Section 2.2. For this, one can rely on the event model propagation concept of the
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Fig. 8 Extended compositional analysis procedure in the presence of shared resources.

compositional analysis to express not only the task activations (e.g., using the
functions η) but also the load imposed on the secondary resources η̃.

Figure 8 illustrates the general analysis procedure for a system with three
processors and one shared resource. Given a set of activating event models (η)
for each task in the system, a set of shared resource access event models (η̃) can
be derived as presented for example in Ref. 56). Based on the shared resource
access event models per processor, the shared resource access delays B can be
computed for each task. The respective blocking times then become part of the
response time analysis of each task on each processor, from which the updated
output event models η′ can be derived. The process is repeated as long as any
event model estimate has been refined. The convergence condition is fulfilled
when all task activating event models η and all shared resource request bounds
η̃ have not changed after an iteration.

4. Considering NoC Communication

The NoC forms the central system interconnect of an MPSoC, as it participates
in almost any transaction in the system, be it core-to-core communication, main
memory access, access to shared special-purpose IP, or I/O transfers. This leads
to interference of traffic (i.e., communication tasks), because the NoC is shared

between all system components.
The NoC has to support the different requirements originating from the appli-

cations, which is referred to quality of service (QoS). Real-time (RT ) applications
usually require a maximum bound on transfer latency and a minimum through-
put guarantee. Best-effort (BE ) traffic does not require a guaranteed service
other than being eventually delivered. However, best-effort traffic is often very
sensitive to latency, as it results from cache misses which stall the processor. Note
that this is different from “timing-critical” real-time applications, as increased
latencies only reduce the performance of BE applications, but do not make the
computation result useless, as it is the case for real-time applications. Hence, the
NoC should provide a low latency to best-effort traffic to increase the throughput
and responsiveness of these applications.

4.1 Resolving Interference
Interference occurs at the routers when packets of different traffic streams try

to use the same route at the same time. Figure 9 a) shows a generic router
architecture with input buffering and a crossbar switch that multiplexes packets
from the input modules to the output. Within the router, traffic streams contend
for two different resources: FIFO queues (or virtual channels) for buffering at the
input and output ports for transmission. Due to the high cost of on-chip buffers,
NoCs usually employ wormhole switching which divides packets into smaller units
(flits) that are transferred and buffered individually. This leads to the distribution
of individual packets across multiple routers and hence multiplies the effects of
contention compared to a distributed off-chip network.

Contention for virtual channels (VC) must be resolved before a packet can
advance to the next router. Once a VC has been assigned to a specific packet, it
can not be used by other traffic until that packet has been completely forwarded
to the next router. This in turn depends on the arbitration at the output and
on the interference at downstream routers, so a tight bound can not be easily
derived. For best-effort traffic, it is sufficient to assign the VC on a first-come
first-serve basis. Real-time traffic, however, must reserve VCs in advance to avoid
potentially long blocking times and overestimation in the analysis.

The interference at the output port is resolved by an output arbiter, which
decides which traffic stream may progress at each cycle. Isolation between indi-
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Fig. 9 Output Arbiter with Quality-of-Service and improved support for best-effort traffic.

vidual traffic streams can be implemented by considering different traffic classes
(e.g., real-time and best-effort) during the arbitration. Because providing a dis-
tinct traffic class for every stream in the system is not feasible, multiple streams
of equal criticality usually share the same class.

There are several existing schemes concerned with providing service guaran-
tees (or quality-of-service, QoS) in Networks-on-Chip, which use either static
scheduling (such as time-division multiple-access) 21),37) or dynamic scheduling
(e.g., based on priorities) 9),11),17),20),33),36). The former group is less flexible and
can not react to changes in traffic behavior very well. For the latter group, an
analysis must be performed to assure real-time guarantees, because guarantees
of individual streams depends on the behavior of others (e.g., those with higher
priority).

4.2 Improving the Latency of Best-effort Traffic
Most of the QoS schemes proposed so far treat best-effort traffic as “second-

class citizen,” allowing it only to utilize idle time slots or assigning it to the
lowest priority. While this certainly makes sense from an isolation perspective,
it leads to an unnecessary increase of transfer latency for best-effort traffic. At
the same time, the improved latency for real-time traffic is often not required.

Due to its regularity, real-time traffic can often tolerate high latencies as long
as a certain latency bound is met. In other words, there is no need to finish a
real-time transfer way ahead of its deadline. Hence the reduced latency implied
by prioritizing real-time traffic is of no immediate value.

This problem must be solved, because the performance of best-effort applica-
tions is important in mixed-critical systems. An approach is to allow best-effort
traffic to pass real-time packets as long as the real-time deadlines are not jeopar-
dized. This can be assured by a selective prioritization of best-effort traffic which
is reverted if real-time packets are blocked too often.

Figure 9 b) shows an arbiter that implements such an arbitration scheme.
Requests “r” are handled by separate sub-arbiters based on their priority “p”. A
priority control logic determines which traffic class is currently prioritized based
on the observed real-time throughput.

The priority control can be driven by Distributed Traffic-Shaping (DTS) 18),
which uses a traffic shaper at every output port to limit the prioritization of
best-effort traffic. The shaper contains a bucket of tokens, which are good for
one prioritized transfer of best-effort traffic. Each time a best-effort flit is sent on
a high priority, a token is removed from the bucket. The bucket is periodically
replenished at a rate which leaves enough unprioritized time for real-time traffic.

