
Modeling of Ethernet AVB Networks for
Worst-Case Timing Analysis

Jonas Diemer, Jonas Rox, Rolf Ernst

Institute of Computer and Network Engineering,
Technische Universität Braunschweig, Germany

e-mail: {diemer|rox|ernst}@ida.ing.tu-bs.de

Abstract: Ethernet is currently explored as the upcoming network standard for distributed control
applications in many different industries such as automotive, avionics and industrial automation. It offers
higher performance and flexibility over traditional control bus systems such as CAN and ProfiBus. For
distributed control applications, predictable communication timing is highly important which can be
problematic using standard Ethernet. The new Ethernet AVB standard aims to improve this by a new
scheduling algorithm based on traffic shaping. However, the current AVB standard lacks a formal timing
guarantee which is important for safety-critical control applications. As a solution to this, we present
a model for Ethernet AVB networks and a transformation into a timing analysis model. Based on the
timing model, we apply a compositional performance analysis known from the analysis of distributed
real-time systems to derive worst-case timing properties and hence provide timing guarantees for the
original Ethernet AVB network. For this, we provide the required formalism for the analysis of the
scheduling of Ethernet AVB.

Keywords: Communication Networks, Ethernet, Performance analysis, Timing analysis, Formal
verification, System models, Mathematical models, Industry automation, Automotive control

1. INTRODUCTION

The use of Ethernet for distributed control applications is cur-
rently investigated in many industries, such as automotive,
avionics and industrial automation. A major expected benefit
is the flexibility of Ethernet as an open standard with no tight
bounds to a specific supplier. Having the same network in-
frastructure in automation and offices, Ethernet also simplifies
installation and maintenance and integration into corporate IT
infrastructures. At the same time, Ethernet offers high data rates
at an extremely low price point compared to domain-specific
protocols like CAN, FlexRay etc.

Switch 1

Controller+
Terminal

I/O 1

Switch 2

Switch 3

I/O 2

I/O 4

I/O 3

Camera

Fig. 1. Example for a small Ethernet Network in Industrial
Automation

Figure 1 shows an example of a simple industrial automa-
tion network. Multiple nodes with sensors (e.g. light barrier,
pressure, temperature) and actuators (e.g. conveyor belt mo-
tors, soldering robots) are connected via Ethernet switches to

a central controller. The sensors periodically send their mea-
surement data to the controller which processes the data and
then sends control messages to the actuators. The controller also
implements a terminal station for the human-machine-interface,
which includes observation data received from a camera con-
nected via Ethernet.

A major challenge when using Ethernet in the industrial do-
mains is the predictable timing of data transfers. Many control
applications in automation require periodic transferal of sensor
and control messages with low latency and jitter in order to
guarantee correct functionality of the control loop. Different
solutions exist that tackle this problem on the network protocol
layer such as PROFINET (http://www.profinet.com/), Ether-
CAT (http://www.ethercat.org), TT-Ethernet (SAE (2011)), or
AFDX (ARINC (2009)), see Cummings et al. (2012). However,
these solutions require either special hardware media access
controllers (MACs) in the nodes, special switches or both,
which is disadvantageous in terms of cost and availability. Here,
the use of the Ethernet IEEE 802.1 (2011) standard for audio-
video bridging (AVB) is a promising alternative which was
originally conceived to facilitate transfer of real-time audio and
video streams in studio applications. Being an official Ethernet
standard, it is likely that AVB-capable switch integrated cir-
cuits (ICs) will be available at very high quantities and hence
very low price compared to the industry-specific solutions men-
tioned above. This motivates the evaluation of the usability of
Ethernet AVB for other domains such as industrial automation.

Ethernet AVB augments classical Ethernet with capabilities
of reserving bandwidth to streams of certain classes. These
are enforced using a credit-based shaping algorithm (CBSA),
which is based on priorities and adds a traffic shaper to every
output port for the corresponding classes. With this, higher



priorities can no longer starve lower priorities and the allocated
bandwidth can be guaranteed (per class). However, the current
Ethernet AVB standard does not provide formulas for worst-
case latencies that cover all corner cases. To provide accurate
upper bounds on latency and hence formal guarantees, a formal
compositional performance analysis (CPA) approach can be
used which is based on the schedulability and timing analysis of
distributed computing systems as described in e.g. Henia et al.
(2005). To this end, this paper presents a model transformation
to transform a model of an Ethernet AVB network into a timing
analysis model. For this model, we provide a formal timing
analysis approach to obtain timing guarantees for Ethernet
transfers.

