
Formal Worst-Case Timing Analysis of Ethernet
Topologies with Strict-Priority and AVB Switching

Jonas Diemer, Daniel Thiele, Rolf Ernst
Institute of Computer and Network Engineering

Technische Universität Braunschweig
38106 Braunschweig, Germany

{diemer|thiele|ernst}@ida.ing.tu-bs.de

Abstract—Ethernet is increasingly recognized as the future
communication standard for distributed embedded systems in
multiple domains such as industrial automation, automotive and
avionics. A main motivation for this is cost and available data
rate. A critical issue in the adoption of Ethernet in these domains
is the timing of frame transfers, as many relevant applications
require a guaranteed low-latency communication in order to meet
real-time constraints. Ethernet AVB is an upcoming standard
which addresses the timing issues by extending the existing
strict-priority arbitration. Still, it needs to be evaluated whether
these mechanism suffice for the targeted applications. For safety-
critical applications, this can not only be done using intuition or
simulation but requires a formal approach to assure the coverage
of all worst-case corner cases. Hence, we present in this paper a
formal worst-case analysis of the timing properties of Ethernet
AVB and strict-priority Ethernet. This analysis mathematically
determines safe upper bounds on the latency of frame transfers.
Using this approach, we evaluate different topologies for a typical
use-case in industrial automation.

I. INTRODUCTION

Ethernet currently receives increasing interest for the use
in embedded and distributed control applications in many
different industries, such as industrial automation, automotive
or avionics. There are multiple motivations for this. First of
all, Ethernet delivers a much higher bandwidth than existing
automation communication media such as CAN or FlexRay.
At the same time, Ethernet hardware is extremely inexpensive
in terms of per-node-cost due to the high quantities produced
for the consumer market. Also, it offers straight-forward and
efficient integration into other IT infrastructure.

One critical issue of the use of Ethernet for control ap-
plications, however, is that many such applications require
predictable and low latency communication between nodes.
In safety-critical applications, this has to be guaranteed even
for the worst-case scenario. There are several approaches for
Ethernet-based networks to make the timing more predictable
which change the way data is forwarded in the bridges, e.g.
by applying priorities. Examples are AFDX, Ethernet AVB,
EtherCat, Profinet, TTEthernet [1]. Ethernet AVB has a special
role in these approaches because it is an official Ethernet
standard which is widely used. As a result, Ethernet AVB
capable hardware is offered in large quantities and by different
suppliers, which is beneficial in terms of costs and availability.

The Ethernet audio/video bridging (AVB) task group [2] has
developed the Ethernet AVB standard over the past years to al-

Class A

Class B

Non-
Real-
Time

1
2

1

2 3

3

Credit  A

Queue A

TX Data

(a) (b)

Non-RT Frame 2

sendSlope

Credit  A

idleSlope

Strict P
rio rity

C
B

S
A

C
B

S
A

Time

Fig. 1. Architecture (a) and operational example (b) of the Credit-Based
Shaping Algorithm (CBSA) used in Ethernet AVB.

low real-time audio and video streams for studio applications.
The standardization work has resulted in the IEEE standards
802.1AS, 802.1Qat, 802.1Qav [3], [4], [5].

Compared to the previous Ethernet IEEE 802.1Q standard
[6], which already provides strict priority scheduling with 8
priorities, Ethernet AVB adds a credit-based shaping algorithm
(CBSA) for real-time (RT) traffic classes “A” and “B” as
shown in Fig. 1(a). Each traffic class uses dedicated queues
so scheduling within a class follows a FIFO order. The traffic
shaper prevents starvation of lower priorities and allows band-
width guarantees. For this it uses credits which are replenished
at a constant rate (the so-called idleSlope) and consumed at
the rate allowed by the port (the sendSlope) when data on
the specific class is transferred. The idleSlope is configured
using the Stream Reservation Protocol (SRP) as defined by
IEEE 802.1Qat.

A downside of Ethernet AVB is that the standard does not
provide a formal latency guarantee, so this must be evaluated
separately. The latency of communication largely depends on
the network technology, topology and traffic scenarios. In
order to evaluate the timing of specific Ethernet networks,
simulation or measurements of real networks can be employed.
These, however, are often rather slow, making design-space-
exploration very cumbersome. More importantly, such ap-
proaches usually do not show the worst-case, and are thus not
suitable to verify worst-case guarantees. Here, formal perfor-
mance analysis approaches known from processor scheduling
research seem like a better option. Compositional Performance
Analysis (CPA) is one such approach which is very fast and
highly scalable. In [7], we have shown how to apply CPA to



the analysis of Ethernet AVB using a model transformation.
The key idea is to map the arbitration of frames at the output
of Ethernet bridges to the scheduling of tasks on a processing
resource. This way, we can utilize the well known methods
for the performance analysis of distributed embedded systems
provided by CPA to analyze the worst-case timing of Ethernet
AVB.

While [7] focused mainly on the model transformation,
this paper will comprehensively present the analysis of strict-
priority Ethernet (IEEE 802.1Q) and Ethernet AVB class A
and B in Section III. Before that, some further background
and related work on AVB and CPA are provided in Section II.
Furthermore, we will evaluate different topologies for their
worst-case behavior comparing strict-priority Ethernet and
Ethernet AVB for typical industrial use cases in Section IV
before we conclude in Section V.

II. BACKGROUND AND RELATED WORK

The right side of Fig. 1(b) illustrates the basic timing
properties of Ethernet AVB by an example of the transfer of
three short frames on Class A with a longer interfering non-
real-time (NRT) frame. The top graph shows the credit level
of the Class A traffic shaper. The middle graph shows the
queue occupancy of Class A on the y-axis, while the boxes
show the queuing delay of each of the three frames. The lower
graph shows the data transmission on the output port. Frames
on classes A or B are only sent if the corresponding credit
level is zero or higher and the credit level is reset to zero
as soon as there are no frames waiting on the corresponding
queue. Hence, the traffic shaper enforces an idle time between
consecutive frames in each class as shown between frames 2
and 3. When the corresponding traffic class is blocked due
to a non-preemptive transfer that started earlier, credit can
accumulate, resulting in a burst of frames once the output is
free again as shown for frames 1 and 2.

