
A Filtering Approach to Distributed Priority
Assignment in Real-Time Systems

Moritz Neukirchner, Rolf Ernst
Institut für Datentechnik und Kommunikationsnetze

Technische Universität Braunschweig
Email: neukirchner|ernst@ida.ing.tu-bs.de

Abstract—Recent advances in in-system performance analysis
allow to determine feasibility of a system configuration within
the system itself. Such methods have been successfully used to
perform admission control for updates in distributed real-time
systems. Parameter synthesis, which is necessary to complement
the admission control with self-configuration capabilities, lacks
behind because current approaches cannot be distributed prop-
erly or because of necessary design-time preprocessing steps.

In this paper we present a novel distributed algorithm to
find feasible execution priorities in distributed static-priority-
preemptively (SPP) scheduled real-time systems under consid-
eration of end-to-end path latencies. The presented algorithm
builds on top of an existing distributed feasibility test, which
is derived from compositional performance analysis [1]. With
an extensive set of pseudo-randomly generated testcases we
demonstrate the applicability of the approach and show that
the proposed algorithm can even compete with state-of-the-art
design time tools at a fraction of the runtime.

I. INTRODUCTION

The integration of several components to a complex real-
time system, such as an automotive platform, is a challenging
task, as the integration process may introduce non-functional
dependencies among otherwise independent components. Such
dependencies arise through e.g. use of a common communica-
tion bus. Correct functioning is usually assured at design-time
through means of extensive testing and formal verification.
This has to be performed for every possible system configura-
tion/variant. This approach becomes infeasible if user-driven
software updates are allowed - as anticipated even for auto-
motive system [2], [3] - because future system configurations
become unpredictable.

This problem can be addressed by admission control mech-
anisms, that perform a formal verification in the system
itself [4]. In this case only every actually encountered con-
figuration is analyzed prior to system reconfiguration/update
and infeasible changes are rejected.

However, in real-time systems feasibility of a system con-
figuration heavily depends on the assignment of scheduling
parameters. Thus, when updating a system, by e.g. adding a
new software component, the update may be deemed infeasible
by the admission control, although it may be feasible under
a different assignment of scheduling parameters. To address
this issue, we propose to extend admission control by a self-
configuration service, which reassigns scheduling parameters
such that configurations, that would otherwise be rejected, can

be allowed to execute.
Specifically, we address the constraint satisfaction prob-

lem (CSP) of finding feasible priority assignments in SPP
scheduled real-time systems under consideration of end-to-
end path latency constraints. The algorithm that we present
relies on a distributed implementation of compositional per-
formance analysis [5], [1], which has been successfully used
for a distributed admission control scheme [4]. In order to
reduce runtime overhead and to integrate with the admission
control scheme the proposed algorithm is also implemented
distributedly. Despite its application to the above admission
control scheme, the approach is generally applicable to the
problem of distributed priority assignment and not bound to
any specific framework. As we show later, the algorithm can
even outperform a state of the art design time tool.

The remainder of this work is structured as follows. First
we will review previous approaches for priority assignment in
real-time systems (section II). We will then provide a brief
description of the system model and provide some insight on
the underlying admission control scheme [4] and its distributed
feasibility test [1] (section III). In section IV we will outline
the general strategy for the distributed self-configuration algo-
rithm as presented in [21]. Section V then describes our novel
algorithm for distributed priority assignment, which integrates
into this general strategy. We evaluate its performance with
two benchmark algorithms (section VI). Section VII concludes
the paper.

II. RELATED WORK

The problem of priority assignment has been studied inten-
sively in the scope of scheduling analysis. First approaches
addressed uni-processor systems and the question of schedu-
lability of periodic tasks with task deadlines equal to their
periods [6]. Later work reduced the restrictions on task dead-
lines [7], [8] and on periodicity [9], [10]. Extensions to multi-
processor systems were then presented in [11], [12], [13].
In our scenario of in-field updates we consider tasks with
communication dependencies and constraints on end-to-end
path latencies. As the above approaches consider independent
tasks and task- rather than path-latencies they are of limited
applicability.