The remainder of the paper is organized as follows: Section 2
provides some background and related work about Ethernet
AVB and formal timing analysis. In Section 3, we describe the
modeling of Ethernet AVB systems and how such models can
be translated into timing analysis models. Section 4 presents the
analysis of worst-case timing properties of the obtained analysis
model in theory, whereas Section 5 evaluates this analysis
approach for an example network.

2. BACKGROUND AND RELATED WORK

In this paper, we present a worst-case analysis of Ethernet
AVB networks based on a model transformation into a timing-
analysis model. A similar approach has been shown for regular
Ethernet in Rox and Ernst (2010) and for networks-on-chip
in e.g. Shi and Burns (2008) and Diemer et al. (2011). Real-
Time Calculus has been used for Ethernet analysis in Revsbech
et al. (2011). A study of the timing properties of Ethernet
AVB has been presented by Imtiaz et al. (2009). In this study,
however, only per-class timings were obtained instead of those
for individual streams. In the following subsections, we will
provide further background on Ethernet AVB and formal timing
analysis.

2.1 Ethernet AVB

Ethernet AVB is described in several standards of IEEE 802.1.
This standard defines a new scheduling mechanism for output
port arbitration which is based on prioritized traffic classes (like
regular Ethernet QoS) but adds traffic shaping to certain traffic
classes as shown in Figure 2(a). As with classical Ethernet,
each traffic class uses dedicated queues so scheduling within a
class follows a FIFO order. The traffic shapers limit the number
of frames which are transferred per time on a specific traffic
class in order to leave enough room for lower-priority traffic.
According to the 802.1Qav standard, there are at least (and
usually exactly) two classes to which traffic shaping is applied,
called stream reservation (SR) classes A and B. The traffic
shaping is implemented using credits which are replenished at
a constant rate (the so-called idleSlope) and consumed at the
rate allowed by the port transmission rate (the sendSlope) when
data is transferred.

The right side of Figure 2(b) shows an example of the transfer
of three frames on class A with an interfering non-real-time
frame. The graphs show (in descending order) the credit level,
the queue occupancy of class A, and the data transmission
on the output port. Frames on an SR class are only sent if
the corresponding credit level is zero or higher and the credit
level is reset to zero as soon as there are no frames waiting

on the corresponding queue. When the corresponding traffic
class is blocked due to a non-preemptive transfer that started
earlier, credit can accumulate, resulting in a burst of frames
once the output is free again as shown for frames 1 and 2
in Figure 2(b). After this, the traffic shaper enforces an idle
time between consecutive frames in each class as shown in
Figure 2(b) (between frames 2 and 3).

Class A

Class B

Non-
Real-
Time

1
2

1

2
3

3

3

Credit  A

Queue A

TX Data

(a) (b)

Non-RT Frame 2

sendSlope

Credit  A

idleSlope

Fig. 2. Architecture (a) and operational example (b) of the
Credit-Based Shaping Algorithm (CBSA).

2.2 Formal Timing Analysis

To analyze the worst-case timing behavior of Ethernet AVB, we
use the Compositional Performance Analysis (CPA) approach
as implemented by the tool SymTA/S (see Richter et al. (2003);
Henia et al. (2005); Schliecker et al. (2009)), which uses a
similar composition and similar event models as Real-Time
Calculus (Thiele et al. (2000)), but different local link and
switch analyses. This formal analysis assumes a set of tasks
processed by communication or processing resources. For the
tasks, formal and conservative characteristics are assumed, such
as the lower and upper bounds on the task execution time (C−
and C+). Tasks are activated by events which can originate from
an external source, such as a timer interrupt, from another task
via inter-task communication corresponding to the activation
dependencies. Event arrivals are modeled using minimum and
maximum distance functions δ−(n) and δ+(n), which are the
maximum/minimum time interval between the first and the last
event of any sequence of n event arrivals. These functions have
pseudo-inverse counterparts η+(∆t) and η−(∆t), which are
called maximum and minimum arrival curves and the minimum
and maximum number of events that can arrive within any time
window of size ∆t. Such an event model covers all possible
event arrivals of a specific event source and is not just a specific
trace of events.