The output arbitration in strict-priority Ethernet and AVB
follows a static-priority non-preemptive (SPNP) scheduling
scheme, for which local analyses exist (e.g. [8]). However,
Ethernet allows different streams of the same priority to be
scheduled in FIFO order, which requires an extension of
the standard SPNP analysis. This extension is similar to the
analysis of earliest-deadline-first (EDF), which is presented
in e.g. [9]). For Ethernet without priorities, [10] presents a
worst-case delay analysis. An analysis of Ethernet with strict
priorities using Real-Time Calculus is given in [11]. This
analysis, however, shows large overestimations. [12] presents
a worst-case analysis of Ethernet with strict priorities and
weighted fair queuing using network calculus. A study of the
timing properties of Ethernet AVB has been presented by [13].
In this study, however, only per-class timings were obtained
instead of those for individual streams.

In this paper, we use Compositional Performance Analysis
(CPA) [14], [15], [16], which uses a similar composition and
similar event models as Real-Time Calculus [17], but different
local link and switch analyses. Real-Time Calculus has been
used for Ethernet analysis in [11]. The CPA approach has

0 250 500 750 1000 1250 1500
∆t

0

1

2

3

4

5

n

η(∆t)

η− (∆t)

η+ (∆t)

0 1 2 3 4 5
n

0

200

400

600

800

1000

1200

1400

∆
t

δ(n)

δ− (n)

δ+ (n)

Fig. 2. Event model for a periodic task with a period of 250 time units.

been applied to regular Ethernet [18] and Ethernet AVB [7]
by mapping Ethernet output ports to scheduled resources and
traffic streams to chains of tasks. A similar approach has been
shown for networks-on-chip in e.g. [19] and [20].

CPA is implemented in the commercial tool SymTA/S,
but the basic algorithms are also available open-source [21].
Compared to other formal approaches like model checking,
CPA is very fast and scalable. The system model of CPA
is composed of a set of tasks which are processed by a set
of resources. Each task τi is assumed to consume processing
time specified by its best- and worst-case execution times C−i
and C+

i for each task activation (or job). Tasks are activated
by events which can originate from an external source or
from other tasks. Such events are modeled by minimum
and maximum arrival curves η−(∆t) and η+(∆t), which
return the minimum and maximum number of events that can
arrive within any time window of size ∆t. These functions
have pseudo-inverse counterparts, the so-called maximum and
minimum distance functions δ+(n) and δ−(n), which are the
maximum/minimum time interval between the first and the last
event of any sequence of n event arrivals. An event model
covers all possible event arrivals of a specific event source
and is not just a specific trace of events. Figure 2 shows the
event model for a periodic event arrival with a period of 250
time units and a jitter of 250 time units. The jitter results in
the fact that two events can arrive simultaneously (δ−(2) = 0)
but also up to two periods apart (δ+(2) = 500).

To obtain the worst-case timing of a system, CPA first
performs so-called local “busy window” analyses on each
resource to compute the worst-case timing and output event
model of each task. For this, a critical instant scenario is
constructed, assuming the worst-case arrival of all interfering
tasks to maximally delay the processing of the task under
consideration. After all local analyses, the output event models
of each task is forwarded as input event models of the
dependent tasks, which are then analyzed again using the
updated event models. This procedure is iterated until a fixed



point (stable event models) is reached or a timing constraint
(e.g. maximum path latency) is violated [15]. Initial event
models for all tasks are derived from the external input event
model of each task chain. In addition to the validation of the
schedulability (all deadlines met) the analysis also yields upper
bounds on the worst-case response time (WCRT) of tasks and
other timing properties such as the worst-case end-to-end path
latency of a chain of tasks.

III. ANALYSIS

In this section, we present the analysis of strict-priority
Ethernet and Ethernet AVB using the CPA approach. Most of
the discussion will focus on latter Ethernet standard, as from
the timing perspective, strict-priority Ethernet is just a special
case of Ethernet AVB with disabled traffic shaping. Also, for
simpler presentation, we assume that every traffic class can
be shaped by a traffic shaper. For classes not having a traffic
shaper, the idleSlope can be set to the port transmission rate
which makes the shaper ineffective.

To apply CPA to Ethernet networks, it is required to map
the Ethernet components to the modeling artifacts of CPA as
shown in [18], [7]. Since we want to analyze the arbitration
at the output ports of Ethernet switches, it is natural to map
them to processing resources in CPA. For every traffic stream
(i.e. talker-listener pair with unique traffic characteristics) we
add a dedicated task to each output port it passes through.
The core execution time of the tasks matches the transfer time
of the Ethernet frames of that stream. The arrival of a frame
then becomes the activation event of a task. A traffic stream
for a source to a destination over multiple hops then becomes
a chain of tasks mapped to a series of resources modeling the
switch outputs. For such a chain, we can compute the worst-
case path latency which is equivalent to the transfer latency of
the Ethernet stream. For the remainder of the paper, we will
mostly use the terms from the CPA domain.

Now being able to map the analysis of Ethernet AVB
timing to the performance analysis according to CPA, we
need to derive a local analysis, which computes the worst-case
response-time of a task and the corresponding output event
model. In CPA, the local analysis requires the formulation
of a level-i busy-time B+

i (q) (cf. busy-period in [22]) which
describes how long a resource is busy processing q jobs of
task τi. For AVB, we need to extend the definition of the
busy-period to account for the traffic shaper:

Definition 1. The maximum (minimum) q-event busy-time
B+

i (q) (B−i (q)) of a task τi is given by the maximum (mini-
mum) time the resource is busy processing q events, if all but
the first of the q events arrive within the busy-time of their
respective predecessor. The resource is considered busy if it
processes a task or if the traffic shaper corresponding to task
τi still has negative credit.