[14] and [15] both presented frameworks for design-space
exploration of real-time systems that do not pose these re-
strictions on the system model. Both approaches use a genetic



algorithm (GA) and a tool for performance analysis [5] to ex-
plore the design space. They support a multitude of parameters
for optimization, among which is priority assignment. In this
work we will use [14] as a benchmark. Genetic algorithms are
generally computationally expensive due to the large number
of individuals that are required to derive a solution. This is
undesirable in resource-constrained embedded systems.

Another approach that is specifically targeted at runtime
assignment of scheduling parameters was presented by [16],
[17]. Here, a control-theoretic approach is taken to dynami-
cally adjust scheduling parameters based on the actual work-
load of the system. This approach, however, is only suitable for
soft real-time systems and cannot be applied if hard constraints
have to be considered.

An approach that is more suitable for use in in-system
admission control, that shall ensure adherence to hard con-
straints, is to divide end-to-end deadlines into local deadlines.
Based on local algorithms tasks are then scheduled w.r.t.
their local deadlines. [18] provides a good overview of work
following this approach. While most of these approaches target
design-time optimization, e.g. [19], the algorithm presented in
[20] aims to find feasible schedules in-system. However, the
calculation of the local deadlines has to be performed in an
offline pre-processing step, which can significantly limit the
exploitation of available system slack.

[21] presented a distributed heuristic priority assignment
algorithm, that does not require division of path latency
deadlines into local task deadlines, while still allowing an
efficient distributed implementation. The algorithm presented
in this paper builds on the same distribution approach as [21]
(see section IV). However, as will be shown in section VI,
our algorithm provides greatly improved results and even
outperforms the design-time solution [14], which was chosen
as benchmark.

III. SYSTEM MODEL & ADMISSION CONTROL CONCEPT

In this section, we introduce the system model and admis-
sion control concept, which forms the basis for our algorithm.

We use the system model as in [5]. In this system model a
hardware platform P consists of multiple processors intercon-
nected by communication media. We will refer to processors
and communication media as (computational and communi-
cation) resources ρj . On this platform a set of potentially
communicating tasks Γ = {τi} are executed. A set of
paths Ψ = {ψk} with constraints on end-to-end latencies
C = {χψk : ψk ∈ Ψ} are specified for the task set.

Additionally, we assume that the distributed performance
analysis (DPA) algorithm as presented in [1] is running on this
platform to perform admission control [4]. This DPA algorithm
follows the general approach of compositional performance
analysis [22], [5], which composes local schedulability anal-
ysis algorithms using event model interfaces. Schedulability
analysis algorithms derive worst-case response times from
worst-case execution times of tasks for a given scheduling
policy. Algorithms exist for a multitude of scheduling and
bus arbitration schemes, e.g. for static priority preemptive

scheduling [23], Round Robin [24], or CAN Bus [25]. Using
these functions, Compositional Performance Analysis derives
bounds on the individual response time of each task in the
system also under the assumption of communicating tasks.
The response times are aggregated to compute bounds on path
latencies [26].

The distributed implementation is composed of several DPA
instances, one residing at reach resource in the system. The
single instances communicate the worst-case timing behavior
of their tasks and cooperatively determine worst-case system
level timing. Each DPA instance only contains model data
of tasks that reside on the resource of that DPA. We refer
to this information as the local model of the DPA instance.
Specifically, a DPA instance can provide information on worst-
case task response times ωτi (WCRT), worst-case path laten-
cies λψk and path latency constraints χψk ∈ C of tasks that
reside on the same resource as the DPA instance. The provided
estimations on WCRTs are monotonic, i.e. if a task’s priority is
increased/decreased and all other parameters remain equal, its
worst-case response time can only decrease/increase or remain
equal, respectively.

To be able to reason about data within the local model of
a DPA instance we introduce some sets of variables. Let Γρj
be the set of tasks that are mapped on resource ρj and Γψk
be the set of tasks that are part of path ψk. Furthermore let
Ψρj be the set of paths that have at least one task mapped on
resource ρj (τi ∈ Γρj ) and Ψτi be the set of paths that task
τi is part of (τi ∈ Γψk ). These definitions are later required to
define the self-configuration algorithm.