From these task properties and knowledge about the scheduling
mechanism, one can derive upper bounds on the timing proper-
ties using a busy-window-based approach based on Lehoczky
(1990); Tindell et al. (1994). It works by constructing a critical
instant scenario for each task on each resource by assuming the
worst-case arrival of all interfering tasks to maximally delay the
processing of the task under consideration. For such a scenario,
the n-event busy window (or busy period) is computed for each
task, i.e. an upper bound on time required to process n activa-
tions of the task. This allows the computation of an output event
model describing the minimum and maximum numbers of tasks
completion in a specific interval as described in Henia et al.
(2005) and Schliecker et al. (2008). The output event models
are then forwarded as input event models of the dependent
tasks, which are then analyzed again using the updated event
models. This procedure is iterated until a fixed point (stable
event models) is reached or a timing constraint (e.g. maximum
path latency) is violated (see Henia et al. (2005)). To break



cyclic analysis dependencies, initial event models for all tasks
are derived from the external input event model of each task
chain. In addition to the validation of the schedulability (all
deadlines met) the analysis also yields upper bounds on the
worst-case response time (WCRT) of tasks and other timing
properties such as the end-to-end latency of a chain of tasks.

3. MODELING OF ETHERNET AVB FOR TIMING

In this section, we first describe the domain-specific model for
Ethernet networks and the system model used by the composi-
tional performance analysis before we discuss how the former
is transformed into the latter.

3.1 Ethernet AVB Model

Switch

Port

name : String

pTxRate : Integer

idleSlope[8] : Integer

sendSlope() : Integer

1

1..*port

Node

Target

name : String

priority : Integer

dataLength : Integer

eventModel : EventModel

1

1..*

sendList

CyclicTarget

period : Integer

jitter : Integer

minDist : Integer

Network

name : String

generateSystemModel()

11..*

switches

1 1..*

nodes

NetworkEntity

name : String

connect(peer : NetworkEntity)

route(destination : NetworkEntity) : list<Port>

1

1 peerSwitch

1

peerPort

1

Fig. 3. Domain-specific model for Ethernet AVB

Figure 3 shows our domain-specific model in which Ethernet
AVB networks can be expressed. The main components are
switches and nodes, which are interconnected through ports.
All components are identified by a unique name. For each port,
the physical transmission rate (pT xRate) is specified. Addition-
ally, each port specifies the CBSA idleSlope for each of the 8
priorities. Note that according to the Ethernet AVB standard,
there are normally only two SR classes A and B (corresponding
to priorities 3 and 2) and at most 7 SR classes but the model
offers more flexibility. For convenience, there is also a function
to compute the sendSlope, which is the difference between
the idleSlope and the pT xRate. Each node can have a list of
Targets which describe traffic streams their destination node
name. Each Target also the priority and the maximum packet
size (dataLength) of the corresponding stream. Special derived
classes such as CyclicTarget capture specific frame injection
patterns such as periodic with jitter and a minimum distance
between frames. In order to compute the route from a specific
source node to a target, the route()-function is used for a recur-
sive search.

3.2 CPA System Model

Figure 4 shows the CPA system model as described in Sec-
tion 2.2. For resources, a scheduling policy (e.g. static priority

non-preemptive or CBSA) is specified. For tasks, the best-
case and worst-case execution times (WCET and BCET) as
well as a scheduling priority are specified. Each task has an
activating event model containing the δ−(n) and δ+(n) func-
tions and their pseudo-inverse counterparts η+(∆t) and η−(∆t)
(which are actually derived from δ−(n) and δ+(n)). Tasks form
double-linked lists to model activation behaviors (task chains or
paths) and forward output event models. Paths can be a subset
of such a task chain to define a path for the computation of
an end-to-end latency including static per-hop and per-stream
overheads.