An alternative strategy to control the priority logic is Back Suction (BS) 17).
This mechanism monitors the buffer occupancy of each real-time virtual channel
at each router. As long as all real-time buffers are sufficiently filled, best-effort
traffic is prioritized. Once the buffer occupancy drops below a specified threshold,
a router requests the prioritized transfer of real-time data from its upstream
neighbor using a “Back Suction” signal. Back Suction prevents the depletion of
real-time buffers and can be seen complementary to back pressure (which prevents
buffer overflow). The suction signal is generated at the sink of an real-time traffic
stream at a limited rate (the guaranteed rate of that stream) and propagates
towards the source as long as the buffers are not sufficiently filled. The resulting
behavior is that buffer space is used to allow idle progress of real-time traffic,
which can later be exploited to allow best-effort traffic to be prioritized. This
way, best-effort traffic receives a minimum latency as long as it leaves enough
bandwidth for real-time traffic.

IPSJ Transactions on System LSI Design Methodology Vol. 4 91–116 (Aug. 2011) c© 2011 Information Processing Society of Japan



101 Mastering MPSoCs for Mixed-critical Applications

Fig. 10 Latency of a best-effort (BE) traffic overlapping with a real-time traffic stream (GT)
for increasing best-effort load with different arbitration techniques (Back Suction,
Distributed Traffic Shaping (DTS) and simple priorization).

Figure 10 shows the average latencies of best-effort traffic when overlap-
ping with a real-time traffic stream with increasing best-effort load. The differ-
ent curves represent different quality-of-service schemes, “GT prioritized,” Dis-
tributed Traffic Shaping (DTS) and Back Suction. The former corresponds to
a prioritization scheme where real-time traffic is always favored over best-effort,
which is done by most regular QoS schemes. All schemes are suitable to meet the
real-time requirements (not shown). For this, DTS and BS require that the rate
limitation is configured according to the throughput requirement of the real-time
traffic streams. Regarding the best-effort traffic, it can be seen in Fig. 10 that
the latency under low and medium load is vastly improved for the DTS and BS
schemes compared to the standard prioritization scheme. Back Suction achieves
this using less buffer space than DTS.

4.3 Real-time Analysis of the NoC
By using the Distributed Traffic Shaping or Back Suction techniques, we can

efficiently isolate real-time from best-effort traffic. To determine the maximum
latency and minimum throughput guaranteed to each real-time stream, an anal-
ysis of the arbitration at each router is performed. This is required because
all real-time traffic shares the same priority class using a round-robin scheduler.
Hence, the guarantees for an individual stream depend on the behavior of other

Fig. 11 Extended system model for Networks-on-Chip.

real-time streams. These are fortunately well defined for real-time traffic allow-
ing an analysis resulting in low overestimation (tight guarantees). The analysis
of real-time streams follows the same principle as outlined in Section 2. Other
analysis approaches for NoC communication exist 22),34),50),64), which rely on a
similar principle for real-time traffic but assume different architectures that favor
real-time traffic at the cost of reduced best-effort throughput.

We extend the system model introduced in Section 2 by replacing the central
interconnect, which was represented by a communication resource, by multiple in-
terconnected resources representing the individual routers. Figure 11 illustrates
the system model for two routers and three traffic streams which are represented
in the system model by the tasks τ11, τ21 → τ22, and τ32 and their respective
activation models ηi. A traffic stream is modeled as a series of tasks and an
input event model. Each router output is represented by a separate resource,
containing one task per stream which is serviced by that output.

The scheduling strategy and parameters are similar to those used by processing
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resources. For the Back Suction mechanism, the scheduler is round-robin with
only the real-time streams being considered. Best-effort streams can be ignored
because Back Suction eliminates their interference. A round-robin scheduling
analysis is then performed at every resource locally to derive output event mod-
els which are then propagated in the system, see Fig. 6. From the analysis results,
the required performance metrics are derived, such as per-hop worst-case latency
(worst-case response time of a task), end-to-end latency (path latency), or max-
imum backlog. By checking against the constraints implied by the application
(e.g., deadlines) or the architecture (e.g., FIFO depth), the feasibility of the
real-time streams is proven.

5. Considering Multi-Mode Applications

Predicting timing behavior is essential for the design of real-time systems that
can switch between different operational modes at runtime. Several approaches
that address the problem of timing analysis for multi-mode real-time systems
have been proposed by the research community 25),40),44),52),66).

However, most of the existing solutions rely on the assumption that applications
consist only of tasks which execute independently 40),44),52),66). But, many real-
time systems are composed of multiple processors and accomodate distributed
applications consisting of multiple communicating tasks as illustrated in Fig. 12.
Through various dependencies in MPSoCs, the initiation of a mode change has
not only a local effect but also impacts the timing of tasks executing on other
resources 25). In order to highlight the influence of mode changes on the system’s
timing, and to overview analysis solutions, we first extend the system model in-
troduced in Section 2.1 to consider multi-mode applications with communicating
tasks.

5.1 Multi-Mode System Model
Figure 12 illustrates the multi-mode system model during the transition phase

from an old mode to a new mode. The general assumption is that each individual
mode of the system is characterized by a different behavior and is associated with
a specific set of tasks together with its timing properties, e.g., task execution
times, priorities and deadlines.

We consider that a mode change request (MCR) occured at time tMCR trig-

Fig. 12 Example of a multi-mode system during the transition phase — tasks from both
modes execute on the system.

gered by the environment or by the system internal requirements. In order to
exclude interference of multiple mode changes, the common assumption is that a
MCR can be served only if the system is running in a steady mode, i.e., a MCR
cannot be considered if the system executes a transition between two modes as a
result of a previous MCR. As discussed in Section 1.1, even if synchronous mode
change protocols isolate the execution of old and new mode tasks and thus do not
require explicit analysis methods, they are not suitable when a fast mode change
has to be performed (e.g., when switching to an emergency mode). Therefore,
we focus our attention to asynchronous protocols which however impose a more
complex timing behavior in MPSoCs. Thus, triggered by the occurrence of the
MCR we assume that an asynchronous mode change protocol imposes for exam-
ple a mode change that consist in removing task τ1F from CPU1 and adding the
tasks τ2A, τ3A on CPU1 and τ6A on CPU2.