IV. SELF-CONFIGURATION STRATEGY

We employ the general approach presented in [21], which
we outline in this section.

The distributed self-configuration (DSC) algorithm relies
on the model-based Distributed Performance Analysis (DPA)
algorithm [1] which is used for admission control. Each DPA
instance is complemented by a DSC instance - both instances
residing at the same resource (figure 1a). The DSC can request
estimations on WCRTs and path latencies from the DPA.
Due to the distribution of the model and the DPA each
DSC instance can only access the information provided by its
attached DPA instance, i.e. the DPA’s local model. Each DSC
instance can reassign task priorities in the local model of its
attached DPA instance. While the DPA instances communicate
to analyze a system configuration, the DSC instances do not
require to communicate except for synchronization.

Figure 1b shows the DSC flow. The DPA analyzes the
system model. A DSC instance becomes active when its
DPA instance detects an infeasible update to the system
configuration, if the worst-case path latency of any path on
that resource exceeds its constraint. Based on local rules and
data available from their attached DPA instances all active
DSC instances concurrently compute new priority assignments
and insert them into the model of the DPA. All active DSC
instances synchronize (e.g. using a barrier synchronization
protocol as described in [27]) to ensure a consistent model.



(a) Architecture view

(b) Logic view

Fig. 1: General algorithm flow

Then the DPA analyzes the modified configuration again. This
loop is executed on a resource whenever the current priority
assignment does not satisfy all path latency constraints. Each
execution of this loop is referred to as a DSC step. As the
DPA is performed synchronized across all affected resources,
DPA and DSC are performed in a lock-step manner. If a global
solution is found (i.e. all constraints are satisfied), a feasible
configuration has been found and the update to the system
configuration can be accepted. To avoid endless loops in case
of unsatisfiable constraints in an update, the number of DSC
steps can be supervised and bounded by an additional software
component. All computation and communication of DPA and
DSC can be performed on lowest priority, to minimize the
effect on running applications.

The algorithm of [21] within each DSC is based on a metric
that indicates the “responsibility” of task for a path latency
constraint violation - the local improvement target (LIT). [21]
formally defines it as

Definition 1: Let the local improvement target δτi of task
τi ∈ Γρj be defined as

δτi = max
ψk∈Ψτi

(
0,
ωτi
λψk
∗ (λψk − χψk)

)
(1)

The LIT is the maximum quotient of the task’s WCRT and the
path latency multiplied by the path violation. The maximum is

taken over all paths of the task. The calculation only requires
the task’s worst-case response times ωτi and path latencies
λψk and latency constraints χψk of all paths ψk ∈ Ψτi ,
that the task is part of. All of this information is provided
by the DPA based on its local model. Thus LITs can be
calculated at DSC instances without the necessity of explicit
communication among the different DSC instances.

[21] noted, that a self-configuration that distributedly as-
signs task priorities in decreasing order of their LIT exhibits
oscillatory behavior, thus leading to poor search space cov-
erage and poor algorithm performance. The authors propose
to randomly inhibit the execution of single DSC instances
according to a “lazy threshold” to break the oscillatory loops.
This leads to greatly improved results.

In the following section we introduce a novel strategy to
break the oscillatory loops. Section VI will show that this
new approach provides even larger improvements and yields
results comparable to those of centralized design-time tools.

V. DISTRIBUTED SELF-CONFIGURATION ALGORITHM

We propose to use a control-theory inspired approach within
each DSC instance to assign priorities without causing oscil-
latory loops. Note, that although assignment of task priorities
is described, communication between tasks over physical
communication media is assumed to be scheduled priority-
based as well and thus can be handled in the same fashion.

[21] aimed to reduce oscillations by introducing random
pertubations into the self-configuration process. We propose to
address the issue of oscillations systematically by considering
past DSC steps in the priority assignment process. However,
logging all evaluated configurations of previous DSC steps is
intractable because 1. no DSC instance has a complete view
of the system model and thus cannot decide alone whether a
configuration has already been evaluated 2. logging all pre-
vious configurations introduces significant memory overhead,
which may be prohibitive, if the algorithm is used in-system
along with an admission control scheme.