In order to conservatively capture all possible effects, we
break down the busy-time into a sum of different terms, each
addressing an individual effect. Under AVB scheduling, the
busy-time of a task τi is impacted by:

• Transfer time ttransfer: The time to execute the task
τi (transfer a frame) is determined by the maximum
core execution time not including any blocking (no-
load transfer time). The maximum core execution time
results from the network speed and frame size, and is the
maximum time required to transfer a frame through the
corresponding port.

• Blocking time by lower-priority tasks ILPB : Task τi
can be blocked by one lower-priority task activation that
commenced transfer just before the activation of the task.

• Blocking time by same-priority frames ISPB : Task τi can
be blocked by other tasks of the same priority which were
activated before itself.

• Blocking time by higher-priority frames IHPB : All
higher-priority tasks may block task τi, limited by the
traffic shaping applied to the high-priority classes.

• Blocking time by traffic shaping ITSB : Task τi may have
to wait for shaper credits to be replenished before it may
execute. This is omitted for strict-priority Ethernet.

In order to obtain the maximum busy-time B+
i (q), i.e. the

longest time required to execute q activations of a task τi
(which equals the transfer of q frames of the corresponding
stream), we maximize all of the above delays and add them
up:

B+
i (q, aqi ) ≤ttransfer(q) + ILPB + ISPB(aqi )+

ITSB(aqi ) + IHPB(B+
i (q, aqi )) (1)

where aqi is the arrival time of the q-th activation of task τi
relative to the beginning of the busy time.

Note that the same-priority blocking and the traffic-shaper
blocking depend on the arrival-time aqi of the q-th activation,
whereas the higher-priority blocking depends on the busy-time
B+

i (q, aqi ) itself. Because B+
i appears on both sides of the

equation, it forms an integer fixed point problem, which is typ-
ical for busy-time based scheduling analysis. It can be resolved
iteratively by starting with B+

i (q, aqi ) = ttransfer(q) + ILPB .

A. Individual Sources of Blocking

We will now discuss the upper bounds of each component
of B+

i (q, aqi ). The maximum transfer time for q activations
of a task τi is given by

ttransfer(q) = q · C+
i (2)

The worst-case execution time C+
i of the task τi is equal to

the maximum time it takes for a frame of the corresponding
stream to pass through the arbitration point without contention.
Respecting the minimum Ethernet frame size, the frame over-
head and the inter-frame gap, C+

i can be obtained as

C+
i =

(48Byte+max(36Byte, dataLength))

portTransmissionRate
(3)

For fixed frame sizes, the minimum execution time C−i is
equal to the maximum execution time C+

i .



A task τi can suffer lower-priority blocking only once by a
non-preemptive lower-priority task that started executing just
before τi was ready. In the worst case, the longest executing
lower-priority task must be assumed to be the blocker:

ILPB = max
j∈lp(i)

{
C+

j

}
(4)

where lp(i) is the set of lower priority tasks mapped to the
same resource as task τi.

The same-priority blocking depends on the arrival time aqi
of the q-th event of task τi due to the FIFO scheduling within
the same priority. Hence, an upper bound for the blocking
inferred by the same-priority tasks is

ISPB(aqi ) =
∑

j∈sp(i)

(
η+j (aqi ) · C+

j

)
(5)

with sp(i) being the set of same-priority tasks mapped to the
same resource as task τi and η+j being the worst-case arrival
function of task τj . Thus η+j (aqi ) is the maximum number of
activations of task τj before the arrival of the q-th activation
of task τi. As an upper bound for the worst-case, we assume
that all of these activations block task τi by the worst-case
execution time C+

j of the corresponding task τj .
For the higher-priority blocking, we have to assume in

the worst-case that all higher priority activations arriving just
before the transmission of task τi interfere with it. Hence, we
obtain

IHPB(B+
i (q, aqi )) =

∑
j∈hp(i)

(
η+j (B+

i (q, aqi )− C+
i ) · C+

j

)
(6)

with hp(i) being the set of higher-priority tasks mapped
to the same resource as task τi and η+j being the worst-
case arrival function of task τj . Thus η+j (B+

i (q, aqi ) − C+
i )

is the maximum number of activations of task τj before the
execution of the q-th activation of task τi. Note that we subtract
C+

i from B+
i (q, aqi ) because arrivals of higher-priority tasks

can not interfere once the q-th activation of task τi has started
executing due to the non-preemptiveness of Ethernet transfers.

The bounds of the same- and higher-priority interference
can be reduced by exploiting the traffic shaping on preceding
resources, which will be described in Section III-C.

The traffic shaper blocking is interdependent with other
interference because positive credit accumulates when a task
is blocked which reduces traffic shaper blocking later. Hence,
in order to maximize the overall interference, i.e. the sum of
the terms in Equation 1, we assume that the traffic shaper
interference occurs as early as possible (by assuming no
positive credit), according to the following lemma.

Lemma 1. While a task τi is blocked by a task τj of a different
priority, any blocking by a traffic shaper afterwards is delayed.

Proof: Assume task τj blocks tasks τi by exactly tblock
time. During this time, the credit of task τi’s shaper in-

creases at the idleSlope by cblock = tblock · idleSlope.
This credit allows task τi to execute for an extra time of
cblock · (−sendSlope) before the traffic shaper depletes. From
this, the lemma follows.