Activations of the finished task τ1F initiated before the tMCR are allowed to
finish their execution after the MCR. Added tasks are activated for the first time
after the MCR and thus will execute only in the new mode. Each of the added
tasks τiA is introduced in the system with an offset φ any time later than the
mode change request, i.e., at tMCR + φ. The rest of the tasks τ4U , τ5U , τ7U and
τ8U represent unchanged tasks and execute independent of the mode change.

A static priority preemptive scheduling is assumed on each processor and a pri-
ority assignment such that the lowest task numerical index indicates the higher
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priority. Analysis solutions addressing other scheduling policies on the individual
resources in a MPSoC represent an open issue. For simplifying the next explana-
tions, in Fig. 12 tasks executing on the interconnect are not represented and will
also not be further explicitly referred. However, the analysis method we overview
next accounts for the mode change effect on the communication medium.

5.2 The Mode Change Recurrent Effect: Problem Statement and
Analysis Concepts

In multi-mode real-time systems with communicating tasks as introduced
above, unchanged tasks will experience different worst-case response times
(WCRT) in the old and the new configuration as well as during the transition.
For exemplification, we focus on the timing behavior of task τ4U which has the
lowest priority on CPU1. In Fig. 13 a) we introduce WCRT diagrams, which
show the WCRT of tasks as a function of time after the occurrence of the MCR.
The upper diagram illustrates the transition effect on the timing behavior of
task τ4U . From the moment when the added tasks τ2A and τ3A are released on
CPU1, i.e., at tMCR + φ, task τ4U will experience additional interference and
its WCRT will increase in comparison to the steady state before the MCR, i.e.,
WCRT τ4U

M1 < WCRT τ4U

Transition. After task τ1F finishes its execution correspond-
ing to the activations released in the old mode it ceases to interfere with the lower
priority local tasks, i.e., τ2A, τ3A and τ4U . Thus, the WCRT of task τ4U will de-
crease in comparison to the transition phase WCRT τ4U

Transition ≥WCRT τ4U

M2 .
The WCRT values for all the tasks executing in the two mutual exclusive execu-

tion modes (i.e., M1 and M2) can be computed using existing analysis techniques
(e.g., Refs. 25), 68)). The WCRT during the transition phase can also be com-
puted by assuming a compound system that includes all tasks executing in both
operational modes, i.e., all unchanged, finished and new tasks in M1 and M2,
as it was proposed in Ref. 25). Although this constitutes a conservative approx-
imation of the system’s behaviour before, after and during the transition phase,
it does not constitute a feasible approach for real-time systems that undergo
multiple configuration transitions (e.g., M1, M2, . . ., Mx) as the conservatism
accumulates. For example, in case of a system that performs transitions from
mode M1 to M2 and later from mode M2 to M3 existing schedulability anal-
ysis solutions should be applyied for the compound system comprising tasks of

Fig. 13 a) Illustrative example of a possible settling behavior for tasks τ4U and τ7U in Fig. 12.
b) Potential mode change time line of tasks τ4U and τ7U in the context of the system
transition latency.

the three modes M1, M2 and M3. For such a case, as illustrated in Fig. 13 a),
the worst-case response time WCRTM1+M2+M3

Compound of task τ4U would exceed the
deadline.

However, as already mentioned in Section 5.1, the execution of tasks corre-
sponding to more than two operational modes is avoided in literature by as-
suming that transitions can be initiated only if the system executes in a steady
state corresponding to one operational mode. In our example this means that
a transition from mode M2 to M3 can be initiated only when the system exe-
cutes in the steady state corresponding to mode M2. However, as of today, none
of the existing analysis approaches is able to indicate when a real-time system
that accomodates multi-mode distributed applications executes in a steady state.
Thus, even if tasks’ WCRTs (in each operational mode and during the transition
phases between every two modes) can be determined with existing schedulability
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analysis solutions, the duration of the mode change transition phases have to be
computed in order to avoid the overlap of multiple mode changes (e.g., from M1
to M2 and from M2 to M3) that can cause violation of the timing constraints.

Therefore, in order to provide real-time guarantees for multi-mode real-time
systems we focus next on the upper bounds derivation of the duration of the
mode change transition phases.

Similar to τ4U , the timing behavior of other tasks in the system changes during
the transition phase and will eventually settle at a time instant tisteady at which
the WCRTMode2, corresponding to the new mode, can be safely assumed. As
illustrated in Fig. 13 a), although the MCR is assumed to be a system-wide event
and thus tMCR marks a global point in time, timing effects may affect different
tasks in the system for a different amount of time.

The task transition latency ψi of a given task τi is the maximum amount
of time that passes from the initiation of a mode change at tMCR until tisteady

when all transient effects caused by the mode change have ceased to affect the
timing of this specific task.

In order to make a system-wide decision on when a new mode change may
be started without the risk of overlapping with the effects of a previous mode
change, we do however need to compute the system transition latency Ψ.
This represents the maximum amount of time that passes from tMCR until tsteady

when all transient effects caused by the associated mode change have ceased to
affect the timing of all the tasks in the system.

Ψ = max(ψi | ∀τi) (1)
Thus, tsteady (tsteady = tMCR +Ψ) indicates the latest point in time relative to

the initiation of the mode change at tMCR when the system reached the steady
state corresponding to the new mode.