We propose a novel DSC algorithm that complements the
priority assignment in decreasing order of the LIT with a time-
discrete PID filter, as depicted in figure 2. Such a filter allows
to track past DSC steps with minimal memory overhead. In a
first step (1. in fig. 2) set point priorities Sτi are assigned
in decreasing order of the tasks’ LIT. This is the priority
assignment, which tends to oscillate if no further counter-
measures are taken. These set point priorities are input to a
feedback PID-controller (2. in fig. 2). This filter returns a pri-
ority rating Rτi which incorporates the set-point priorities Sτi ,
the currently assigned priorities Pτi and the history of DSC
steps through a proportional (P), an integral (I) and a derivative
(D) component. The proportional component is equivalent to
a scalable priority assignment in direct correleation with the
LIT. The integral component allows to super-proportionally
increase the priority rating of a task if it violates any of its
path latency constraints over several subsequent DSC steps.
The derivative component damps this effect by decreasing
the priority rating if it increased in the previous DSC step.



Fig. 2: Feedback control for priority assignment

In combination all three components allow to calculate a
sufficiently stable priority rating. Once the priority ratings
have been calculated tasks are assigned priorities in decreasing
order of these ratings (3. in fig. 2).

The described flow is further detailed in algorithm 1, which
shows the l-th DSC step. In a first step all local improvement
targets are calculated (line 3). To assign the set point priorities
for each task τi ∈ Γρj , Γρj is sorted in descending order of
the LITs δτi (line 6). The set point priority of a task τi is then
set to its position in the sorted Γρj (line 7).

The set point priorities S serve as input for the filter. Let
∆τi(l) be the difference of assigned priority and set point
priority in the l-th DSC step, i.e.

∆τi(l) = Sτi(l)− Pτi(l − 1) (2)

The priority rating Rτi(l) in the l-th DSC step is then
calculated by

Rτi(l) = Pτi(l − 1)

+ kP ∗∆τi(l)

+ kI ∗ Iτi(l)
+ kD ∗Dτi(l) (3)

with

Iτi(l) =Iτi(l − 1) + ∆τi(l) (4)
Dτi(l) =∆τi(l − 1)−∆τi(l) (5)

and
kP , kI , kD ∈ R (6)

The parameters kP , kI and kD are the gain parameters of the
proportional, integral and differential components of the filter,
respectively. After calculation of the priority ratings Rτi(l) for
all τi ∈ Γρj (line 9), the set Γρj is sorted in descending order
of the priority ratings Rτi(l) (line 11). The priority of all tasks
τi ∈ Γρj is then set to their respective position in the sorted
Γρj (line 12).

Note that the addition of the filter does not prevent oscil-
lations from ever occurring. The inputs of each DSC instance
depend on the behavior of potentially several other DSC
instances - while these dependencies change with different
priority assignments. Thus, stability of the constraint solving
process cannot be guaranteed. Furthermore, as the feedback

Algorithm 1 l-th DSC Step (filtered LIT-based)
1: for ρj ∈ Ps ⊆ P concurrently do
2: for τi ∈ Γρj do
3: calculate δτi
4: end for
5: if any δτi > 0 : τi ∈ Γρj then
6: sort Γρj descending in δτi
7: assign set point priorities in order of sorted Γρj
8: for τi ∈ Γρj do
9: calculate Rτi (l)

10: end for
11: sort Γρj descending in Rτi (l)
12: assign priorities in order of sorted Γρj
13: end if

14: end for

Fig. 3: Example: Path latency over several DSC steps

path of the filter includes a sorting operation, it is intractable
to calculate optimal gain parameters to achieve a certain
damping. Instead we have determined suitable gain parameters
(equations 7-9) empirically on the testcases that were used in
the evaluation (section VI).

