
Reliability Analysis for MPSoCs with Mixed-Critical, Hard
Real-Time Constraints

Philip Axer, Maurice Sebastian, Rolf Ernst
Institut für Datentechnik und Kommunikationsnetze

Technische Universität Braunschweig, Germany
{axer, sebastian, ernst}@ida.ing.tu-bs.de

ABSTRACT
Methods such as rollback and modular redundancy are effi-
cient to correct transient errors. In hard real-time systems,
however, correction has a strong impact on response times,
also on tasks that were not directly affected by errors. Due
to deadline misses, these tasks eventually fail to provide cor-
rect service. In this paper we present a reliability analysis for
periodic task sets and static priorities that includes realistic
detection and roll-back scenarios and covers a hyperperiod
instead of just a critical instant and therefore leads to much
higher accuracy than previous approaches. The approach
is compared with Monte-Carlo simulation to demonstrate
the accuracy and with previous approaches covering critical
instants to evaluate the improvements.

Categories and Subject Descriptors
C.4 [Performance of Systems]: fault tolerance; C.3 [Special-
purpose and application-based systems]: Real-time
and embedded systems

General Terms
Real-Time, Fault Tolerance, Embedded Systems

1. INTRODUCTION
Driven by tight power, performance and cost constraints,

embedded system designers are adopting the trend towards
multi-processor systems-on-chips (MPSoC). MPSoCs are be-
ing or will be used in all embedded application domains like
telecommunication (e.g. smart phones), transportation (e.g.
car electronics) and industrial automation (e.g. process con-
trol). In all domains, it is appealing to use the vast amount
of available resources on MPSoC platforms for efficient con-
solidation of functionalities. Thus, applications of different
nature such as control tasks (e.g. anti-lock braking system
- ABS), data-oriented processing (e.g. video-based collision
detection) and best-effort applications (e.g. entertainment)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0715-4/11/10 ...$10.00.

can be combined on the same MPSoC platform. These appli-
cations have mixed-critical requirements. Some applications
may have hard real-time constraints or are safety-critical
whereas others are non-critical at all (e.g. best-effort enter-
tainment)

Since it is predicted that the error-rate will increase caused
by continuous transistor shrinking [3], the effect of errors will
become even more important than it is today. In the best
case this only impairs the consumer experience, whereas in
safety-critical applications we might face high casualties in
case of failure.

Conservative approaches to increase reliability through
fault-tolerance are dual modular redundancy (DMR) or triple
modular redundancy (TMR) on system-level. Here, the en-
tire system such as the MPSoC itself is replicated, which
always impose a large overhead. In case all functions are of
high criticality, system-level redundancy is inevitable, but
for mixed-critical systems all non-critical functions are also
replicated, causing unnecessary overhead.

Appealing mechanisms to circumvent this problem are
spatial and temporal redundancy at the task- or function-
level to eliminate unwanted overhead. In this case, only
critical functions are replicated and non-critical functions
remain untouched. This is especially interesting in MPSoCs
because they inherently offer spatial redundancy in the form
of cores at very low cost.

Of particular interest are real-time applications. Here,
the correctness of behavior depends not only on the logical
result, but also on the instant in time at which the result
is produced [11]. Guaranteeing real-time properties is es-
pecially challenging for computer systems which are work-
ing under the influence of errors and error-recovery must
not jeopardize response times of critical tasks. Redundancy
at the function-level aggravates the situation: Due to the
complex interaction of multi-core scheduling, error detec-
tion and recovery, it is challenging to give timing guarantees
especially in the presence of errors. Without appropriate
reliability analysis which also considers real-time properties
it is not possible to use a fine grained redundancy approach
for real-time applications at all, simply because it would be
impossible to estimate the relevant key properties.

Obviously, it is not possible to guarantee the total absence
of failures during mission time, even by using a very high
degree of redundancy. A common approach is to estimate
the mean time to failure (MTTF) and design fault-tolerance
mechanisms in a way that the MTTF is sufficiently large
and the overhead as low as possible.

Certification agencies have introduced safety standards for

design, implementation and maintenance of safety-critical
systems. For instance the IEC 61508 [9] is a generic safety
standard with various derivatives e.g. ISO 26262 for the
automotive domain. It specifies a risk analysis which maps
safety functions to Safety Integrity Levels (SIL 1 - SIL 4) de-
pending on their risk (criticality). Each safety integrity level
is associated with a bound for the “probability of dangerous
failure per hour”. During the design process, it has to be
ensured that the probability of failures per hour which will
be observed in the field must not exceed the bound specified
by the SIL.

Given that functions on a MPSoC are mostly implemented
as a mapped task graph it seems reasonable to anticipate this
metric on a task-level and assign criticality constraints to
tasks. Critical tasks have to sustain significantly longer than
non-critical tasks, thus we consider task-level redundancy,
checkpointing and rollback as standard approaches to detect
and recover from errors.

The first question throughout this paper is how to model
checkpointing and fine-grained task redundancy under the
effects of errors and which system architectures support such
assumptions. The second question is what are the effects
of errors (e.g. re-executions) on other tasks in the sys-
tem and what is the likelihood that a task misses a dead-
line due to transient load caused by recovery of erroneous
tasks. This will lead to a task-wise reliability analysis which
allows to validate criticality constraints (such as SIL) for
tasks individually. The goal is to derive the reliability as
tight as possible to reduce over-provisioning to a minimum.
This allows design and certification of mixed-critical appli-
cations running on the same hardware without massive over-
provisioning.

The rest of the paper is structured as follows: Firstly,
we will discuss related work. In Section 3 we will discuss
the general system architecture as well as error and applica-
tion model. In Section 4 we will present the foundation of
the formal reliability analysis. Here we describe a practical
method to obtain a task-wise reliability metric. Experiments
and comparison with simulative approaches are summarized
in Section 5. Finally, we conclude our work in Section 6.

2. RELATED WORK
Related work in the area of fault-tolerant system analysis

focus either on logical or on temporal correctness of systems
or components. Whenever formal techniques are introduced
to compute the reliability with respect to timing constraints,
the probability of logical failures is neglected. Similarly con-
sidering fault tolerance mechanisms with respect to logical
correctness does not take timing effects into account. In this
section we will focus on the research of analyzing timing fail-
ures.