The challenge of computing the system transition latency Ψ can be broken
down to computing the tasks transition latencies ψi. However, in MPSoCs where
applications consist of communicating tasks, the task transition latencies ψi does
not only depend on the tasks executing on the same processor but also on the
other tasks in the system. For the multi-mode system example in Fig. 12, when
the mode change is initiated, the execution of the finished task τ1F may delay
the execution of several jobs of task τ2A activated after the MCR. This delay

translates into a burst of events at the input of task τ2A. The execution of task
τ2A, corresponding to the bursty input activation pattern, translates into a burst
of events at the output of task τ2A which then propagates to the input of task
τ6A on CPU2 and later to the input of task τ3A on CPU1. Therefore, for each
task in a multi-mode system, the mode change timing has a local (resource-level)
and a global (system-level) aspect. The transition latency ψi of a task τi has two
components, namely the latency of the mode change effect propagated by other
tasks in the system to the resource on which τi is mapped, denoted with Γi and
the task local transition latency, denoted with γi:

ψi = γi + Γi (2)
From the perspective of task τ4U , during the transition phase its jobs are de-

layed initially by the higher priority tasks τ1F and τ2A. This may lead to a burst
of events at τ4U output which propagates to the input of τ7U on CPU3. After
τ1F completely finishes its execution and before the burst arrives at the input of
τ3A, task τ4U is only delayed by the execution of task τ2A which leads to a more
relaxed output pattern of task τ4U and therewith at the input of task τ7U . When
the burst of events arrives at the input of task τ3A, task τ4U will experience again
increased interference from the higher priority tasks, which also means a possible
new burst of activations at the input of τ7U .

Thus, as effect of the MCR initiated at tMCR, the transient overload caused by
the mode change propagates recurrently through the system. For those resources
(i.e., individual CPUs or buses) on which the mode change imposes a config-
uration change, the arrival of a mode change effect coincides with the arrival
of the MCR at time tMCR. However, in MPSoCs the effect of a mode change
propagates between the interconnected tasks, such that there are different and
eventually multiple arrivals of the mode change effect at the input of different
tasks mapped on the same or different resources – e.g., in the example above the
effect of the mode change will propagate twice to the input of τ7U even if on its
host resource (i.e., CPU3) there is no change imposed. Thus, the mode change
effect latency Γ7U for task τ7U represents the amount of time that passes from
tMCR until the second burst of activations at τ4U output propagates to the input
of τ7U . A possible mode change time line for the tasks’ transition latencies ψi is
depicted in Fig. 13 b).
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The problem of computing the tasks transition latencies ψi maps to the com-
putation of the parameters γi and Γi for all the tasks in the system. For this we
propose a solution in the next section.

5.3 Analysis of Mode Change Transition Latencies
5.3.1 Derivation of Task Local Transition Latency γi

In order to derive the worst-case transition latency analysis for the mode change
model in Section 5.1 we rely on concepts used in the real-time scheduling theory.
When computing the maximum busy window Wmax

i of a task τi executing on
a single-resource (i.e., processor or bus) the maximum workload of tasks with
priority greater than or equal to the priority of task τi has to be considered.

When a MCR imposes a configuration change on a resource such that tasks
are added, removed or both, the equation for computing the maximum busy
window 68) has to be adapted to consider the execution of finished and added
tasks 25). A key challenge is to identify, for each task τi, the worst-case scenario
when the MCR shall occur such that it certainly leads to the worst-case execution
during the transition phase.

In Ref. 25) it was proven that the worst-case mode change scenario for a task τi
on a resource (e.g., processor) is obtained when tMCR coincides with the activa-
tion instant of a finished higher priority task, i.e., a task in hpF (i). Additionally,
the higher priority added tasks are considered to be released with an offset φ
after the initiation of the MCR and all other unchanged higher priority local
tasks are assumed released simultaneously with τi, i.e., in the classical critical
instant. However, as there may be multiple higher priority finished tasks (tasks
in hpF (i)) and as for each of these tasks there may be several possible activations
(i.e., jobs) released at different moments in time, one must identify all the time
instances where the occurrence of the MCRi should be assumed in order to find
the worst-case transition scenario. A solution has been presented in Ref. 25).

Relying on the busy windows characteristics 25),35),68), the maximum busy win-
dowWmax

i of a task τi in a multi-mode system represents the longest time interval
required by jobs of this task to complete their execution affected by the arrival
of a mode change effect.

Thus, for each arrival of a mode change effect, the local transition latency γi

of a task τi is upper bounded by the task’s maximum busy window computed for

Fig. 14 Timing dependency graph for the system example in Fig. 12.

the configuration of tasks’ input activation pattern corresponding to the mode
change arrival.

γi ≤Wmax
i (3)

5.3.2 Derivation of the Mode Change Effect Latency Γi

As discussed in Section 5.2, in multi-mode MPSoCs the recurrent effect of a
mode change propagates through system and affects the transition latency ψi of
a task τi. In order to derive the mode change effect latency Γi for all tasks τi we
integrate the local resource-level timing view into a global system-level timing
view. In Fig. 14 we introduce a timing dependency graph which indicates the
functional and non-functional dependencies between the tasks in the example
from Fig. 12.

Functional dependencies are those dependencies given through the task graph
and non-functional dependencies are those which arise from the local scheduling
on a processor. In this paper we consider systems for which the timing de-
pendency graph does not contain cyclic dependencies (i.e., no backwards edges
exist between the nodes of the timing dependency graph). Cyclic dependencies
introduce additional challenges such as unbounded transition times and their
consideration is currently an open issue.

The nodes of the graph in Fig. 14 are annotated with the values γi correspond-
ing to the tasks local transition latencies. The edges which correspond to the
functional dependencies between tasks are annotated with the values Γi. These
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indicate that the effects of a mode change propagate after a time interval Γi to
the input ports of the functionally interconnected tasks.