Task

name : String

WCET : Integer

BCET : Integer

sched_param : Integer

deadline : Integer

bind_resource(r : Resource)

Resource

name : String

w_function : Function

stop_condition : Function

bind_task(t : Task)

1

resource

1..*

tasks

EventModel

delta_min : Function

delta_plus : Function

eta_min() : Integer

eta_plus() : Integer

0..1

prev_task

0..*

next_tasks

SystemModel

bind_resource(r : Resource)

bind_path(p : Path)

Path

name : String

Path(tasks : List)

0..*1..*

tasks

1

1..*

1

1..*

1

1..*

1

1in_event_model

Fig. 4. Compositional Performance Analysis system model

3.3 Model Transformation

In order to apply compositional performance analysis to com-
pute worst-case bounds on network timing, the domain-specific
Ethernet AVB model must be transformed into a CPA system
model. For this, we need a link between the entities in the Eth-
ernet network and the components of the CPA system model.
Since we are interested in the delay of frame transfers, it is
obvious to map these to task executions in the CPA system
model. To maintain compositionality, we divide the transfer of
a frame through the network into a chain of individual switch
traversal tasks. Hence the transfer latency of a frame becomes
the end-to-end path latency of the corresponding task chain.

In order to derive accurate timing bounds from the transformed
model, we must capture the delays encountered by packets in
the network. Static delays such as wire transmission delays oc-
cur independently of other traffic in the network, while dynamic
delays result from contention in the network which is resolved
by arbitration or scheduling, e.g. at the switch output ports.
Static delays can be trivially captured in the latency compu-
tation and are modeled as per-hop and per-stream overheads in
the streams. To capture dynamic delays we create a scheduling
resource for each arbitration point in the network with tasks
for each stream passing through. The worst-case execution time
(WCET) of these tasks is equal to the maximum time it takes for
a frame to pass through the arbitration point without contention.
Respecting the minimum Ethernet frame size, the frame over-
head and the inter-frame gap, the WCET C+

i can be obtained
as

C+
i =

(48Byte+max(36Byte,dataLength))
pT xRate

(1)



The only components where significant arbitration delays can
be observed are the switch output ports. Hence, we map each
switch output port in the Ethernet AVB model to a resource.
Nodes and targets (i.e. communication streams) are mapped to
task chains, which are assigned to the corresponding resources
according to the route taken in the Ethernet network. The tar-
gets’ priorities are assigned to the corresponding task priorities.
The event model describing packet injection is derived from
the packet injection pattern of the target, e.g. for a an injection
with period P, jitter J and minimum distance d, we use the
corresponding event models from Schliecker et al. (2008):

δ
−(n) = max{(n−1) ·d,(n−1) ·P− J} (2)

δ
+(n) = (n−1) ·P+ J (3)

The Ethernet AVB model might not include a complete spec-
ification of low-priority legacy traffic as the characteristics of
such best-effort traffic are often not known. In this case, we
add low-priority interferer tasks to all output resources, which
covers the worst-case of all possible low-priority traffic in the
Ethernet network.

Figure 5 shows the transformed CPA system model of the ex-
ample from Figure 1. For clarity, the sensor and control streams
are drawn as two different models. Light boxes represent re-
sources (transformed from switch output ports) which con-
tain circles representing tasks for each stream passing through.
Tasks are interconnected to form streams representing targets
in the Ethernet model. Event models are shown in white boxes.
Dark boxes represent switches and are shown to highlight the
grouping of resources; they are not part of the actual CPA
system model.

The model transformation is unidirectional. However, the re-
sults obtained from the analysis of the CPA system model can
be back-annotated into the Ethernet AVB model. The transfor-
mation process described here works for all possible Ethernet
AVB network configurations.

4. WORST-CASE TIMING ANALYSIS OF ETHERNET
AVB

With the model transformation described above, we have ob-
tained an analyzable timing model of an Ethernet AVB network.
Although we can apply the compositional performance analysis
approach to the transformed system model, no existing local
analysis matches the behavior of Ethernet AVB. Hence, we
require formulas to compute the upper bounds on the busy
window, output event model and response time for a resource
under Ethernet AVB scheduling.