In order to find suitable gain parameters we have observed
the change of path latencies of several testcase systems over
the course of several DSC steps. Figure 3 shows a plot of
this for one testcase system, which consists of 4 resources,
10 tasks and 5 communication channels on one communication
medium. Three paths with constrained latency are defined. The
plot shows the path latencies in solid lines and the respective
constraint in the same color as dashed line. We see that
the experimentally chosen gain parameters cause a decent
settling behavior of the path latencies towards their respective
contraints, rendering the system feasible after 5 DSC steps.
The gain parameters that were used for this testcase as well
as the evaluation in section VI are given below.

kP = −0, 4 (7)
kI = 0, 05 (8)
kD = −0, 1 (9)

Thus, although we cannot guarantee optimality of the filter we
observe, that the possibility to rank tasks based on their value-
continuous priority rating - instead of the stepwise chaning
path latency - and because these priority ratings incorporate
the history of DSC steps, a more stable trend for priority
assignment is obtained. In the following section we show on a
larger set of testcases that this filtering approach indeed poses
a suitable approach to priority assignment.



VI. EVALUATION

In this section we evaluate the performance of the proposed
algorithm. As it employs a heuristic and does not necessarily
find a feasible configuration we have tested it on an extensive
set of testcases. As baseline for the comparison we use a
state of the art design-time tool, which is based on a genetic
algorithm [14]. Furthermore, we compare the performance to
the lazy algorithm [21], which builds on the same general DSC
approach as this paper while reducing oscillations by means
of a lazy threshold.

The testcase systems were generated with the open-source
tool System Models for Free (SMFF) [28], [29], which pseudo-
ramdomly generates completely specified system models. We
have used two different parameter sets to evaluate scalability
of the approach. The first parameter set generates smaller
systems with 4 computational resources, 2 to 3 communication
resources and 2 to 4 tasks per task set. The second parameter
set generates system models with 12 computational resources,
3 to 5 communication resources and 3 to 7 tasks per task set.
The number of task sets per testcase depends on the success of
the filtered LIT-based algorithm and the GA. We have added
additional task sets until the system turned infeasible. Then we
have used both algorithms to find a feasible configuration. If
one succeeded, we added another task set. This was repeated
until neither algorithm was able to find a feasible configu-
ration. As a result the different testcases contained between
2 and 10 task sets (i.e. in total 4-70 tasks) and in total 118
testcases were analyzed per paramter set. For both parameter
sets the worst-case execution times of each task were set such
that it caused a load (i.e. WCET/Period) between 1% and 5%.
Constraints on end-to-end path latency were set to values 3
to 5 times larger than the sum of the WCETs of all tasks
along the path. For reproducibility of results we provide the
complete set of parameters in figure 6.

As a first metric for evaluation we use the number of false
negatives of each algorithm. In most cases it is intractable, to
analyze whether a system has a feasible priority assignment
at all, as the number of possible configurations easily reaches
values greater than several 100 million. As a consequence
we will call an optimization run a false negative for the
filtered LIT-based algorithm/GA, if the filtered algorithm/GA
failed to find a solution, while the other did find a feasible
priority assignment, respectively. The LIT-based algorithm was
restricted to 500 DCS steps, while the GA analyzed 50 indi-
viduals over 10 generations. Figure 4a shows the percentage of
testcases where only the filtered LIT-based algorithm (green),
both algorithms (yellow) and only the GA (red) found a
solution. For the small systems the novel filtered LIT-based
algorithm and the genetic algorithm [14] performed equally
well. In more than 80% of the testcases both algorithms found
a solution. In ∼8% of the testsystems each algorithm was
able to find a solution while the other failed to find a feasible
priority assignment. From the larger testcase systems we see
that the filtered algorithm scales significantly better than the
GA. In ∼90% of the large testcase systems only the filtered

(a) filtered LIT-based

(b) direct LIT-based [21]

(c) 15%-lazy LIT-based [21]

Fig. 4: Comparison w.r.t. solved testcases

algorithm was able to find a feasible priority assignment while
the GA failed to find a solution. Conversely, in only ∼1%
of the larger testcases the GA found a solution while our
novel approach failed to solve the priority assignment problem.
As we have used the same test setup as [21] we can also
compare the performance of the filtered algorithm to that of
the priority assignment in direct order of the LITs (figure 4b)
and to the lazy LIT-based algorithm (figure 4c). Comparing the
results to figure 4a we see that the filtered approach performs
significantly better than either of the previous approaches.