Thus, the activating task τp
i of a task τi (which is the immediate predecessor

of task τi in the task graph) will propagate the mode change effect to the input
of task τi (e.g., τp

6A = τ2A). For the next explanations we denote with Thep(i)

the set of tasks which contains task τi and the other local tasks with priorities
higher and equal to the priority of τi and with T p

hep(i) the set of tasks which are
the immediate predecessors or the activating tasks of the tasks in Thep(i). In the
system example in Fig. 14 Thep(4U) = {τ1F , τ2A, τ3A, τ4U} and T p

hep(4U) = {τ6A}.
A modification of the input activation pattern (given by the input event stream

represented by the functions η+(Δt)) of the tasks in Thep(i) will modify the local
transition latency of task τi. Thus, the only tasks that can propagate the effect
of a mode change to the input port of a task τi are the activating tasks of all
tasks with priority higher than or equal to the priority of task τi, i.e., tasks in
T p

hep(i) . The mode change effect will not be further propagated to a task τi after
the time instant when the mode change effect has ceased to affect the timing of
all the tasks that can propagate this effect to task τi, i.e., the timing of all the
tasks in T p

hep(i).
But, the mode change effect ceases to affect the timing of a task τi at the end

of its transition latency ψ (cf. Section 5.2). Thus, the mode change effect latency
Γi of a task τi is given by the maximum of the task transition latency ψj over
all of the tasks that can propagate the mode change effect to the input port of a
task τi, if any.

Γi = max(ψj , 0),∀τj ∈ T p
hep(i) (4)

If for any task τi, there is no task τj ∈ T p
hep(i), then the mode change effect does

not propagate to τi and the mode change effect latency Γi is 0. However, if the
set T p

hep(i) is not empty, the maximum of all transition latencies ψj indicates the
latest moment in time relative to the initiation of a mode change at tMCR when
the timing of a task τj that can propagate the mode change effect ceased to be
affected. After this moment in time, none of the tasks in T p

hep(i) will further
propagate the effect to τi.

As can be observed from Eq. (4) and Eq. (2) there is a backwards dependency

between the values Γ and γ of different tasks, which means the latency of the
mode change effect Γi of a task τi depends on the local transition latency γj

of another task τj which in turn may depend on the mode change latency Γj

propagated by other tasks. However, as the timing dependency graph does not
contain cycles, the tasks mode change effect latencies Γ can be computed by
applying Eq. (4) and Eq. (2) for all the tasks in the system.

5.3.3 Computation of the System Transition Latency Ψ
In Section 5.3.1 we showed that the local transition latencies γi of any task τi is

upper-bounded by the maximum busy window, computed under the worst-case
assumptions for any input event models at the input of the local tasks with τi.

A major issue, when computing the tasks local transition latencies γi, is that the
activating event models of some tasks may not initially be known - in particular
when these are the effect of e.g., other tasks finishing or data arriving over a bus.
This problem is addressed by embedding the local worst-case transition busy
window analysis in the compositional analysis approach presented in Section 2.2,
where task activating event models are provided and iteratively refined during
the analysis procedure 24).

Thus, in each iteration of the global analysis procedure, during the local anal-
ysis step, scheduling analysis calculates tasks’ worst-case response times (e.g., as
introduced in Section 2.2). In the same step, on each resource the tasks maximum
busy windows (i.e., local transition latencies γi) are also computed. By deriving
the task transition latencies in the same step with the worst-case response times,
in each iteration we perform the transition latency analysis under the worst-case
assumptions. These are ensured by using the same input event models as for
the worst-case response time analysis. The rest of the global analysis procedure
remains the same.

The investigation of the mode change transition latencies, as described in Sec-
tion 5.3.2, assumes that the compositional analysis has successfully finished, i.e.,
the event streams converged toward a fixed-point. After the general convergence
of the event models, for all tasks on all processors the largest possible local tran-
sition latencies γi have been computed and can be used for computing the mode
change effect latencies Γi. Further, by including these values in Eq. (2), for each
task τi we obtain the maximum transition latency ψi. Having all the values
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ψi, the system transition latency Ψ is obtained with Eq. (1). The dependency
between the mode change effect latency Γ of a task and the local transition la-
tencies γ of other tasks can be easily solved when the timing dependency graph
does not contain cyclic dependencies. The computation of the task transition
latencies ψ on each processor has to be performed top-down, starting with the
highest-priority task.

6. Considering Reliability and Redundancy

As discussed in Section 1, safety regulations dictate a minimal level of depend-
ability for safety critical functions. Therefore, most standards define a metric
such as Mean Time To Failure (MTTF) in order to quantify reliability.

Since a function is generally implemented as a task graph which is mapped
to computational and communication resources, those resources inherit the de-
pendability requirements. If the intrinsic reliability is not sufficiently high, it is
necessary to introduce fault-tolerance concepts which increase the reliability e.g.,
through parallel computation. Especially in deep submicron silicon processes
there are various sources for faults, which lead to different manifestations of er-
rors 12). To summarize the findings in Ref. 12), we must differentiate between
transient and permanent errors e.g., caused by variability, radiation and aging.

One mitigation strategy for permanent errors is to remap the task graph to
resources which provide integer service. Hence, it is necessary to have backup
mapping strategies for each failing hardware unit. The amount of possible map-
pings can be arbitrarily large, but it is sufficient to assume that not more than N
components actually fail and it is feasible to validate these candidates beforehand.
Practically, in case a processor fails, the processor is immediately removed from
active participation and its local task set is remapped according to the backup
strategy. Calculating the reliability is then trivial because the architecture can
modelled as an classical N out of M design. This remapping is a change of the
operation mode as tasks are removed and added (see Section 5).

Especially challenging for real-time systems are transient faults due to their
sporadic nature. The correctness of behavior depends not only on the logical re-
sult, but especially in time-critical systems, also on the instant in time at which
the result is produced 30). So even if the system is capable of detecting and re-

Fig. 15 Example for task level redundancy on a MPSoC.

covering from errors on the fly, it is still possible to miss deadlines caused by
transient overload effects. Thus for real-time systems we must differentiate be-
tween logical correctness and timing correctness. The system is working correctly
only if the platform satisfies two criteria:
( 1 ) the result must be logically correct according to the specification
( 2 ) the data must be delivered in time (i.e., deadlines must be met)
Vise versa, a failure is defined as either logical incorrectness or a timing violation.