The traffic shaper blocking depends on the allowed rate
(idleSlopec(i)) of the class c(i) of task τi. Every task executed
on the class of task τi (i.e. tasks in sp(i) ∪ {τi}) consumes
credits, which may lead to a blocking by the shaper. The
amount of credits consumed by executing Ctrans time units
is Kconsumed = −sendSlopec(i) · Ctrans. Considering traffic
shaper blocking observed by task τi, Ctrans can be bounded
by the time required to transmit own and same-priority frames,
i.e. Ctrans ≤ ttransfer(q)+ISPB(aqi ). Hence, to replenish the
credits consumed by previous frame transfers, the following
time is required:

ITSB(aqi ) =
Kconsumed

idleSlopec(i)
=
−sendSlopec(i)
idleSlopec(i)

· Ctrans (7)

≤
[
(q − 1) · C+

i + ISPB(aqi )
]
·
−sendSlopec(i)
idleSlopec(i)

(8)

This formula assumes that the first frame does not observe
any traffic shaper blocking according to the definition of the
busy-time (Definition 1), hence the q− 1. Note again that for
strict-priority Ethernet, ITSB = 0.

B. Worst-Case Response Time and Output Event Model

Now that we have derived the q-event busy-time for Ethernet
AVB scheduling, we can bound the worst-case response time
R+

i of task τi, which is equivalent to the maximum per-hop
frame latency. For this, we must find the maximum distance
between the completion of q activations (B+

i (q)) and the
arrival of the q-th activation aqi :

R+
i = max

q∈Qi

{
max
aq
i∈Ai

{
B+

i (q, aqi )− aqi
}}

(9)

This equation forms a nested optimization problem: for
every number of activations q within a busy-time, all possible
arrival times aqi of the q-th event have to be considered to
find the maximum response time. Considering different arrival
times is necessary because a later arrival increases the interfer-
ence due to FIFO scheduling but at the same time reduces the
response time. Fortunately, the number of possible candidates
for aqi is finite. One has to only consider activations of task
τi that happen just after the activation of other same-priority
tasks, which are defined by their respective δ−-functions.
An arrival later than just after a same-priority activation but
before the arrival of another same-priority activation would not
increase the load (as no additional events arrive) but would
decrease the response time, as the arrival time is subtracted
from the busy time (see Equation 9). Hence, the set Aq

i )
of candidates for aqi within the busy-time B+

i (q, aqi ) can be
written as:



Aq
i =

⋃
j∈sp(i)

{
δ−j (n)|n > 0 ∧ δ−j (n) < B+

i (q, aqi )
}

(10)

Note that this set again includes a fixed-point iteration as
B+

i (q, aqi ) is required to compute the set. For the number
of activations q within a busy-time, we need to consider all
scenarios where an activation arrives within the busy-time of
the previous activation, i.e. all q ≥ 1 which are smaller than
the maximum number of events q+i which fall into one busy-
time (see [23]):

Qi =
{

1, 2, . . . , q+i
}

(11)

q+i = min{q ∈ N+|δ−i (q + 1) ≥ B+
i (q, aqi = 0)} (12)

We can derive the output event model for each task which
becomes the input event models of dependent tasks as pro-
posed in [24] (refer to the paper for further details on the
equations):

δ−i,out(n) = max
{
B−i (n− 1),

min
j∈Qi

{δ−i,in(n+ j − 1)−B+
i (j)}+B−i (1)

}
(13)

δ+o,out(n) = max
j∈Qi

{
δ+i,in(n− j + 1) +B+

i (j)
}
−B−i (1) (14)

Here, B−i (q) is the minimum busy-time which describes the
smallest time window a resource is busy processing q events.
Trivially, this is q times the best-case execution time C−i :

B−i (q) = q · C−i (15)

This can be improved using knowledge about the traffic
shaper as we will discuss in the next section. The equations
for the output event model are used during the event model
propagation step after the local analyses.

The worst-case response time R+
i of task τi is equivalent

to the maximum delay any frame of the corresponding stream
will observe on the corresponding hop. The end-to-end latency
l+p (s) of the transferal of s frames on stream p can be derived
from the sum of the per-hop delays and the additional wire
and (de-)packetization delays:

l+p (s) ≤ δ−First(p)(s) +
∑

j∈Tasks(p)

R+
j +Orouting(p) (16)

where First(p) denotes the first task (source) stream p,
Tasks(p) denotes the set of all tasks (one per hop) of stream p,
and Orouting(p) denotes the constant total routing/wire over-
head of stream p (which can be a function of the number
of hops). This equation basically computes how long it takes
to inject s frames at the source node (δ−First(p)(s)) and then
assumes that the last one of these will observe the worst-
case response time on all hops. Due to in-order delivery, all

previous frames will also have reached the destination before
the last one. The delay that these previous frames observe is
included as interference in the worst-case response time of the
last frame.

CPA can also be used to derive the maximum required buffer
size to avoid frame drops due to buffer overflows. For this,
we simply derive the maximum activation backlog b+i , i.e. the
maximum number of activations of task τi which have arrived
but not yet processed. It can be computed as

b+i = max
q∈Qi

{η+i (B+
i (q))− (q − 1)} (17)

This equation examines all numbers of activations q which
fall into the same busy time. For each, B+

i (q) yields the
completion time of the q-th activation. At this instance of
time, at most η+i (B+

i (q)) activations have arrived since the
beginning of the busy time, of which q − 1 have already
been processed. Hence, the difference yields the amount of
outstanding activations, of which we have to determine the
maximum for all q ∈ Qi.

C. Improving the Interference Bounds by Exploiting the Traffic
Shaping

So far, we have used the traffic shaping only in ITSB

introducing additional delay to frames. However, the traffic
shaping also improves the timing for dependent tasks as it
forces delays between events. This reduction in burstiness
reduces the interference on subsequent resources.