Next we compare the runtime of the algorithms. As the
runtime of the self-configuration algorithm is dominated by the
underlying DPA we use the number of required performance
analysis runs (i.e. number of DSC steps) to obtain a solution
as runtime metric. We introduce the comparison factor c, that
signifies the relation of the number of analysis runs needed
by the GA b and the number of analysis runs needed by the
distributed LIT-based algorithm a.

c =


a/b if a > b

0 if a = b

−b/a if b > a

(10)

For both parameter sets figure 5 shows histograms over the
comparison factor c for those testcases where both algorithms
found a solution. Regardless of the testcase size the proposed
LIT-based algorithm requires an order of magnitude less per-
formance analyses to derive a feasible priority assignment than
the GA, which is a state of the art design time tool (12.75x and
11.48x average improvement for the small and large testcase
systems, respectively). For the same set of testcase generation
parameters the lazy LIT-based algorithm of [21] states average
runtime improvements vs. the GA of 5x and 7x for the two
testcase parameter set. Thus, the novel filtered algorithm is
∼2x faster than the lazy algorithm while it is able to solve
significantly more testcases.

VII. CONCLUSION

In this paper we have presented a novel algorithm that
distributedly finds feasible priority assignments in distributed



(a) filtered LIT-based, Param. Set 1 (b) filtered LIT-based, Param. Set 2

Fig. 5: Improvement histograms

SPP scheduled systems under consideration of end-to-end
path latency constraints. Due to the possibility of distributed
implementation the algorithm can be used to complement an
admission control scheme as in [4] to enhance a system by
self-configuration capabilities.

In an evaluation based on an extensive set of pseudo-
randomly generated testcases we have shown that the proposed
filtered LIT-based algorithm was able to solve as many small
testcases systems as a current design-time tool. For larger more
complex systems it even outperformed the existing software
significantly. At the same time, irrespective of the testcase size
the proposed algorithm was more than an order of magnitude
faster than the design-time tool.

Thus, although designed for an in-system distributed imple-
mentation, the algorithm poses an attractive choice for design-
time configuration synthesis.

REFERENCES

[1] S. Stein, A. Hamann, and R. Ernst, “Real-time property verification
in organic computing systems,” in Second Int’l. Symp. on Leveraging
Applications of Formal Methods, Verification and Validation, 2006.

[2] C. Hammerschmidt, “Bosch sees massive challenges ahead of
automotive electronics,” EETimes, Internet, June 2010. [Online]. Avail-
able: http://eetimes.eu/en/bosch-sees-massive-challenges-ahead-for-
automotive-electronics.html?cmp id=7&news id=222902475&vID=8

[3] J. Reed, “Audi to relaunch a2 city model with ’apps’
for bespoke features,” Financial Times, Internet, May 2010.
[Online]. Available: http://www.ft.com/cms/s/0/c4f14878-6c4a-11df-
86c5-00144feab49a.html

[4] M. Neukirchner, S. Stein, H. Schrom, and R. Ernst, “A software Update
Service with Self-Protection Capabilities,” in Proc. of the conf. on
Design, Automation and Test in Europe (DATE), 2010.

[5] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proc. -, vol. 152, pp. 148–166, 2005.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, pp. 46–61,
1973.

[7] J. Y. T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
pp. 237–250, 1982.

[8] N. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “Hard real-
time scheduling: The deadline-monotonic approach,” in in Proc. IEEE
Workshop on Real-Time Operating Systems and Software, 1991.

[9] J. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems,” Real-Time
Systems Symp., 1992, pp. 110 –123, 1992.

[10] R. Davis and A. Burns, “Optimal priority assignment for aperiodic tasks
with firm deadlines in fixed priority pre-emptive systems,” Information
Processing Letters, vol. 53, pp. 249 – 254, 1995.