Baruah et al. describe a method in [2] to account for
mixed criticality in real-time systems. They assume that
task characteristics such as the worst-case execution time
(WCET) are annotated with a certain confidence (criticality
level). The response time analysis for a particular task is
then carried out in consideration of the interference based
on the criticality level. However, fault-tolerance mechanisms
and reliability in particular are not considered.

Izosimov et al. [10, 13] suggest another analysis method-
ology for fault-tolerant real-time systems. In this work re-
execution and replication are treated as design alternatives.
They assume static execution order scheduling within a MP-

SoC. Based on this assumption they derived the maximum
number of tolerable errors that can be corrected in time.
Furthermore, they optimized this number by combining re-
execution and replication corresponding to a heuristic op-
timization algorithm. The drawback is the assumptions of
static execution order scheduling which limits the applica-
bility in real-life systems.

In [5, 6] Burns et al. presented an extension of the worst-
case response time analysis to incorporate re-execution. This
method gives upper reliability bounds extrapolated from the
critical instant, which is the worst-case activation scenario
where all tasks are released simultaneously. Also in [14]
Punnekkat et al. extended this work to derive an optimal
checkpointing strategy. In [4] an analysis methodology was
introduced focusing on re-transmission of data frames on
CAN buses. However, the presented approach is based on
pessimistic assumptions. On the one hand only the worst-
case scenario (critical instant) is considered, i.e. the situa-
tion in which a task suffers from as much workload as possi-
ble, where other activations may accommodate significantly
more errors. Additionally, it does not explicitly cover error
detection mechanisms as an integral part which may delay
response times.

We extend the work presented in [15]. Here a similar
reliability analysis for message channels of a single CAN bus,
considering periodic task-sets scheduled by non-preemptive
fixed priority scheduler. To bound the reliability as tight as
possible a job-wise analysis approach is introduced, where
each job in the hyperperiod, which is the time in periodic
systems after which the activation pattern starts to repeat
itself, is analyzed. In a second step, the results are composed
to a task reliability function. In this paper this approach will
be extended to cover multi-core SoCs using redundancy in
time and space to detect and correct errors.

3. PRELIMINARIES

3.1 Error Model
Problematic for hard real-time systems are soft errors,

due to their strong impact on timing and logical correctness
which is discussed in detail in the following sections. The
handling of permanent errors is considered as an orthogonal
problem which is tackled with other approaches. Permanent
errors are covered by e.g. [8]. For the proposed analysis we
restrict the scope to soft errors.

Soft errors caused by radiation or variability will even-
tually manifest as logical bit flips in architectural registers.
The occurrence of errors on a core is modeled using Pois-
son processes with a given error-rate λi per core. This
models error-events on core components such as ALU and
FPU. Specifying per-core error rates accounts for architec-
tures in which some cores may be inherently more reliable
than others. Error rates can be reduced by low-level hard-
ware mechanisms (e.g. [1]) or by using more reliable but
low-performance process parameters.

For the Poisson model, the following equations give the
probability for correct execution of the i-th processor during
the time interval Δt and the converse probability that at
least one error occurred.

P (no error in time Δt) = e−λiΔt (1)

P (errors in time Δt) = 1− e−λiΔt (2)

Figure 1: System architecture: multiprocessor system with fault-tolerant memory attached. All cores include
a fingerprinting mechanism that track the execution stream in the pipeline.

3.2 System Model
We consider a multi-processor systems-on-chips as shown

in Figure 1 consisting of a set of processors P. The MPSoC
executes an application consisting of tasks as described later.
Processors communicate over a local interconnect which is
reliable, meaning it is capable to detect and correct errors
on its own. We also assume that the time required for detec-
tion and recovery for interconnect-errors is negligible short.
These are valid assumptions for a crossbar switch or a bus,
where Error Detection or Error Correction Codes (EDC,
ECC) can be used. Also, to keep the presented analysis
clear, we assume that there is no additional communication
overhead which needs to be considered, instead all overhead
is implicitly attributed to task properties as later discussed
in Section 3.3.

Once affected by a soft error, a non-fault-tolerant proces-
sor may fail in two ways: fail-silent or byzantine. A fail-silent
failure will result in a “hanging” execution of the current
task, but the processor still responds to interrupts. After
byzantine failure a task might generate erroneous output,
suggesting correct operation. We assume that in both cases,
the affected processor will not interfere with operations car-
ried out on other processors.

We assume that in regular, predefined intervals, the ap-
plication triggers the creation of a checkpoint. The check-
point includes all recently changed memory regions of the
tasks address space, as well as the current register contents.
When a checkpoint is established, the processor writes the
relevant memory content to a fault-tolerant memory region
as depicted in Figure 1. This can be protected main mem-
ory (e.g. by using an ECC) as well as dedicated checkpoint
memory, e.g. as used in the SafetyNet [17] approach. Fur-
thermore, we assume that the creation of a checkpoint is an
atomic transaction and the hardware circuitry (e.g. DMA
controller) takes care that the checkpointing process itself is
fault tolerant. Once an error in the processor is detected,
the most recent checkpoint is restored, and task execution
is resumed from this point. Generally, the imposed assump-
tions are compatible with most of the checkpointing rollback
approaches which are summarized in [18].

Until now, we only have discussed recovery mechanisms.
To detect errors, we employ a fingerprinting mechanism as
presented by Smolens et al. [16] and LaFrieda et al. [12]. The
general concept is to calculate a checksum of the execution
stream inside the pipeline as shown in Figure 1. In this
particular example we only include the execution stage, but
it is also possible to include other pipeline stages.

Error detection using fingerprinting works as follows: For
some given input in form of an algorithm (program) and
some data, the fingerprint is determined by the instruction

and data sequence imposed by the program. As long as pro-
gram and data are the same, the produced fingerprint will
always be the same, unless there are errors. By memorizing
this fingerprint it is possible to compare it with the finger-
print of a reference execution on another or even the same
processor in order to decide on the logical correctness. In
case fingerprints don’t match, an error must have happened,
given that the input data and the programs were the same.
This approach has the advantage that state comparison is
very inexpensive in terms of time and bandwidth. Addition-
ally, the fingerprint has an arbitrary good error detection
coverage (depending on the hash algorithm).