In order to detect and recover from errors, redundancy must be introduced. But
replication (e.g., DMR) of the entire MPSoC seems infeasible, due to intensive
over provisioning as already highlighted in Section 1.1.

This problem can be solved by replicating only critical tasks as shown in
Fig. 15. This particular example shows two cores which are part of a larger
MPSoC. In this approach, the inherent redundant architecture of today’s MP-
SoCs is leveraged by using spatial redundancy only on task-level and thus it is
possible to cut costs and lower power consumption.

In the example shown in Fig. 15, some tasks of the task graph execute safety-
critical code (τ1, τ2), the other represent other applications (e.g., uncritical, hard
real-time or best-effort) computations. As annotated in Fig. 15, safety critical
tasks are executed redundantly in a DMR fashion on both cores. Given that
the operating system performs comparison operations between all external I/O
issued by τ1 and τ2, the platform is capable of detecting logical errors for critical
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tasks without massive duplication. Optionally, in case recovery is required a
checkpointing / rollback technique can be used. Therefore, the state of the task
is saved in a reliable fashion in regular intervals. If a recovery operation is
necessary, a recent checkpoint can be used as a starting point for re-execution.
The need for extended timing and reliability analysis arises as the consequence of
lifting strict timing isolation compared to DMR on MPSoC level. This is caused
by the recovery operations of critical and uncritical tasks in presence of errors.
An analysis has to provide guaranteed timing behavior for the error-free case as
well as probabilistic timing behavior in the presence of errors. First approaches
are explained in the next section.

6.1 Related Work
In Refs. 14) and 15) an extension of the worst-case response time analysis was

presented which incorporates re-execution. This method gives lower reliability
bounds extrapolated from the critical instant. Also in Ref. 47), this work is
extended to derive an optimal checkpointing strategy. However, the presented
approach is based on pessimistic assumptions: The transient recovery overhead
in case of error is bounded by using the largest interference possible.

If for a given distance the schedule is found feasible the probability that this
minimal error distance is actually observed. In Ref. 32) the reliability of check-
pointed software without considering scheduling effects is discussed. In Ref. 46) a
mapping and optimization strategy for replicated and checkpointed tasks is pro-
posed and introduces a System Failure Probability Analysis in Ref. 28). Contrary
to this work, only static scheduling is supported.

A method in Ref. 7) is presented which accounts mixed criticality in real-time
systems. It is assumed that task characteristics such as the WCET are annotated
with a certain confidence (criticality level). The response time analysis for a
particular task is then carried out in consideration of the interference based on its
own criticality level. Also, no additional fault-tolerance concepts are considered
in this work.

We have introduced a reliability analysis for bus based communication in
Ref. 62). Here, we especially focused on the effect of retransmissions on the
real-time properties of the CAN bus. This concept has recently been generalized
to support multiprocessor systems in Ref. 63). Based on this work we will provide

Fig. 16 Illustrative example of an equivalent task graph of a replicated task (e.g., τ1 from
Fig. 15) which is split into N checkpoints.

a concept of how to integrate reliability analysis in a bigger context.
6.2 Modeling Fault Tolerant Tasks
In order to analyse the presented fault-tolerance concept, it is necessary to

model the key aspects of task-level fault tolerance. Fault tolerant tasks (ft-tasks)
are extensions of regular tasks (cf. Section 2) which are replicated among several
cores to increase reliability. To model checkpointing, a fault tolerant task is split
into ni arbitrary long sub-tasks which are atomic in a sense that they contain no
further interaction with other tasks or peripherals. Furthermore, each sub-task
produces an intermediate result which can be fed to a voter/compare mechanism.
This voting mechanism can either be implemented by the operating system or
as dedicated hardware. Through this mechanism it is possible to detect errors
by comparing intermediate results. A common approach to correct errors is to
use temporal redundancy through checkpointing and rollback. Right before each
of the ni segments, a checkpoint of the state (e.g., register file, stack and data
segment) is pushed to safe storage from which it can be reloaded in case of errors.
Saving the state and restoring may impose additional execution time overhead
described by parameters which we model as an increased execution time. To
model this overhead we introduce the parameters tcov which represents the time
it takes to create a checkpoint (creation time overhead) and trov, which is the
recovery overhead in case a rollback operation is performed.

For the error-free case we can model an ft-task by an equivalent system model
shown in Fig. 16. The sub-tasks τcp1 . . . τcpN represent the individual checkpoint
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segments, in which an ft-task is split to. A sub-task pair (e.g., the τcp1 pair) has
to wait until the previous sub-tasks have finished their computation. We will call
such a sub-task pair a checkpoint group referred to as CGi,j,k. It is the set of
sub-jobs in k-th stage of the equivalent task graph belonging to job τi,j

By using this concept, it is also possible to model re-executions. Due to their
atomicity, only sub-tasks are affected by faults and lead to re-executions. To
reflect an erroneous sub-task a corresponding recovery operation (rollback) must
be added to the model. We can add one dedicated rollback and re-execution
task right after the affected checkpoint group. The same way, we can model two
or more recovery operations for other sub-tasks. Thus, it is possible to create
equivalent models for each possible error manifestation.