In principle, the AVB switch follows a static-priority non-
preemptive schedule (SPNP) for which local analyses exist
(e.g. Davis et al. (2007)). However, the traffic shaping ap-
plied to Class A and B traffic requires an extension of the
standard SPNP analysis. Furthermore, Ethernet allows differ-
ent streams with the same priority being scheduled in FIFO
ordering which requires an extension similar to the analysis of
earliest-deadline-first (EDF) scheduling (see Palencia and Har-
bour (2003)). Hence, we will now derive the required formalism
for the local analysis for AVB, considering a task τi model-
ing the transfer of a frame over a single switch. Under AVB
scheduling, the transfer latency of a single frame of a specific
stream (and hence the execution of the task τi) is impacted by:

• Transfer time ttrans f er: The time to transfer a frame (ex-
ecute the task τi) is determined by the network speed
(and the resulting core execution time), not including any
blocking (no-load transfer time).

• Blocking time by lower-priority frame ILPB: Task τi can be
blocked by a lower-priority task that commenced transfer
just before the activation of the task.

• Blocking time by same-priority frames ISPB: Task τi can
be blocked by other tasks of the same priority which were
activated before itself (FIFO order).

• Blocking time by higher-priority frames IHPB: All higher-
priority tasks may block task τi, limited by the traffic
shaping applied to the high-priority classes. For the scope
of this paper, we focus only on the analysis of the highest
priority class-A traffic and thus omit the higher-priority
blocking.

• Blocking time by traffic shaping IT SB: Task τi may have
to wait for shaper credits to be replenished before it may
execute.

For the analysis of AVB, we extend the definition of the level-i
busy-period wi(q) (cf. Tindell et al. (1994)) to account for the
traffic shaper:

Definition 1. The maximum (minimum) q-event busy-time
B+

i (q) (B−i (q)) of a task τi is given by the maximum (minimum)
time the resource is busy processing q events, if all but the first
of the q events arrive within the busy-time of their respective
predecessor. The resource is considered busy if it processes a
task or if the traffic shaper corresponding to task τi still has
negative credit.

The maximum busy-window B+
i (q,a

q
i ), i.e. the longest time

required to forward q frames of a stream τi, can be bound by
maximizing and adding all of the above delays:

B+
i (q,a

q
i )≤ttrans f er(q)+ ILPB + ISPB(a

q
i )+

IT SB(a
q
i )+ IHPB(B+

i (q,a
q
i )) (4)

where aq
i is the arrival time of the q-th activation of task τi

relative to the beginning of the busy time. Note that B+
i appears

on both sides of the equation which results in an integer fixed
point problem that can be resolved iteratively by starting with
B+

i (q,a
q
i ) = ttrans f er(q). We will now discuss the upper bounds

of each component of B+
i . The maximum transfer time for q

packets of a stream τi is given by
ttrans f er(q) = q ·C+

i (5)

The interference from the traffic shaper IT SB is interdependent
with other interference ILPB, ISPB, and IHPB because positive
credit accumulates when a task is blocked which reduces traffic
shaper blocking later. Hence, in order to maximize the overall
interference, i.e. the sum of the terms, we assume that the traffic
shaper interference occurs as early as possible, according to the
following lemma.

Lemma 1. While a task τi is blocked by a task τ j of a different
priority, any blocking by a traffic shaper afterwards is delayed.

Proof. Assume task τ j blocks tasks τi by exactly tblock time.
During this time, the credit of task τi’s shaper increases at the
idleSlope by cblock = tblock · idleSlope. This credit allows task
τi to execute for an extra time of cblock · (−sendSlope) before
the traffic shaper depletes. From this, the lemma follows.



Legend

Switch 1

Switch 2

Switch 3

Switch 1

Switch 2

Switch 3

ηctl

ηcam

ηI/O4

ηI/O2

ηI/O3

ηI/O1

(a) (b)η

Resource

Task

Event stream

Input Event Model

Fig. 5. Transformed analysis models of the example network for the sensor streams (a) and control streams (b)

A task τi can suffer lower-priority blocking only once by a
non-preemptive lower-priority task that started executing just
before τi was ready. In the worst case, the longest executing
lower-priority task must be assumed to be the blocker:

ILPB = max
j∈l p(i)

{
C+

j

}
(6)

where l p(i) is the set of lower priority tasks mapped to the same
resource as task τi.