3.3 Application Model
We model an application as a set Γ of independent tasks

τi, running on a set of processors P. The task set consists of
fault-tolerant (ft-tasks) and non-fault-tolerant tasks. A non-
fault-tolerant task τi is defined by the following tuple: τi =
(T,C,D, p). Tasks are periodically activated every T time
units, execute for at most time C and must have finished
execution before their deadline D ≤ T . Tasks are scheduled
by a preemptive scheduler using a fixed priority p. The job
τi,j is the j-th incarnation of task τi.

Ft-tasks are extensions of regular tasks which are repli-
cated among several cores to increase reliability. As a de-
tection and recovery technique, fine grained redundancy,
checkpoint and compare mechanism are used as described
in section 3.2. To reflect the redundant processor mapping
a task can be mapped to multiple processors denoted by the
mapping-set M ∈ Pβ which maps a task to an arbitrary
set of processors, where β denotes degree of redundancy
(e.g. β = 2 corresponds to task-level DMR). For ft-tasks
the priority attribute is implicitly assumed to be a tuple of
priorities, one for each core in M. Note, that a task can
be mapped twice on the same processor, in this case redun-
dancy in time is be used. In most cases β will equal two,
otherwise a more efficient majority voting can be employed.

Checkpointing and redundancy imposes additional exe-
cution time overhead described by parameters n, tcov and
trov. For a ft-task, the execution time C is divided into n
checkpoints of arbitrary length so that C =

∑
tcpi . At the

beginning of each execution interval, a checkpoint is estab-
lished causing a creation overhead of tcov. At the end of
each execution segment, fingerprints of all redundant execu-
tion streams are compared. In case of an error, all redundant
copies re-execute the recent execution interval with an ad-
ditional recovery overhead of trov.
Each instance of a ft-task is modeled as a set of primitive

(non-ft) tasks with precedence constraints, as shown in Fig-
ure 2. The precedence constraints reflect the error detection

mechanism: To begin a new checkpoint segment, the cor-
rectness of the preceding checkpoint has to be validated by
comparing fingerprints of all segments in a checkpoint group.
A checkpoint group CGi,j,l is the set of primitive jobs in the
l-th stage of the precedence graph belonging to job τi,j .

In the error-free case, there are exactly ni checkpoint
groups, one for each checkpoint. In case that errors have cor-
rupted the execution, the total number of checkpoint groups
for the instance of task τi is increased by the number of
erroneous checkpoint groups. Naturally, the amount of er-
roneous checkpoint groups is not known a priori, hence we
don’t know the actual phenotype of the precedence model
describing a job τi,j . But the effects of a given amount of
errors on a ft-task can be modeled by using the appropriate
precedence model.

Since we focus on hard real-time systems, we are partic-
ularly interested if tasks adhere to their deadline constraint
under error scenarios. The response time tr of a job is the
difference between its finishing time and its release time,
which is the time when the task becomes ready. In that
way the response time covers the entire time an event has
been queued and the time required for processing. A job
has missed its deadline if the response time is greater than
the deadline: tr > D. Otherwise the job meets its deadline.
The response time tr of a ft-job τi,j is defined as the latency
from the activation of the virtual job Tscatter until finishing
of Tgather as shown in Figure 2.

3.4 Error Handling
An error can affect a task in a number of ways, eventu-

ally causing a task to logically fail. Unprotected tasks are
assumed to fail on the first error, which is a conservative
assumption based on the possible failure modes of the pro-
cessor. For tasks which are replicated, error events can occur
during the following execution phases:

1. checkpoint creation

2. regular execution

3. recovery process

For the first case we assume that an error during check-
point creation will be detected and corrected on-the-fly by
the checkpointing subsystem as discussed in section 3.2. For
the second case the error will be detected after all segments
in CGi,j,l have finished. It might happen that due to errors
a task gets stuck in a loop and will not yield processing-time
properly. We assume that the operating system implements
a budgeting mechanism which enforces maximal execution
times e.g. by using a watchdog. This kind of budgeting is
for instance used in PharOS [7]. Then the recovery process

Tscatter Tgather

Tcp_1

Tcp_1

Tcp_2

Tcp_2

Tcp_2

Tcp_2

Tcp_n

Tcp_n

tr

CG1 CG2 CGn

P0

P1

CG‘2

Figure 2: Equivalent precedence graph of a fault-
tolerant task τi with an error in CG2.

is triggered with the result that the recent checkpoint group
is re-executed. The third scenario is treated like the second,
assuming that an error during the recovery process will not
corrupt the recent checkpoint. By these means it is possible
to detect errors at the end of each task to avoid error prop-
agation in the system (domino effect). Errors will have no
effect on tasks when a core is idling.

Figure 3 shows an example Gantt chart as a possible ex-
ecution trace of a system with two cores and tasks T1 − T4,
priorities are assigned according to the occurrence in the
chart, e.g. T1 has a higher priority than T2 and so on. In
this example T2 is a fault-tolerant task (n = 2, β = 2) which
is replicated on both cores. The segmentation of the fault-
tolerant task T2 into checkpoint groups is highlighted by
CG2,1,1 . . . CG2,2,2. Important events have been numbered
in the order of their occurrence: (1) All tasks activate simul-
taneously. Both replicas of T2 start creating a checkpoint.
(2) An error event e1 affects task T1, causing this task to
fail. Further activations of T1 may still dissipate processor
bandwidth but have no further value for the service which
T1 delivers. (3) Fingerprints of all primitive jobs in CG2,1,1

are available and match, a checkpoint is established. (4)
An error event affects one primitive job of T2 in CG2,1,2.
(5) Comparison of fingerprints in CG2,1,2 does not match,

recovery initiated. A re-execution CG
′
2,1,2 follows. (6) Fin-

gerprint of CG′
2,1,2 after re-execution matches. First acti-

vation of T2 successfully completed and deadline met. (7)
Second activation of T2 arrives, checkpoint is established.
(8) Fingerprints in CG2,2,1 available and match, a check-
point is established. (9) Fingerprints in CG2,2,2 available
and match. Second activation of T2 successfully completed
and deadline met.