Intuitively, this should be captured during the output event
model propagation where the event model at the output of each
router (i.e. after traffic shaping) is computed (see Equations 13
and 14). However, we can only partly exploit the traffic shaper
here as the shaper works per-class and not per-stream. Still,
we can improve the output event model slightly under the
conservative assumption that all credit available in the shaper
is used by just one stream. We express the delay imposed
by the traffic shaping in the output event model propagation
(Equations 13 and 14) by an improved minimum busy-time
B−i (q, aqi ) describing the smallest time window a resource is
busy processing n events. The improved minimum busy-time
is

B−i,shaping(q) = q · C−i + I−i,TSB(q) (18)

where I−i,TSB(q) is the minimum guaranteed blocking in-
ferred by the shaper to task τi.

Figure 3 illustrates the minimum time I−i,TSB(q) that q
activations of task τi are delayed by the traffic shaper. The
dashed line shows the credit of the traffic shaper assuming
the credit is initially zero. As the q − 1 events prior to
the q-th activation are executed, the credit level continually
reduces and needs to recover before the q-th activation may
execute. Note that the figure shows that all q − 1 activations
are executed at once, but in reality, the traffic shaper blocks
task τi after every execution. For the total blocking time,
however, this does not make any difference. There are no



C-
imax{C+

j} Time

Credit

max{C+
j} ∙ idleSlopec (i) I-TSB(q)

(q-1) ∙ C-
i

I0
TSB

Fig. 3. Example for the computation of the minimum blocking of the traffic
shaper I−i,TSB(q).

other same-priority interferers of τi executing which means
that all credit is available to task τi, minimizing the blocking.
This results in a conservative lower bound on the minimum
busy-time. Note that the presence of other streams could be
exploited to reduce the credits available to each stream and
hence increase the minimum delays imposed by the shaper.
Furthermore, we need to conservatively assume that the traffic
shaper credit level is not initially zero due to a prior interfering
frame of tasks of other priority as illustrated in Figure 3. The
solid line shows the credit level under the presence of such
an interferer, and it can be seen that it reaches zero I0TSB

time units before the dashed line. I0TSB is the duration of
an initial burst allowed by the shaper due to positive credit.
Hence, the actual minimum distance time needs to be reduced
by this amount. With these considerations, we can express the
minimum time that q activations are delayed by the traffic
shaper as

I−i,TSB(q) = max
{

0,(q − 1) · C−i ·
−sendSlopec(i)
idleSlopec(i)

− I0TSB

}
(19)

The initial burst I0TSB can be computed from the maximum
execution time of any interfering task:

I0TSB = max
j∈lp(i)∪hp(i)

{C+
j } ·

idleSlopec(i)

−sendSlopec(i)
(20)

As discussed above, the traffic shaper blocking can only
partly be exploited in the event model propagation because
the shaper works per class and not per task. To consider the
per-class shaping, we can extend the computation of the same-
priority blocking.

For illustration, take a look at Figure 4 which shows three
resources r1, r2, and r3 with multiple tasks of which we
assume all have the same priority. Let us consider the same-
priority interference of task τ34 on resource r3. The interfering
tasks τ31 and τ32 both are activated from tasks τ11 and τ12
running on the same resource r1 and being shaped by the
same traffic shaper s1. So far, we have assumed that both
tasks τ31 and τ32 may be activated simultaneously and both
interfere with task τ34. However, this can not be the case as the
previous resource can only process and hence finish one task

r2

r1 r3

τ11

τ12

τ21

η33

s1
τ32

τ33

τ31

τ34

Fig. 4. Illustration of the exploitation of the traffic shaper.

at a time (due to non-preemptiveness). Hence, we can group
same-priority interferers by the resource from which they are
activated and then provide an upper bound for the combined
load from each group of tasks. This works even without traffic
shaping, as the processing speed of the resource is finite, but
with exploiting traffic shaping we can give a tighter bound on
the load. Of course, this does not work for tasks which are
not activated from a previous resource, such as task τ33 in
the example which is activated from an external event model
η33. For such tasks, we calculate the interference as shown in
Equation 5.

In [25], a similar approach has been presented for resources
with preemptive scheduling which considered minimum dis-
tances between events of different tasks activated from the
same resource. This allows the analysis of task chains with
different execution times on each resource, which is not
needed for Ethernet so we can use a simpler load limit in
this paper.

With the above reasoning, we first compute the maximum
load Ls(∆t) that is allowed by a shaper s within any time
window ∆t

Ls(∆t) = min
{

∆t, I0TSB + ∆t · idleSlopes
−sendSlopes

}
+ max

k∈tasks(s)
{C+

k } (21)

where tasks(s) is the set of tasks shaped by the shaper s.
In this equation, the first term in the min-function describes

an upper bound to the load that the port allows without any
shaping within ∆t time. The second term in the min-function
gives an upper bound on the shaped load, again including
the maximum initial workload (see Equation 20) similarly to
Equation 19, The last term in Equation 21 accounts for the fact
that in the worst case, another maximum-size same-priority
interferer may be allowed by the shaper if the credit is just
above zero.

Now, we need to group tasks by their preceding resource.
For this, we define Ri to be the set of resources from
which same-priority interferers of task τi are activated. In
the example R34 = {r1}. We define spr(i) to be the set of
same-priority interferers of task τi which are activated from
resource r and sri to be the shaper on resource r for the same
class of task τi. So in the example, spr1(34) = {τ31, τ32} and



sr134 = s1. Furthermore, we define np(i) as the set of same-
priority tasks of task τi which are not activated from a task on
a different resource (in the example np(34) = {τ33}). From
this, we can now improve the same-priority blocking:

IshapedSPB (aqi ) =
∑
r∈Ri

min
{
Lsri

(aqi ),

∑
j∈spr(i)

η+j (aqi ) · Cj

}
+

∑
j∈np(i)

η+j (aqi ) · Cj (22)

For all tasks which are activated from traffic shaped re-
sources, this equation limits their accumulated load to the
maximum load allowed by the traffic shaper (first sum).
For all tasks that are not activated from a shaped task, the
equation simply computes the maximum interference as before
in Equation 5. Note that with this extension, the candidates for
the arrivals aqi need to be extended to cover all arrivals during
which the load of the same-priority interferers is still being
shaped. For this, we iteratively add the times at which the
current load is no longer shaped to the arrival candidates.