The same-priority blocking depends on the arrival time ai(q)
of the q-th event of task τi due to the FIFO scheduling within the
same priority. Hence, the blocking inferred by the same-priority
tasks can be bounded by

ISPB(a
q
i ) = ∑

j∈sp(i)

(
η
+
j (a

q
i ) ·C

+
j

)
(7)

with sp(i) being the set of same-priority tasks mapped to the
same resource as task τi and η

+
j being the worst-case arrival

function of task j. Thus η
+
j (a

q
i ) is the maximum number of

activations of task j before the arrival of the q-th activation
of task τi. For tasks which are activated by preceding tasks,
this bound can be improved by exploiting the traffic shaping
performed on the preceding task’s resource. The maximum load
allowed by the corresponding preceding traffic shaper (derived
from the idleSlope and sendSlope parameters) can be used
as an upper bound for the interference from tasks from that
resource. Although this improvement is implemented in the
analysis, a detailed formulation is out of the scope of this paper.

The traffic shaper blocking depends on the allowed rate
(idleSlope) of the corresponding class. Every task executed on
the class of task τi (i.e. tasks in sp(i)∪{τi}) consumes credits,
which may lead to a blocking by the shaper. The amount of
credits consumed by a transmission lasting Ctrans time units is
Kconsumed = −sendSlopec(i) ·Ctrans, where c(i) is the class of

task τi. Considering traffic shaper blocking observed by task τi,
Ctrans can be bounded by the time required to transmit the pre-
ceding own and same-priority frames, i.e. Ctrans ≤ (q−1)C+

i +
ISPB(a

q
i ). Hence, to replenish the credits consumed by previous

frame transfers, the following time is required:

IT SB(a
q
i ) =

Kconsumed

idleSlopec(i)
=
−sendSlopec(i)

idleSlopec(i)
·Ctrans (8)

≤
[
(q−1) ·C+

i + ISPB(a
q
i )
]
·
−sendSlopec(i)

idleSlopec(i)
(9)

Now that we have derived the q-event busy window for Ethernet
AVB scheduling, we can bound the worst-case response time
R+

i of task τi. For this, we must find the maximum distance
between the completion of q activations B+

i (q,a
q
i ) and the

arrival of the q-th activation relative to the arrival candidate aq
i .

For aq
i , only candidates in Ai that arrive just after the arrival of

other same-priority tasks have to be considered. For the number
of activations q within a busy-time, we need to consider all
candidates in Qi where an activation arrives within the busy-
time of the previous activation.

R+
i = max

q∈Qi

{
max
aq

i ∈Ai

{
B+

i (q,a
q
i )−aq

i

}}
(10)

The end-to-end latency of a frame can be computed as a
sum of the individual per-hop delays and the additional wire
and (de-)packetization delays. Furthermore, we can derive the
output event model for each task which becomes the input event
models of dependent tasks as proposed in Schliecker et al.
(2008).

5. EXPERIMENTAL EVALUATION

We have implemented the presented Ethernet and CPA models,
the model transformation and the analysis in Python based



Cam→
Ctl

Ctl→IO1

Ctl→IO2

Ctl→IO3

Ctl→IO4

IO1→
Ctl

IO2→
Ctl

IO3→
Ctl

IO4→
Ctl

0

20

40

60

80

100

120

140

160

180
Stream End-to-End Latencies (µs)

worst-case AVB
worst-case SP
best-case

Fig. 6. Analysed worst-case latency bounds.

on the open-source analysis from Jonas Diemer and Philip
Axer (2012). For evaluation, we have modeled the simple
network from the introductory example (see Figures 1 and 5).
We compare the latency bounds for the system assuming (a)
standard Ethernet with strict priorities (SP) and (b) Ethernet
AVB with additional traffic shaping. The latency for (a) is
obtained using Equation 4 with IT SB = 0.

In this example, all streams between the controller and the I/O
modules are SR class-A real-time streams (priority 3), while
the stream between the camera and the controller is regular
traffic (priority 0). We assume that all streams are periodically
activated. For the streams between the I/O blocks and the con-
troller the period is 250 µs and 4Bytes of payload are sent per
period (both directions). For the stream from the camera to the
terminal, the period is 195 µs with 1500Bytes sent, which corre-
sponds to an uncompressed black&white VGA video at 25fps.
For the class-A streams, the idleSlopes are configured to allow
twice the requested data rate. This overreservation reduces the
otherwise very high worst-case traffic shaper blocking when
multiple same-priority frames arrive in a burst.