The recovery action delays the response time of T2 and T4.
In this particular example all jobs still meet their deadlines,
although T1 failed its service. In case more than one error
affect T2, then T4 and T2 will both miss their deadlines. The
goal of a reliability analysis is to derive probabilistic values
for these kind of scheduling conditions under which jobs miss
deadlines due to errors.

3.5 Reliability Metric
The lifetime of a task is modeled with a random variable

L that represents the time the task is running until the first
failure occurs. The distribution function of L is given by
FL. Throughout this paper, we will use the common notion
of reliability R as a metric which is the complementary of
FL. Practically R(t) denotes the probability that a task is
still operating without failures in the interval [0, t] [11].

R(t) = P (no failure in interval [0, t])

= 1− FL(t) (3)

Definition 1. (Failure):
A failure results from either timely or logical incorrectness.

As highlighted in the previous section, a logical incorrect-
ness originates from an unrecoverable error, whereas a tim-
ing incorrectness arise from additional workload as the result
of the recovery process which may interfere with lower pri-
ority tasks and violate the real-time constraint tr ≤ D. The
goal of the formal analysis is to derive Ri(t) for each task
from which we can easily calculate other common metrics

T3

T2

T2

T1

T4

e1

CG2,1,1 CG2,1,2 CG´2,1,2

e2

CG2,2,1 CG2,2,2

1 3

4

5 6 8 9

2

7

Figure 3: Illustrative example: Task T2 is redundantly mapped to both cores and split in n = 2 checkpoints.

such as the MTTF:

MTTFi =

∫ ∞

0

Ri(t) dt (4)

4. FORMAL ANALYSIS
In this section we will present an algorithm which allows

accurate computation for Ri(t) for arbitrary values of t.
Since determining the reliability is an average case problem,
we reject the common worst-case approach as used by [5] for
our analysis. Instead of considering a task-wise approach,
we consider each job individually. By this, a more precise
result can be obtained by taking the interference characteris-
tic of each job into account. For this approach we divide the
problem into timing-induced errors and logical errors. First,
we want to evaluate timing constraint violations caused by
recovery and re-execution.

In a periodic task-set, the activation pattern will appear
repetitively after the hyperperiod of length lcm(T1, . . . , Tn).
Thus, it is sufficient to consider all activations in a hyper-
period and extrapolate from these results. For the formal
analysis, we will not focus on the calculation of the response
times for individual jobs. Methods for response time cal-
culations are well known [19] and can be adapted to the
task model that is used in this approach. Thus, given a
task set, it is possible to calculate response times of all jobs
in a hyperperiod. Now we will introduce some important
definitions:

Definition 2. (Success): The fact that the j-th activation
of task τi is logically correct and meets its deadline will be
referred to as Si,j .

Definition 3. (Success Probability): The success proba-
bility P [Si,j] is the probability that job τi,j succeeds.

Although, the actual response time calculation is an orthog-
onal problem it is necessary to discuss some properties: It is
important to note that it is of no relevance for the response
time of a ft-task which erroneous primitive job in a check-
point group exactly caused additional delay. The ultimate
effect of errors in CGi,j,l is always the same, regardless of
the actual faulty sub-job. This can be seen in Figure 3, if e2
would have hit the corresponding job on core 2, the outcome
would have been the same.

For the analysis, it is important to know which jobs inter-
fere with another job. The set of tasks and thus the set of
jobs can be obtained by the timing dependency graph which

indicates the functional and non-functional dependencies be-
tween the tasks in the example from Figure 3. The nodes of
the timing dependency graph correspond to the tasks in the
system and the directed edges represent functional and non-
functional dependencies between tasks. Functional depen-
dencies are given through the task graph and non-functional
dependencies arise from the local scheduling on a processor.
A particular job τi,j may be delayed by jobs of higher prior-
ity than τi,j which are released prior to τi,j running on the
same resource as τi,j (non-functional dependency). Due to
precedence constraints (functional dependency), a job τi,j
can also be delayed by jobs running on another core. We
are not interested in the primitive jobs which may delay
a given job, but instead in the corresponding checkpoint
groups which may delay a job.

Definition 4. (Interference Set): The interference set ξi,j
is the set of all checkpoint groups CG which potentially delay
job τi,j .

Note that if τi,j itself is a ft-task its own CGi,j,l are al-
ways in ξi,j . Errors in non-ft tasks have no timing effect on
other tasks and therefore do not need to be considered in the
interference set. The cardinality of ξi,j is arbitrarily large.
Practically we limit the set to a given number of checkpoint
groups which have been released time d before the release
of τi,j , thus for large d we gain arbitrarily good estimates of
ξi,j . By this, we exploit that jobs which are released suffi-
cient time before τi,j will not interfere with τi,j .
Choosing a too small value for d may lead to overestima-

tion, leading to non-conservative results due to additional
interference which is not covered throughout analysis. By
analyzing for increasing values of d the result will converge
towards the actual reliability.

Based on the given definitions, we can express the reliabil-
ity of a task τi as the the probability that all jobs τi,1 . . . τi,j
have succeeded their execution that have been released in
the interval [0, t]:

Ri(t) = P [Si,1 ∧ . . . ∧ Si,j] (5)

4.1 Feasible Error Scenarios
The algorithm we propose consists of two independent

steps that will be carried out for each task: In the first
step all feasible scenarios for each job of a the task through-
out the hyperperiod are enumerated. A feasible scenario
is a specific error constellation in which no deadline miss

(0,0)
(1,0)

(0,1)
(2,0)

WWorking Set

WNon‐Working Set

(0,2)

(1,1)

Figure 4: Working-set for job τ4,1

(failure) for the task would occurs. In a second step, we
transform these scenarios into probabilities through which
it is possible to derive the characteristic reliability function
Ri(t).