Likewise, we can extend the higher-priority blocking to
account for shaping on previous resources to reduce the
interference of shaped traffic on lower-priority traffic.

IshapedHPB (B+
i (q, aqi )) =

∑
p∈prio(hp(i))

min
{
Lsp(B+

i (q, aqi )),

∑
j∈tasks(p)

η+j (B+
i (q, aqi )) · Cj

}
(23)

where prio(hp(i)) is the set of higher priorities of task
τi, sp is the shaper of priority p on the resource of task τi,
and tasks(p) are the tasks in priority p on the resource of
task τi. Similarly to the improved same-priority blocking in
Equation 22, we group tasks to consider the limit imposed by
the shaper on the task group. For the higher-priority blocking,
we group by priority (instead of by preceding resource) and
apply the maximum load Lsp (Equation 21) allowed by the
shaper of this priority as an upper bound to the interference.

IV. EVALUATION OF DIFFERENT TOPOLOGIES

Now that we have presented the analysis approach, we will
apply this to evaluate different topologies for a typical use
case from industrial automation. For the use-case, we assume
a network with a single controller which periodically sends and
receives control data to multiple I/O nodes. Specifically, we
will evaluate a star and a line topology, as shown in Figure 5.
For every topology, we will compare the worst-case timing
of Ethernet AVB to strict-priority (SP). Both controller and
nodes are assumed to send with the same period of 250 µs
with a jitter of 250 µs, which corresponds to the event model
shown in Figure 2. This jitter means that there can be a
burst of two activations. The message size is assumed to be
10 Bytes, which fits into a minimum-size Ethernet frame. If

Ctl

I/O

I/O

I/O

I/O

I/O

BridgeStar

Ctl

I/O

Bridge

I/O

Bridge

I/O

Bridge

I/O

BridgeLine

Ctl

I/O

Bridge
Clustered
Line

I/O

I/O I/O

I/O

Bridge

I/O

I/O I/O

Fig. 5. Topologies of the evaluation.

not stated otherwise, we assume that all control traffic (in both
directions) is sent on Class A for AVB or priority 3 for strict-
priority Ethernet. For all topologies, we assume a wire delay of
330 ns. For AVB, the idleSlope is usually set up to allow just
enough credit required to sustain the accumulated rate of all
traffic streams. However, a transient overload (introduced by
jitter) results in additional frames which may keep the buffers
occupied forever if the traffic shapers allow no extra load. This
“permanent delay” is discussed in the IEEE 802.1Qav standard
[5] and the standard suggests a “little” over-reservation to
cope with this. Hence, we multiply all idleSlopes by a over-
reservation factor of 2 if not stated otherwise. This means that
technically, we reserve twice as much bandwidth for class A
than is injected, to accommodate the bursts of two activations
of each stream.

In all experiments, we assume that there is unknown non-
real-time traffic (NRT). This means that independent lower-
priority blockers of the size of a maximum Ethernet frame
must be considered at each hop. Note that in the system graphs,
we do not show the corresponding NRT tasks.

A. Star Topology

We will first evaluate a star topology. Here, the controller
and all devices are connected to a single central Ethernet
bridge. We will vary the number of I/O nodes and hence ports
of the bridge. From the analysis point-of-view, this is the most
straight-forward topology, as all interference happens only at
one place. Specifically, the output port connecting the switch
to the controller will see interference from all nodes sending
control data. The other direction, from the controller to the
nodes, is contention-free, as each node is connected directly
via a dedicated port.

Figure 6 shows the system model of a star-topology for
three I/O nodes. Hence, the central switch (“S0”) has four



S0.port[auto1]

S0.port[auto1]:Ctl->IO00.00

S0.port[auto3]

S0.port[auto3]:Ctl->IO00.02

S0.port[auto2]

S0.port[auto2]:Ctl->IO00.01

S0.port[auto0]

S0.port[auto0]:IO00.00->Ctl

S0.port[auto0]:IO00.02->Ctl

S0.port[auto0]:IO00.01->Ctl

P=250000 J=250000

Fig. 6. System model of a star topology with 1 controller and 3 I/O nodes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of I/O Nodes

0

50

100

150

200

250

300

La
te

nc
y 

(µ
s)

AVB
SP

Fig. 7. Worst-case communication latencies to the controller for star
topologies with different numbers of nodes.

ports (three for I/O, one for the controller). The latencies for
communication between the nodes and the controller do not
depend on the switching protocol (AVB vs strict-priority) nor
on the number of connected nodes. It is 1002 µs including
330 ns wire delay, which is the best-case transfer time.

For the other direction, Figure 7 shows the worst-case
latencies for Ethernet AVB and strict-priority for up to 23
I/O nodes. The largest configuration can be implemented
with a standard-sized 24-port bridge. As expected, the latency
for strict-priority Ethernet linearly increases with the number
of nodes due to the increasing same-priority interference.
For Ethernet AVB, the plot shows much higher latencies
than for strict-priority Ethernet. This is due to the traffic

5 10 15 20 25 30
Traffic shaper over-reservation (factor)

0

50

100

150

200

250

300

La
te

nc
y 

(µ
s)

AVB
SP

Fig. 8. Worst-case communication latencies to the controller for the star
topology with 12 nodes and different factors for over-reservation of the traffic
shapers.

shaping applied to class A, which delays frames which arrive
bursty (which is assumed for the worst-case). Furthermore, the
latencies of AVB do not rise linearly, but following a function
of the shape of (n−1)/n where n is the number of nodes. This
results from the fact that although the same-priority and traffic-
shaper interference increase with n−1, the idleSlope increases
with n. Hence, the traffic-shaper blocking grows super-linearly
for small numbers of nodes and linearly for large numbers of
nodes.