Figure 6 shows the results of the analysis. For streams
Cam→Ctl and Ctl→IO1, priority and AVB Ethernet achieve
identical worst-case latencies. For all other streams, priority-
based Ethernet significantly outperforms AVB. This is due to
the fact that the interference caused by the traffic shaper of
CBSA is always negative to class-A streams and is maximized
in the worst-case when a burst of class-A frames arrives. This is
exaggerated due to the compositional approach, which assumes
worst-case traffic shaper blocking on every hop independently.
The only positive effect is on the interference of lower-priority
streams (e.g. stream Cam→Ctl), which is currently not ex-
ploited in the analysis.

6. CONCLUSION

In this paper, we have presented the modeling of Ethernet AVB
and how such models can be transformed into timing analysis
models. We have shown how worst-case timing parameters can
be computed from the transformed models. This way, formal
guarantees on the timing of Ethernet AVB streams on the
system level can be obtained which enables the use of such
networks in real-time critical embedded systems.

REFERENCES

ARINC (2009). ARINC Report 664P7-1 Aircraft Data Net-
work, Part 7, Avionics Full-Duplex Switched Ethernet Net-
work. Technical report, ARINC.

Cummings, R., Richter, K., Ernst, R., Diemer, J., and Ghosal,
A. (2012). Exploring Use of Ethernet for In-Vehicle Control
Applications: AFDX, TTEthernet, EtherCAT, and AVB. In
SAE 2012 World Congress.

Davis, R., Burns, A., Bril, R., and Lukkien, J. (2007). Con-
troller Area Network (CAN) Schedulability Analysis: Re-
futed, Revisited and Revised. Real-Time Systems, 35(3).

Diemer, J., Rox, J., Negrean, M., Stein, S., and Ernst, R.
(2011). Real-Time Communication Analysis for Networks
with Two-Stage Arbitration. In EMSOFT’11.

Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., and
Ernst, R. (2005). System Level Performance Analysis–
the SymTA/S Approach. IEE Proceedings-Computers and
Digital Techniques, 152(2).

IEEE 802.1 (2011). Bridging and management.
http://standards.ieee.org/about/get/802/802.1.html.

Imtiaz, J., Jasperneite, J., and Han, L. (2009). A performance
study of Ethernet Audio Video Bridging (AVB) for Industrial
real-time communication. In ETFA 2009.

Jonas Diemer and Philip Axer (2012). pyCPA:
Compositional Performance Analysis in Python.
http://code.google.com/p/pycpa/.

Lehoczky, J. (1990). Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In Proceedings of the 11th
Real-Time Systems Symposium.

Palencia, J. and Harbour, M. (2003). Offset-based response
time analysis of distributed systems scheduled under EDF.
In Real-Time Systems.

Revsbech, K., Schiøler, H., Madsen, T., and Nielsen, J. (2011).
Worst-Case Traversal Time Modelling of Ethernet Based In-
Car Networks Using Real Time Calculus. In Lecture Notes
in Computer Science. Springer.

Richter, K., Jersak, M., and Ernst, R. (2003). A Formal Ap-
proach to MpSoC Performance Verification. IEEE Com-
puter, 36(4).

Rox, J. and Ernst, R. (2010). Formal Timing Analysis of Full
Duplex Switched Based Ethernet Network Architectures. In
SAE World Congress.

SAE (2011). SAE International Aerospace Standard SAE-
AS6802, Time-Triggered Ethernet. Technical report, SAE.

Schliecker, S., Rox, J., Ivers, M., and Ernst, R. (2008). Pro-
viding Accurate Event Models for the Analysis of Heteroge-
neous Multiprocessor Systems. In CODES-ISSS.

Schliecker, S., Rox, J., Negrean, M., Richter, K., Jersak, M.,
and Ernst, R. (2009). System Level Performance Analysis
for Real-Time Automotive Multi-Core and Network Archi-
tectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 28(7).

Shi, Z. and Burns, A. (2008). Real-time communication analy-
sis for on-chip networks with wormhole switching. In NOCS.

Thiele, L., Chakraborty, S., and Naedele, M. (2000). Real-time
calculus for scheduling hard real-time systems. In ISCAS.

Tindell, K., Burns, A., and Wellings, A. (1994). An extendible
approach for analyzing fixed priority hard real-time tasks.
Real-Time Systems, 6(2).