Coming back to the example in Figure 3, we focus on
the scenario enumeration for job τ4,1. The response time of
job τ4,1 depends on the re-execution pattern of checkpoint
groups which are in the interference set of τ4,1 which is ξ4,1 =
{CG2,1,1, CG2,1,2}. For the particular situation depicted,
CG2,1,2 handles one error (re-execution denoted as CG′

2,1,2)
without causing τ4,1 to miss its deadline. Further analysis
would reveal that a scenario where CG2,1,1 is exposed to
one error would also lead to a feasible schedule, whereas an
error in both CG2,1,1 and CG2,1,2 will cause τ4,1 to miss its
deadline. To formalize this concept we will introduce the
error scenarios.

Definition 5. (error scenario): An error scenario si,j,k :
ξi,j → N0 is a function which specifies the amount of re-
executions for each checkpoint group CG ∈ ξi,j .

This function can conveniently be expressed as a tuple,
where the n-th component in the tuple denotes the amount
of errors for the n-th checkpoint group in the (ordered) in-
terference set ξi,j . The example in Figure 3 shows the er-
ror scenario s4,1,1 for which the interference set is ξ4,1 =
{CG2,1,1, CG2,1,2}. Now, we can simply specifiy the scenario
as s4,1,1 = {CG2,1,1 = 0, CG2,1,2 = 1} or more conveniently
s4,1,1 = (0, 1).

For each error scenario it is possible to construct an equiv-
alent precedence model (see Section 3.3). This model can
then be fed into a response time analysis to verify deadline
constraints. Thus, each scenario can either lead to a feasi-
ble schedule or to an infeasible schedule, depending on the
response time analysis of the error scenario model. We can
summarize that τ4,1 will meet the deadline for the scenarios
{(0, 0), (1, 0), (0, 1)}. Figure 4 shows exactly these feasible
scenarios which we will call working set.

Definition 6. (Working Set):
The working set Wi,j of a job τi,j is the set of error scenar-
ios si,j,k for which job τi,j is guaranteed to meet its timing
constraint.

Originating from the error-free case as the root node, we can
construct an error graph as shown in Figure 4. In this graph,
edges are error events whereas nodes are error scenarios.
The graph can be built by using depth first search: For each
node we perform a response time analysis and evaluate the
real-time constraint tr < D. Each node is then colored with
respect to the schedulability of the error scenario which it
presents. In case the node is schedulable, we recursively
evaluate all successor nodes in the same way until we found

, , ,, , , , , , , , , , ,, ,
Figure 5: Illustrative example of some interference
sets for task τ4 which are mutually overlapping, caus-
ing stochastic dependence for scenarios.

all working scenarios. All nodes which are marked feasible
form the working set Wi,j .
Practically, the graph can be arbitrarily large but it is

sufficient to enumerate only a sub-graph. By doing so, we
obtain a subset of the real working set which is conservative
because all other nodes will be considered as non-working.
A pessimistic approach which only considers the worst-case
activation would only yield to one particular Wi which re-
sembles the situation with the least amount of working sce-
narios.

The success probability of job τi,j can be expressed as the
probability that one scenario of all working scenarios in Wi,j

will actually occur:

P [Si,j] = P [si,j,1 ∨ . . . ∨ si,j,k], si,j,1, . . . , si,j,k ∈ Wi,j (6)

4

4.2 Probability Computation
Once we have obtained all working sets for all jobs in

the hyperperiod we can derive success probabilities. It is
not sufficient to calculate scenario occurrence probabilities
based on individual working sets alone. The scenarios from
successive jobs of the same task are not mutually indepen-
dent. The reason for this is that consecutive interference
sets include common checkpoint groups: ξi,j ∩ ξi,j+1 �= ∅.
This is also depicted in Figure 5. Note that the interference
sets are artificially truncated for the sake of simplicity.

This problem becomes obvious in the following simple
example: We assume that the working sets for τ4,1 and
τ4,2 have been determined independently in a previous step.
Now, since ξ4,1 and ξ4,2 overlap, job τ4,2 will only see man-
ifestations of CG2,1,2 that led to a feasible schedule for job
τ4,1, namely zero or one repetitions of CG2,1,2 (cf. Figure 4).
To express these mutual dependencies, we introduce condi-
tional success probabilities.

Definition 7. (Conditional Success Probability): The con-
ditional success probability is the probability that job τi,j
meets its deadline given that previous jobs of τi have al-
ready met their deadlines.

P [Si,j |Si,j−1 ∧ . . . ∧ Si,1] (7)

By using conditional probabilities, it is possible to express
the reliability function (cf. Equation 5) by simple multipli-
cation:

Ri(t) = P [Si,1] · P [Si,2|Si,1] · . . . (8)

·P [Si,j |Si,j−1 ∧ . . . ∧ Si,1]

The remaining challenge is to derive the conditional success
probabilities used in equation 8. We can be sure that job τi,j
will meet its deadline if the actual error scenario is in Wi,j .
Beyond that, it is also necessary that previously activated
jobs of task τi have successfully terminated. Because all

scenarios in Wi,j are mutually exclusive, equation 7 can be
written as a sum of conditional scenario probabilities:

P [Si,j |Si,j−1 ∧ . . . ∧ Si,1] =
∑

s∈Wi,j

P [s|Sj−1 ∧ . . . ∧ S1] (9)

Remember, we are only interested in the time until the
first failure. We process jobs in the order of their activa-
tion. Hence, when we look at an arbitrary success Si,j this
always includes the fact that all jobs released before τi,j
have succeeded. From the perspective of Si,j , the history of
working scenarios forms a complete probability space. Also,
when we process job τi,j to calculate P [Si,j |Si,j−1, . . . , Si,1],
we know the conditional probability of the predecessor job
P [Si,j−1|Si,j−2, . . . , Si,1] and the probabilities of all scenar-
ios in the working set of τi,j−1, because they have alreay
been evaluated. But as already mentioned in Section 4.1,
sometimes scenarios of successive working sets are mutually
exclusive. To formalize this we introduce scenario consis-
tency.

Definition 8. (Consistency):
Two error scenarios sa = si,j,a and sb = si,j−1,b are said
to be consistent if there is no CG ∈ ξi,j ∩ ξi,j−1 so that
sa(CG) �= sb(CG).