6.3 Error Model
For this analysis we focus on transient errors and soft errors in particular. Soft

errors caused by radiation or variability will manifest as logical bit-flips in archi-
tectural registers. We assume that the fault which causes bits to flip will vanish
immediately and has no temporal extent (there are no intermittent errors). Since
the exact arrival of error-events is highly unpredictable, we use stochastic models
to evaluate the behavior on a probabilistic base. The occurrence of errors on a
core is modeled using Poisson processes with a given error-rate λi per core which
accounts for errors affecting core components (e.g., ALU and FPU). Specifying
per-core error rates models heterogeneous multi-core CPUs in which some cores
may inherently be more reliable than others. This can be the case if dedicated
hardware error detection and recovery mechanisms are used, such as proposed by
Ref. 3) or by using more reliable but less performant silicon process parameters.

The following equations give the probability for unaffected execution of pro-
cessor Pi during the time interval Δt:

P (no error in time Δt) = e−λiΔt (5)

The lifetime of a task is modelled with a random variable L that represents the
time the task is running until the first failure occurs. The distribution function
of L is given by FL. Throughout this paper, we will use the common notion
of reliability R 30) as a metric which is the complement of FL. Practically R(t)
denotes the probability that a task is still operating without timing or logical

failures in the interval [0, t] .
R(t) = P (no failure in interval [0, t]) = 1 − FL(t) (6)

Based on Ri(t), we can easily calculate other common metrics such as the
MTTF:

MTTFi =
∫ ∞

0

Ri(t) dt (7)

6.4 Formal Analysis
For this analysis we evaluate timing constraint violations caused by recovery

and re-execution and assume a perfect error detection and coverage (all errors in
ft-tasks will be detected). There are two methods to derive the reliability Ri(t).
One is to use Monte Carlo Simulation 55), in which a large amount of random
experiments are carried out. By applying the law of large numbers it is possible
to extrapolate from these results. In order to accumulate a sufficiently large
set of representative samples, the simulation run-time can be unreasonably large.
Hence, the inherent drawback of simulation based techniques is that the run-time
depends on the error-rate. Alternatively, we focus on formal analysis methods
which can be used to derive conservative approximations of Ri(t). That means
that the real world MTTF is equal to or larger than the predicted MTTF ′.

To derive the reliability for each task, we use a two step algorithm. First, we
identify possible error manifestations (scenario) which lead to feasible schedules.
Therefore, we analyse models of error manifestations using response-time analysis
methods, known from the compositional performance analysis (cf. Section 2.2).
In the second step, we calculate the probability that a feasible error scenario will
actually occur. We can calculate the reliability by using these probabilities.

Instead of considering a task wise approach, we consider each job individually.
This way, a more precise result can be obtained by taking the interference char-
acteristic of each job into account. For each job we enumerate scenarios which
lead to a success. A job succeeds when the task meets its deadline, which will be
denoted as Si,j .

In a periodic task set, the activation pattern will appear repetitively after the
hyperperiod which is the least common multiple of all periods lcm(T1, . . . , Tn).
Thus, it is sufficient to consider all activations in a hyperperiod and extrapolate
from these results to future hyperperiods. The presented approach processes each
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job in the hyperperiod in the order of their release.
For the analysis it is important to know which jobs can delay another job

compared to the error-free case. For a fixed priority scheduler, a particular job
τi,j may be directly delayed by jobs of higher priority which were released prior
to τi,j on the same resource. Due to precedence constraints, a job τi,j can also
be indirectly delayed by jobs running on another resource.

But, only ft-tasks may impose increased transient load in case of errors. If we
recall the equivalent task graph model from Fig. 16, we see that each checkpoint
group can be reexecuted arbitrarily times, depending on the actual real-world
error pattern. Thus, only re-executions of checkpoint groups can delay τi,j (with
respect to the error free-case), so we need to identify those checkpoint groups
that can, in case of errors, interfere with the job τi,j . We will call this concept
interference set. The interference set ξi,j of τi,j are exactly those other checkpoint
groups, which could delay τi,j . Obviously, the cardinality of an interference set is
arbitrarily large, because there can be a very large amount of checkpoint groups
which have been released in the past. Practically, we limit the set to a given
number of checkpoint groups which have been released time d before the release
of τi,j , thus for large d we gain arbitrarily good estimates of ξi,j .

For each job, the interference set is the starting point for the scenario based
feasibility analysis. An error scenario si,j,k : ξi,j → N0 is a function which
specifies a potential error situation of each checkpoint group in the interference
set. Practically, si,j,k maps each checkpoint group to an integer which specifies
the amount of re-executions for that group. For each possible error scenario,
we can construct the equivalent task graph model, evaluate the response time
of τi,j and decide whether some si,j,k lead to feasible systems. All scenarios
which represent feasible re-execution combinations, form the working set Wi,j as
depicted in Fig. 17. As a notation scenarios in Fig. 17, we annotated the amount
of re-executions, where (0, 1, 0) means zero rexecutions for the first checkpoint
group, one re-execution for the second and so on. This working set can be
constructively retrieved by performing a graph traversal algorithm (e.g., depth-
first search) to iterate through all candidates. It must be noted that it is not
required to enumerate all possible working scenarios, since a subset will still
yield a pessimistic result. Practically, scenarios which are not enumerated are

Fig. 17 Example for a working set graph. Three feasible error scenarios have been identified.

considered as non-working.
The open challenge at this point is still, how to derive the reliability for a given

task τi,j from the working sets. By defining a job success probability P [Si,j ],
which is the probability that the job will meet its deadline, we can express the
reliability of a task τi as the the probability that all jobs of τi have succeeded
their execution that have been released in the interval [0, t]:

Ri(t) = P [Si,1 ∧ . . . ∧ Si,η+
i

(t)] (8)

Since this equation cannot be evaluated without further knowledge, we need to
decompose it by using conditional success probabilities. The conditional success
probability of a job τi,j is the probability that the job meets its deadline given
that all jobs of the same task, released prior to τi,j succeeded.

By applying the concept of conditional success probabilities, Eq. (8) can be
expressed as a product.