As discussed above, the idleSlope for class A traffic has
been configured to allow twice as much as the required
bandwidth to process transient overloads quickly. To see the
effect of this over-reservation, we keep the number of nodes
constant at 12 but vary the factor of the over-reservation from
2 to 31. Figure 8 shows the resulting latencies for the traffic to
the controller. It can be seen that the latency for AVB drops
with increasing over-reservation. As expected, it approaches
the latency of strict-priority Ethernet as the impact of the traffic
shaper is reduced. In our example, both switching schemes are
equivalent with the idleSlope set to allow 31x the required
bandwidth.

We have seen that AVB has a serious impact on the worst-
case latency due to the blocking by the traffic shaper. However,
we would expect that the blocking of class A improves the
latency of class B. To evaluate this hypothesis, we add a class
B stream to each of the I/O nodes which behaves exactly as the
class A stream except for the period which is raised to 2.5 ms
(10x more). Here, we examine only the case with 23 I/O nodes.
With strict-priority scheduling, the latency of the class B traffic
to the controller is 61 µs, which is about 40% more than the
latency of the class A frames. We set up the idleSlope for
class B the same way as for class A, i.e. to two-times the
requested bandwidth. With AVB, however, the class B latency
amounts to 1.3 ms, which is more than 5x the latency of class



S0.port[auto0]

S0.port[auto0]:Ctl->IO01 S1.port[auto1]:Ctl->IO01

S0.port[auto2]

S0.port[auto2]:Ctl->IO00

S1.port[auto0]

S1.port[auto0]:IO01->Ctl S0.port[auto1]:IO01->Ctl

S1.port[auto1]

S0.port[auto1]

S0.port[auto1]:IO00->Ctl

P=250000 J=0

Fig. 9. System model of a line topology.

A traffic. This is due to the fact that class B itself is traffic
shaped, which means that in the worst-case (in this example) it
can not use the slots during which class A is shaped because it
is blocked by its own shaper. If we disable the traffic shaping
of class B, its latency drops to 35 µs, which is lower than the
latency in the strict-priority case. This shows that the shaping
of AVB on class A does not improve the worst-case latency of
class B, but only that of lower-priority unshaped traffic. With
other traffic constellations a positive effect of the shaping of
class A on class B can be observed: if we switch the periods
of classes A and B, the worst-case latency of class B increases
from 262 µs to 274 µs once we disable the shaping on class A.
This positive effect is not enough to counteract the delay of the
shaping on class B itself compared to the strict-priority case.
However, do note that the shaping of class A (and B) allows a
traffic-independent guarantee of a minimum bandwidth to the
traffic on class B (and lower priorities). These considerations
remain valid for the other topologies, but we will focus only
on class A traffic there.

B. Linear Topology

We will now evaluate a linear topology, where each node
is connected via a dedicated 3-port bridge to two neighbors.
As opposed to the previous star topology, a linear topology
results in much more interference, as traffic needs to pass the
same output ports along the line of bridges. Hence we expect
much more interference.

Figure 9 shows the system model for a line topology with
two switches S0 and S1. To each switch, an I/O node (IO00
and IO01) is connected, and the controller “Ctl” is connected
to switch S0. The figure also shows the task chains modeling
the communications between the controller and the I/O nodes.

For this topology, we keep the number of switches and
nodes constant to 16 but evaluate the latencies for the com-
munication to/from each node. Figure 10 shows the latencies
for the worst-case for both AVB and strict-priority Ethernet
for the different streams. The left half of the plot shows the
traffic streams from the controller to the I/O nodes, while
the right half shows the other direction. Similarly to the star
topology, it can be seen that the worst-case latencies for strict-
priority Ethernet increase linearly with the distance between
the controller and the node. The same is true for the latency

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Streams from Ctl (left) and to Ctl (right)

0

500

1000

1500

2000

2500

3000

La
te

nc
y 

(µ
s)

AVB
SP

Fig. 10. Worst-case communication latencies for the streams in the linear
topology.

of AVB traffic, which is in contrast to the star topology. Also,
AVB latencies grow at a much higher slope. The reason for
this is that in a linear topology, many streams run in parallel
for multiple hops. The traffic shapers at each hop induce jitters,
which leads to increased bursts at subsequent resources, so the
impact of the traffic shaper accumulates. Note that the jitter
grows so high that much longer lines are not reasonable with
this traffic setup.

C. Clustered Linear Topology

Finally, we evaluate a clustered linear topology, in which
multiple star topologies are connected in a line. Figure 11
shows the latencies for a clustered line with 4 bridges with 6
I/O nodes each, which can be constructed from 8-port bridges.
The controller is connected to the first bridge. The behavior is
as expected a mix of the star and the line topology. One can
observe 4 groups of 6 streams with the same latencies, with
the latencies of the individual groups increasing about linearly.
Again, AVB yields much higher latencies than strict-priority
Ethernet. As expected, the latencies in the clustered topology
are between those of the star topology and the line topology.