Practically, this means that consistent error scenarios may
contain the same checkpoint group CG in the interference
set and if so, the amount of repetitions sa(CG) and sb(CG)
must be the same, thus sa and sb are not contradictory. If
two scenarios sa and sb are consistent, we can reduce one
scenario sa and remove those checkpoint groups which are
already contained in sb:

Definition 9. (Reduced Scenario):
Given two consistent scenarios sa and sb, the reduced sce-
nario s̃a is defined as s̃a : {ξa \ ξb} → N0, where s̃a(CG) =
sa(CG) = sb(CG) ∀ CG ∈ {ξa \ ξb}
For the example from Figure 5, a reduced scenario s̃4,2,l

from W4,2 would not contain checkpoint group CG2,1,2 since
this is specified by the predecessor scenario. By application
of consistency and reduced scenarios we can calculate the
conditional scenario probability as follows:

P [si,j,a|si,j−1,b] =

{
P [s̃i,j,a] if si,j,a, si,j−1,b consistent

0 otherwise

(10)
Then we can put all building blocks together to obtain the
final conditional success probability, based on the the sce-
narios from the previous working set Wi,j which has already
been processed in the previous step.

P [si,j,k|Si,j−1 ∧ . . . ∧ Si,1]

=
∑

s∈Wi,j−1

P [si,j,k|s] · P̃ [s|Si,j−2 ∧ . . . ∧ Si,1] (11)

Where P̃ is the normalized probability of the scenario s. The
probabilites are normalized because all scenarios in Wi,j−1

form a total probability space:∑
s∈Wi,j−1

P̃ [s|Si,j−2 ∧ . . . ∧ Si,1] = 1 (12)

The absolute probability for the entire scenario P [s] is a sim-
ple multiplication, since the checkpoint groups in a scenario

Table 1: Example task-set used for the experiments.
All times given in [ms].

Task T C D

T0 300 60 300
T1 250 50 250
T2 100 10 100
T3 300 50 300
T4 600 40 500

are independent.

P [s] =
∏

CG∈ξs

P [R = s(CG)] (13)

Equation 13 only considers timing errors and is only valid
for ft-tasks. Logical errors which can affect non ft-tasks are
currently not considered. In order to integrate the fact that
non ft-tasks will not only fail in case of a deadline violation,
but also on logical errors, it is necessary to extend the equa-
tion by a term (cf. Equation 2) which reflects that the job
under analysis will not be hit by an error itself.

Pnon-ft[s] = (1− e−λiCi) ·
∏

CG∈ξs

P [R = s(CG)] (14)

Finally, it is trivial to calculate the probability for certain
re-execution patterns by applying Equation 1 and 2 with
appropriate values of Δt.

The probability for exactly s(CGi,j,l) = R repetitions of
a checkpoint group CGi,j,l for a given scenario s can be
calculated as follows, where te is the execution time of the
primitiv jobs in CGi,j,l. For the sake of simplicity we assume
the error rates for all cores are the same λ = λp∀p ∈ P.

P [R = 0] =
(
1− e−λ(tcov+te)

)β

(15)

P [R = 1] = (1− P [R = 0])

·
(
1− e−λ(trov+te)

)β

(16)

P [R = r, r > 0] = (1− P [R = 0])

·
(
1−

(
1− e−λ(trov+te)

)β
)r−1

·
(
1− e−λ(trov+te)

)β

(17)

For ft-tasks, the system will try to recover from errors until
one successful re-execution took place. Thus, for the proba-
bility calculation it is known that all erroneous re-executions
are always followed by one correct re-execution.

By inserting the conditional success probabilities in Equa-
tion 8, it is possible to obtain Ri(t). Assuming we have job
success probabilities for all jobs in the interval [0, thyper],
with thyper = lcm[T1, . . . , Tn], we can compute the reliability
R(thyper) through Equation 8. From this we can compute
the reliability for a given number of A hyperperiods:

R(A · thyper) = (R(thyper))
A (18)

5. EXPERIMENTS
For the evaluation of the presented formal analysis we

use Monte-Carlo simulation as a reference. We assume that

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
el

ia
b

il
it

y
 R

(t
)

time [h]

T0 FA
T0 MC
T1 FA
T1 MC
T2 FA
T2 MC
T3 FA
T3 MC
T4 FA
T4 MC

Figure 6: Comparison of formal analysis (FA) accu-
racy with Monte-Carlo (MC)) reference simulation.
λ1,2 = 1/sec, 10.000 samples

tasks are perfectly synchronized, that means all tasks acti-
vate simultaneously at time t = 0 and there is no drift of
the activation pattern. Under these assumptions, it is pos-
sible to calculate the exact response times for each scenario,
because there are no uncertainties in scheduling.

For following experiments we use the task set as shown in
Table 1. We chose a two-core multiprocessor system and,
unless stated otherwise, tasks are mapped according to M1
as shown in Table 2. We assigned T0 and T4 to be fault-
tolerant tasks, that means both tasks execute redundantly
on core 1 and core 2. Both tasks create two checkpoints with
some additional overhead.

Note that the priority assignment and mapping is not op-
timal in terms of reliability and response times. Rather, the
given task-set includes all effects that need to be considered:

• functional dependencies due to precedence constraints
of checkpoint groups

• non-functional dependencies caused by scheduling of
higher priority tasks

• priority inversion caused by functional dependencies of
checkpointing

By our approach it is now possible to efficiently use one
multi-core processor where conventional methods such as
DMR would require at least two multi-core processors, and
thus cause at least 100% overhead. By following our ap-
proach, no additional overhead in terms of silicon was added.

5.1 Monte-Carlo-Simulation
For the Monte-Carlo-Simulation, we have implemented a

simple static priority preemptive scheduler that will sched-
ule a given task set in the same way, as an operating sys-
tem scheduler would do. However, we don’t schedule real

Table 2: Mapping (M1) of task-set used throughout
evaluation.