Ri(t) = P [Si,1] · P [Si,2|Si,1] · . . . · P [Si,η+
i

(t)|Si,η+
i

(t)−1 ∧ . . . ∧ Si,1] (9)

The remaining challenge is to derive the success probabilities and the condi-
tional success probabilities used in Eq. (9). After discovering all working sets
including Wi,j for τi,j we can use the initial Poisson error model to calculate the
probability that one working scenario will actually happen. The probability for
a re-execution of a checkpoint group can be expressed as the inverse probability
of correct execution for all sub-tasks in the checkpoint group. By combining
those probabilities, it is possible to get a conservative estimate of the conditional
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success probabilities.

P [Si,η+
i

(t)|Si,η+
i

(t)−1 ∧ . . . ∧ Si,1]=
∑

s∈W
i,η

+
i

(t)

P
[
s|Si,η+

i
(t)−1 ∧ . . . ∧ Si,1

]
(10)

The results from Eq. (10) can be inserted in Eq. (9) to retrieve the reliability
for one hyperperiod Ri(thyper). From this we can extrapolate the reliability for
a given number of A hyperperiods:

R(A · thyper) = (R(thyper))
A (11)

This process has to be carried out for all tasks. By using Eq. (7), it is also
possible to calculate the MTTF in order to decide whether the reliability is
sufficiently high.

7. Putting It All Together

In the previous sections, we have covered the design challenges of mixed-critical
MPSoCs from various angles. We have introduced a formal system model and
corresponding worst-case analysis methodologies (Section 2), which has been ex-
tended to support implications of shared resource (Section 3). For the NoC,
we presented efficient isolation techniques for mixed-critical applications and an
extension to the system model and analysis to include the NoC communication
(Section 4). We have discussed the challenges of multi-mode applications and
how they can be addressed in the worst-case analysis (Section 5). Furthermore,
we have shown how the reliability of mixed-critical systems can be analyzed con-
sidering the effects of redundancy mechanisms on timing (Section 6).

The presented problems and solutions are now taken as examples to explain
some of the changes necessary in the design process, which are illustrated in
Fig. 18. The specification needs new design data including timing and safety
requirements which indicate the criticality levels. Error models are needed to
derive reliability. Such error models are hard to get in practice but unavoidable
if reliability shall be quantified.

The design phase must be extended by the introduction of safety concepts that
cover static and transient errors that will become more important in the future.
A suitable architecture must be found, which includes the necessary isolation

Fig. 18 Complete design flow for reliable mixed-critical systems.
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support (cf. Section 2) and fault tolerance mechanisms (cf. Section 6). The NoC
architecture should be treated with approaches similar to distributed automotive
or aerospace designs using formal predictable scheduling to control the design
process. It must however, take the different distribution of memory and shared
resources into account. We gave an example for many-core architectures in Sec-
tion 3.

If formal analysis is used — as suggested in this paper — an abstract timing
model is needed covering execution times, shared resource utilization and task
activation patterns. These data can be derived using formal WCET analysis,
from execution tracing or, if no software is available yet, from estimations. In
the automotive industry, such data are regularly determined, e.g., as explained
in Ref. 69), while other domains still rely on simulations/execution only.

System states and mode changes can be used for system optimization and
verification if available. Again, this is already applied to advanced automotive
design.

8. Conclusion and Open Challenges

In this work, we have presented challenges and potential solutions of mixed-
critical MPSoC designs. We categorized criticality into two aspects (timing and
safety) and elaborated the challenges of mixing critical with non-critical applica-
tions. Especially, concerns of MPSoC architectural implications such the impact
of shared resource contention on timing, NoC-based communication, multiple
modes of operation and safety constraints have been raised. Design solutions
have been presented in Sections 3, 4, 5 and 6. Finally the changes which are
necessary in a typical design flow have been illustrated in Section 7. However,
there are still open challenges which have to be solved in order to facilitate a
structured design process for the increasing complexity of the MPSoCs.

As discussed in Section 4, the Network-on-Chip highly influences the timing of
individual tasks because it is shared between applications. Hardware solutions
for isolation mitigate the interference between different traffic classes. Due to
the large difference in requirements and behavior between various applications
and hence traffic classes (e.g., real-time vs. best-effort), these quality-of-service
mechanisms must be flexible, but also low overhead, which is challenging. Fur-

thermore, the formal analysis method used to cover the interference within a
traffic class currently makes some simplifying assumptions on the router archi-
tecture (e.g., no blocking at the crossbar inputs) which imply a higher design
cost (e.g., a larger crossbar). Improving the analyses to include more complex
router designs is ongoing research.

As illustrated in Section 5, the effect of a mode change is recurrent and may
propagate as waves through the entire system, fact that makes timing predic-
tion for MPSoCs more difficult. A solution for deriving transition latencies in
multi-mode real-time systems even in the presence of the mode change recurrent
effect was presented in Section 5. However, the current analysis for multi-mode
MPSoCs considers only applications without cyclic dependencies and where tasks
do not share additional common resources e.g., shared memories, as considered
in Section 3.

The reliability analysis as presented in Section 6 has limitations. At the mo-
ment, it uses a simple error model which does not reflect some important error
types such as correlated errors like common cause errors (e.g., error in clock
tree). Also, the presented approach only applies to periodic systems. Due to
complex timing dependencies in case of errors, it is not easily possible to divide
and conquer the problem and compose a system-wide reliability from component
reliabilities. Thus, for a system-wide analysis, an error scenario has to cover the
system as a whole, leading to a very large amount of error scenarios which have
to be considered. Hence, it is per se a holistic approach which causes scalability
problems for large task sets. The research of a compositional reliability analysis
is still ongoing.

Concluding, we can say that designing mixed-critical applications is possible if
all effects are accurately taken into account.
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