V. CONCLUSION

In this paper, we have presented a formal worst-case
analysis for Ethernet networks using strict-priority arbitration
and the credit-based-shaping-algorithm from Ethernet AVB.
These allow the derivation of upper bounds on the timing
of frame transfers, which are required to employ Ethernet
networks in real-time and safety-critical embedded systems.
Using this approach, we evaluated several topologies for a
typical use-case in industrial automation. The evaluation has
generally shown that Ethernet AVB first of all substantially
increases the latencies for the highest-priority Class-A traffic
compared to the static-priority arbitration due to the additional
traffic shaping delay. We have also seen in the evaluation that
class B traffic can not benefit from the shaping of class A



0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
Streams from Ctl (left) and to Ctl (right)

0

200

400

600

800

1000

1200
La

te
nc

y 
(µ
s)

AVB
SP

Fig. 11. Latencies for the streams in the clustered topology.

as it is shaped itself and hence in the worst-case can not
utilize the time slots during which class A traffic is shaped.
However, the worst-case latency of unshaped lower priorities
does improve due to the shaping of classes A and B. Also,
the shaping allows to give minimum bandwidth guarantees to
lower priority traffic.

REFERENCES

[1] R. Cummings, K. Richter, R. Ernst, J. Diemer, and A. Ghosal,
“Exploring use of ethernet for in-vehicle control applications: Afdx,
ttethernet, ethercat, and avb,” in SAE 2012 World Congress &
Exhibition, 4 2012, SAE Technical Paper 2012-01-0196. [Online].
Available: http://papers.sae.org/2012-01-0196

[2] “Audio/Video Bridging Task Group of IEEE 802.1.” [Online]. Available:
http://www.ieee802.org/1/pages/avbridges.html

[3] “IEEE Standard 802.1AS-2011 – Timing and Synchronization for
Time-Sensitive Applications in Bridged Local Area Networks,” 2011.
[Online]. Available: http://standards.ieee.org/findstds/standard/802.1AS-
2011.html

[4] “IEEE Standard 802.1Qat-2010 – Stream Reser-
vation Protocol (SRP),” 2010. [Online]. Available:
http://standards.ieee.org/findstds/standard/802.1Qat-2010.html

[5] “IEEE Standard 802.1Qav-2009 – Forwarding and Queuing
Enhancements for Time-Sensitive Streams,” 2009. [Online]. Available:
http://standards.ieee.org/findstds/standard/802.1Qav-2009.html

[6] “IEEE Standard 802.1Q-2011 – IEEE Standard for Local and
metropolitan area networks–Media Access Control (MAC) Bridges
and Virtual Bridged Local Area Networks,” 2011. [Online]. Available:
http://standards.ieee.org/findstds/standard/802.1Q-2011.html

[7] J. Diemer, J. Rox, and R. Ernst, “Modeling of Ethernet AVB Networks
for Worst-Case Timing Analysis,” in MATHMOD, Austria, 2012.

[8] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) Schedulability Analysis: Refuted, Revisited and Revised,” Real-
Time Systems, vol. 35, no. 3, 2007.

[9] J. Palencia and M. Harbour, “Offset-based response time analysis of
distributed systems scheduled under EDF,” in Real-Time Systems, 2003.
Proceedings. 15th Euromicro Conference on, 2003.

[10] K. C. Lee, S. Lee, and M. H. Lee, “Worst case communication delay
of real-time industrial switched ethernet with multiple levels,” Industrial
Electronics, IEEE Transactions on, vol. 53, no. 5, pp. 1669 –1676, oct.
2006.

[11] K. Revsbech, H. Schi, T. Madsen, and J. Nielsen, “Worst-case traversal
time modelling of ethernet based in-car networks using real time
calculus,” in Lecture Notes in Computer Science. Springer, 2011.

[12] J.-P. Georges, T. Divoux, and E. Rondeau, “Strict priority versus
weighted fair queueing in switched ethernet networks for time critical
applications,” in Parallel and Distributed Processing Symposium, 2005.
Proceedings. 19th IEEE International, april 2005, p. 141.

[13] J. Imtiaz, J. Jasperneite, and L. Han, “A performance study of Ethernet
Audio Video Bridging (AVB) for Industrial real-time communication,”
in Emerging Technologies & Factory Automation, 2009. ETFA 2009.
IEEE Conference on, 2009.

[14] K. Richter, M. Jersak, and R. Ernst, “A Formal Approach to MpSoC
Performance Verification,” IEEE Computer, vol. 36, no. 4, apr 2003.

[15] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis–the SymTA/S Approach,” IEE
Proceedings-Computers and Digital Techniques, vol. 152, no. 2, 2005.

[16] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst,
“System Level Performance Analysis for Real-Time Automotive Multi-
Core and Network Architectures,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2009.

[17] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in ISCAS, vol. 4, 2000.

[18] J. Rox and R. Ernst, “Formal Timing Analysis of Full Duplex Switched
Based Ethernet Network Architectures,” in SAE World Congress, vol.
System Level Architecture Design Tools and Methods (AE318). SAE
International, Apr 2010.

[19] Z. Shi and A. Burns, “Real-time communication analysis for on-chip
networks with wormhole switching,” in NOCS. IEEE Computer Society,
2008.

[20] J. Diemer, J. Rox, M. Negrean, S. Stein, and R. Ernst, “Real-Time
Communication Analysis for Networks with Two-Stage Arbitration,” in
EMSOFT’11, October 2011.

[21] Jonas Diemer and Philip Axer, “pyCPA: Compositional Performance
Analysis in Python,” http://code.google.com/p/pycpa/, 2012.

[22] K. Tindell, A. Burns, and A. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
no. 2, 1994.

[23] S. Quinton, M. Hanke, and R. Ernst, “Formal analysis of sporadic
overload in real-time systems,” in Design, Automation and Test in
Europe, 2012.

[24] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing Accurate Event
Models for the Analysis of Heterogeneous Multiprocessor Systems,” in
CODES-ISSS, oct 2008.

[25] J. Rox and R. Ernst, “Exploiting inter-event stream correlations between
output event streams of non-preemptively scheduled tasks,” in Proc.
Design, Automation and Test in Europe (DATE 2010), March 2010.