Task priority core 1 priority core 2 n tcov trov

T0 (ft) 3 2 2 10 40
T1 4 - - - -
T2 2 - - - -
T3 - 1 - - -

T4 (ft) 1 3 2 10 40

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

R
el

ia
b

il
it

y
 R

(t
)

time [h]

T4 FA, cutoff: 1e-5
T4 FA, cutoff: 1e-3
T4 FA, cutoff: 1e-1

T4 MC

Figure 7: Effect of different working set truncations
λ1,2 = 1/sec, 10.000 Monte-Carlo samples

tasks but only abstract tokens which represent tasks. For
each core in the system, we instantiate one scheduler which
is attached to an event-generator. The event-generator will
produce error events with an exponentially distributed inter-
event time with an average of 1/λi. Each time an error event
is produced, the scheduler behaves exactly as described in
Section 3. The response time of each job is monitored, and
failure events caused either by logical incorrectness of regu-
lar tasks or timing violations of all tasks are recorded. The
reliability function Ri(t) is then the inverse of the cumula-
tive distribution function of the failure events. By recording
a sufficient large amount of failure samples it is possible to
approximate the exact reliability with respect to our system
and task model.

The comparison of Monte-Carlo approach (MC) and our
presented formal analysis (FA) is shown in Figure 6. The
graph shows the reliability function R(t) versus time, which
gives the probability that a task is still functioning after time
t. The simulation has been carried out for unrealistic er-
ror rates to produce a reasonable number of MC simulation
runs in acceptable time. For realistic error rates, Monte-
Carlo simulation would not be operational due to excessive
run times. The reason is that the time per Monte-Carlo
run grows with reduced error rates. Unfortunately, error
effects are coupled due to their influence on timing. Cou-
pling makes advanced MC techniques such as importance
sampling complicated or requires approximations, such as
adapting event frequencies, which changes MC results. We
use MC simulation only to demonstrate that our approach
has very little pessimism. Already for these high error rate,
more than 2 hrs computation time were needed. Since the
accuracy of our approach is generally independent of the er-
ror rate, we may conclude that the accuracy observed in the
experiments also holds for realistic error rates.

The reliability analysis was carried out with a search depth
value of d = 12, higher values increase analysis time, because
more scenarios have to be considered and the accuracy im-
provement is not noticeable. As mentioned in Section 4,
it is not possible to list all feasible scenarios in the work-
ing set for a practical implementation. Thus, the working
set is artificially truncated, then potentially working sce-
narios are considered as non-working which is a pessimistic
assumption leading to a conservative result. For this exper-
iment, the working set was truncated when the occurrence
probability of a scenario was below a cut-off probability of
1e − 12. This produces equivalent results compared to the

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

R
el

ia
b

il
it

y
 R

(t
)

time [h]

T0 CI
T0 HYPER

T1 CI
T1 HYPER

Figure 8: Comparison of hyperperiod-based formal
analysis (HYPER) with critical instant based formal
analysis (CI). λ1,2 = 1/week

Monte-Carlo approach. There is a pessimistic derivation of
the formal analysis for very small times t < thyper. The
reason for this is that the Monte-Carlo simulator will start
executing tasks at time t = 0 and jobs in the first hyperpe-
riod have no interference from a previous hyperperiod which
could cause deadline violations. Note that the Monte-Carlo
result and the formal analysis result converge quickly (see
T0 in Figure 6).

However, with 17 sec run time, our analysis framework
was significantly faster than the processing of 10.000 MC
runs which took about 2 hrs. For our approach the run time
only depends on the accuracy that shall be achieved and the
number of task activations in a hyperperiod.

Figure 7 shows the effect of the working set truncation
on the reliability results of task T4 from the example task
set. We tag all nodes in the working set as not-working
which have a smaller occurrence probability than the cutoff
probability. This also shows the pessimism which is induced
when too small working-sets are considered but also that the
curves approach the Monte-Carlo result rapidly.

5.2 Hyperperiod vs. Worst-Case
The presented approach takes advantage of all relative ac-

tivation phasings which occur during the hyperperiod. Not
all activations suffer the same amount of interference com-
pared to the critical instant. Similar to the method pre-
sented in [4], we also investigated the approach to consider
only the worst-case situation, that is we consider only the
activation which causes the worst response time. Figure 8
shows the results of both, the worst-case-based method and
the hyperperiod based approach.

Here we evaluated two tasks (T0, T1) of the example task
set. The reliability for the critical instant based method
was obtained by taking the worst (smallest) working set of
each task. Then the probability calculation was carried out
based on the worst working set Wi. The worst-case success
probability (WCSP) is obtained by calculating the success
probability of the task τi for the critical instant:

WCSP =
∑
s∈Wi

P [s] (19)

Then the reliability after one hyperperiod can be extrapo-
lated over all activations in one hyperperiod.

Ri(thyper) = WCSP (thyper/Ti) (20)

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

R
el

ia
b

il
it

y
 R

(t
)

time [h]

T0 M1
T0 M2
T1 M1
T1 M2
T2 M1
T2 M2
T3 F1
T3 M2
T4 F1
T4 M2

Figure 9: Design space exploration: Reliability of
mapping M1 and M2. λ1,2 = 1/sec

The comparison shows an improvement for the simple task
set of nearly one order of magnitude, but it can be estimated
that the difference will be even more drastical for task sets
with broader period ranges compared to the simple example
presented here, because the effect of relative phasing has
more impact.

5.3 Design Space Exploration
By using the presented analysis approach, it is now pos-

sible to evaluate alternative mappings of a given task set
with respect to the final reliability. This includes different
degrees of redundancy, priority assignment or alternative
checkpointing implementations which have different over-
head trade-offs (e.g. lower checkpoint creation overhead but
higher recovery overhead). Investigating the reasons for the
results shown in Figure 6, we might find that the priority
assignment was not cleverly chosen and we would eventu-
ally come up with a different mapping such as M2, shown
in Table 3. The priorities were chosen in a way that there
is no priority inversion among the cores. Also, because T0
has a smaller deadline than T4, it will be assigned a higher
priority. Similarly, we investigate the effect of reducing the
amount of checkpoint to n = 1.