[11] M. Bertogna, M. Cirinei, and G. Lipari, “New schedulability tests for
real-time task sets scheduled by deadline monotonic on multiprocessors,”
in Principles of Distributed Systems. Springer Berlin / Heidelberg, 2006.

[12] B. Andersson, “Global static-priority preemptive multiprocessor
scheduling with utilization bound 38%,” in Principles of Distributed
Systems. Springer Berlin / Heidelberg, 2008.

[13] R. I. Davis and A. Burns, “Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems,” in 30th
IEEE Real-Time Systems Symp. (RTSS), 2009.

[14] A. Hamann, M. Jersak, K. Richter, and R. Ernst, “A framework for
modular analysis and exploration of heterogeneous embedded systems,”
Real-Time Syst., vol. 33, pp. 101–137, 2006.

[15] M. Glaß, M. Lukasiewycz, J. Teich, U. Bordoloi, and S. Chakraborty,
“Designing heterogeneous ecu networks via compact architecture encod-
ing and hybrid timing analysis,” in Proc. of the 2009 Design Automation
Conference (DAC), 2009.

[16] L. Palopoli, L. Abeni, T. Cucinotta, G. Lipari, and S. Baruah, “Weighted
feedback reclaiming for multimedia applications,” in IEEE/ACM/IFIP
Workshop on Embedded Systems for Real-Time Multimedia (ESTImedia),
2008.

[17] T. Cucinotta and L. Palopoli, “QoS Control for Pipelines of Tasks using
Multiple Resources,” IEEE Trans. on Computers, vol. 59, pp. 416–430,
2010.

[18] J. Jonsson and K. G. Shin, “Robust adaptive metrics for deadline
assignment in distributed hard real-time systems,” Real-Time Systems,
vol. 23, pp. 239–271, 2002.

[19] J. G. Garcı́a and M. G. Harbour, “Optimized priority assignment for
tasks and messages in distributed hard real-time systems,” in Proc. of the
IEEE Workshop on Parallel and Distributed Real-Time Systems, 1995.

[20] M. D. Natale and J. A. Stankovic, “Dynamic end-to-end guarantees in
distributed real time systems,” in Real-Time Systems Symp., 1994.

[21] M. Neukirchner, S. Stein, and R. Ernst, “A lazy algorithm for distributed
priority assignment in real-time systems,” in Proc. of 2nd IEEE Work-
shop on Self-Organizing Real-Time Systems (SORT), 2011.

[22] K. Richter, “Compositional scheduling analysis using standard event
models,” Ph.D. dissertation, Technical University of Braunschweig, De-
partment of Electrical Engineering and Information Technology, 2004.

[23] K. W. Tindell, “An extendible approach for analysing fixed priority hard
real-time systems,” Journal of Real-Time Systems, vol. 6, pp. 133–152,
1994.

[24] R. Racu, L. Li, R. Henia, A. Hamann, and R. Ernst, “Improved response
time analysis of tasks scheduled under preemptive round-robin,” in Proc.
of the Int’l. Conf. on Hardware-Software Codesign and System Synthesis,
2007.

[25] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Syst., vol. 35, pp. 239–272, 2007.

[26] S. Schliecker and R. Ernst, “A recursive approach to end-to-end path
latency computation in heterogeneous multiprocessor systems,” in Proc.
7th Int’l. Conf. on Hardware Software Codesign and System Synthesis
(CODES-ISSS), 2009.

[27] S. Stein, M. Neukirchner, H. Schrom, and R. Ernst, “Consistency
challenges in self-organizing distributed hard real-time systems,” in
Proc. of IEEE Workshop on Self-Organizing Real-Time Systems - SORT
2010, 2010.

[28] M. Neukirchner, S. Stein, and R. Ernst, “SMFF: System Models for
Free,” in 2nd Int’l. Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), 2011.

[29] M. Neukirchner, “System models for free (smff),” Internet, 2011.
[Online]. Available: http://smff.sourceforge.net

APPENDIX

Fig. 6: Parameters for testcase generation