The resulting reliability functions for mapping M1 and
M2 are shown in Figure 9. As we can see, all reliabilities
are improved by the alternative mapping. Notably, the re-
liability for task T2 was increased by nearly a decade and
also task T4 benefits significantly. However, the reliability
of task T0, which is a fault-tolerant task, is disappointingly
low compared to the other ft-task. If we inspect the size
of the working sets for all activations of task T0, we find
that for all activations there is only one working scenario:
The error-free scenario. Clearly, task T0 has not enough
slack time for error recovery. Thus, in order to increase the
reliability of T0 there are the following options: decrease
the execution time, decrease the time for checkpointing, de-

Table 3: Alternative Mapping (M2).
Task priority core 1 priority core 2 n tcov trov

T0 (ft) 1 1 1 10 40
T1 4 - - - -
T2 2 - - - -
T3 - 2 - - -

T4 (ft) 3 3 1 10 40

crease the time for recovery, increase the processor speed, or
relax the deadline constraint.

6. CONCLUSION
Upcoming technologies will lead to increased error rates.

Even if errors can be corrected, the increased time for han-
dling the recovery process may lead to deadline misses caus-
ing a timing-failure in real-time systems. In this paper we
have presented a novel algorithm through which we can an-
alyze reliability constraints for a task-set of which some tasks
are protected by fine-grained spatial redundancy, checkpointing
and rollback mechanisms. This enables legitimate use of
such methods on MPSoC platforms.

Contrary to other approaches, we consider a representa-
tive hyperperiod and not the worst-case condition because it
allows tighter reliability guarantees. The comparison of our
algorithm with a reference Monte-Carlo simulation shows
very good accuracy with the benefit of significantly shorter
analysis time for realistic parameters compared to simula-
tion.

The presented analysis enables the possibility to trade-off
different design decisions e.g. priority assignment, amount
of checkpoints or degree of redundancy and points out the
relevance and potential within resilient system’s design.

However, there are some limitations that need to be tack-
led in future work: Especially, the effects on scheduling of
common cause errors need further investigation (e.g. errors
on the clock tree). Also MPSoC design usually includes
heavy use of shared resources (e.g. common system inter-
connect and main memory) which is currently not modeled
sufficiently. This still leaves room for further research.

7. ACKNOWLEDGMENTS
This work was jointly funded by Advanced Research &

Technology for Embedded Intelligence and Systems Joint
Undertaking (ARTEMIS JU), the Federal Ministry of Ed-
ucation and Research (BMBF) and the German Research
Foundation (DFG) within the project ’RECOMP’, support
code 01IS10001A.

Also, this work was partly supported by the German Re-
search Foundation (DFG) as part of the priority program
”Dependable Embedded Systems” (SPP 1500).
spp1500.itec.kit.edu

8. REFERENCES
[1] T. Austin, D. Blaauw, T. Mudge, and K. Flautner.

Making typical silicon matter with razor. IEEE
Computer, 37(3):57–65, 2004.

[2] S. Baruah, H. Li, and L. Stougie. Towards the design
of certifiable mixed-criticality systems. In Proc. of
Real-Time and Embedded Technology and Applications
Symp., pages 13–22. IEEE, 2010.

[3] S. Borkar. Designing reliable systems from unreliable
components: the challenges of transistor variability
and degradation. IEEE Micro, 25(6):10–16, 2005.

[4] I. Broster, A. Burns, and G. Rodŕıguez-Navas.
Probabilistic analysis of CAN with faults. In Proc. of
Real-Time Systems Symposium, pages 269–278. IEEE,
2002.

[5] A. Burns, R. Davis, and S. Punnekkat. Feasibility
analysis of fault-tolerant real-time task sets. In Proc.
of Euromicro Workshop Real-Time Systems, pages
29–33, 1996.

[6] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright.
Probabilistic scheduling guarantees for fault-tolerant
real-time systems. In Proc. of Dependable Computing
for Critical Applications, pages 361–378, 1999.

[7] D. Chabrol, C. Aussagues, and V. David. A spatial
and temporal partitioning approach for dependable
automotive systems. In Proc. of Emerging
Technologies & Factory Automation, pages 1–8, 2009.

[8] M. Glass, M. Lukasiewycz, F. Reimann, C. Haubelt,
and J. Teich. Symbolic reliability analysis and
optimization of ECU networks. In Proc. of Design,
Automation and Test in Europe, pages 158–163, 2008.

[9] International Electrotechnical Commission (IEC).
Functional safety of electrical / electronic /
programmable electronic safety-related systems, 1998.

[10] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Synthesis of
fault-tolerant embedded systems with checkpointing
and replication. In Proc. of Int. Workshop Electronic
Design, Test and Applications, 2006.

[11] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers, Norwell, MA, USA, 1997.

[12] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar.
Utilizing dynamically coupled cores to form a resilient
chip multiprocessor. In Proc. of Int. Conf. Dependable
Systems and Networks, pages 317–326, 2007.

[13] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design
optimization of time- and cost-constrained
fault-tolerant embedded systems with checkpointing
and replication. IEEE Trans. on VLSI, 17(3):389–402,
2009.

[14] S. Punnekkat and A. Burns. Analysis of checkpointing
for schedulability of real-time systems. In Proc. of Int.
Workshop Real-Time Computing Systems and
Applications, pages 198–205, 1997.

[15] M. Sebastian and R. Ernst. Reliability Analysis of
Single Bus Communication with Real-Time
Requirements. In Proc. of Pacific Rim Int. Symp.
Dependable Computing, pages 3–10, 2009.

[16] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C.
Hoe, and A. G. Nowatryk. Fingerprinting: bounding
soft-error-detection latency and bandwidth. IEEE
Micro, 24(6):22–29, 2004.

[17] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A.
Wood. Safetynet: improving the availability of shared
memory multiprocessors with global
checkpoint/recovery. In Proc. of Int. Computer
Architecture Symp., pages 123–134, 2002.

[18] R. Teodorescu, J. Nakano, and J. Torrellas. Swich: A
prototype for efficient cache-level checkpointing and
rollback. IEEE Micro, 26(5):28–40, 2006.

[19] K. W. Tindell, A. Burns, and A. J. Wellings. An
extendible approach for analyzing fixed priority hard
real-time tasks. Real-Time Systems, 6(2):133–151,
1994.

